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SUPERSYMMETRIES AND COHOMOLOGY OF GRAPH
COMPLEXES.

SERGUEI BARANNIKOV

1. INTRODUCTION.

I study the noncommutative generalisation of the Chern-Simons type construc-
tion of cohomology classes of graph complexe from [K2]. I propose the extension
of the initial framework beyond the paradigm of homological algebra. My main
initial ingredient is the h-invertible supersymmetry generator I acting on finite-
dimensional algebra, whose square is nonzero in general, I? # 0. The second
principal result is the construction of boundaries on the stable ribbon graph com-
plex associated to a pair of certain operators. It is used to construct the Virasoro
algebra action on the stable ribbon graph complexe in [B3].

Notations. For an element a from super vector space A I denote by wa € T1A
the same element considerd with inversed parity. char(k) = 0. The parity of a is
denoted by a.

Let A be finite-dimensional Z/27Z-graded associative algebra with odd invariant
inner product

g(-) : S*PA Tk
g(abv C) = g(a7 bC_)
g9(a;b) = (-1)%g(b,a)

If the algebra has an identity then such an inner product is the same as an odd
trace
1:AJ[A, Al — 11k, g(a,b) = l(ad)
In general the linear functional [ is well defined via I(ab) = g(a,b) on the image of
the multiplication map A®? — A.
Examples: g(n), H} 5 on odd-dimensional manifold, Cl;.

2. SUPERSYMMETRY.

Let I be an odd derivation acting on A, preserving the inner product:

gz,y) = (-1)" g(x, Iy)
or, if the algebra has an identity, equivalently,

Uim(ry = 0

Examples:[A, -] with A = 1, 4, with 5 =0, ...
Notice that the square of the derivation I is an even derivation of A, which is
nonzero in the general case.
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2 SERGUEI BARANNIKOV
Condition 1. Let the kernel of the derivation I is isotropic with respect to the
pairing:
95 )ker(ry =0
or, if the algebra has an identity, equivalently,
Uker(ry =0

Proposition 1. Any such derivation is invertible in the following homotopic sense.
There exists an odd self-adjoint operator I, acting on A, such that:

(2.1) [I,I]=1d
Proof. Tt ker(I) = 0 then [ is a linear isomorphism. Then I take simply the one-half

of the inverse to I
~ 1
I=-1"
2
In the general case, the condition (1) implies ker(/) belongs to the orthogonal
complement of itself, or since I is anti-selfadjoint,
ker(I) C Im(I)

Then the restriction of I on ker(7?) induces an odd linear isomorphism

(ker(I12))/ ker(I) 2 ker(I)

One can choose subspaces L;, so that L; & ker(I); = ker(I?);, i = 0,1, and that
Ly is orthogonal to Ly. Define I on ker(I) as the inverse to the odd isomorphism
L & ker(I), where L = Lo®Ly. Extend I to ker(I2) by I|, = 0. Then [I, T]|er(r2) =
Id. Let L' be the orthogonal complement to ker(I?) in A. The inner product is
non-degenerate on ker(/?) and we have the direct sum decomposition

(2.2) L' @ ker(I?) = A,

preserved by I. Then restriction of I on L’ is a linear isomorphism and I extend I
to A by

~ 1
Il = 5! Yo
It is easy to check that Iis self-adjoint. O

Definition 1. I call such a derivation I satisfying (2.1) h-invertible.

This notion extends the notion of contractible differential to the case when I? #
0.

3. THE RIBBON GRAPH COMPLEX.

Recall the definition of the (even) ribbon graph complex (C., d), see ([K2],[GK]).
Definition 2. A ribbon graph G is a triple (Flag(G), o, ), where Flag(G) is a
finite set, whose elements are called flags, o is a permutation from Aut(Flag(G))

with orbits of length greater than two, and n is a fixed-point free involution acting
on Flag(G).
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The vertices of the graph correspond to the cycles of the permutation o. The set
of vertices is denoted by Vert(G). The subset of Flag(G) corresponding to vertex
v is denoted by Flag(v). The set Flag(v) has natural cyclic order since it is a cycle
of 0. The cardinality of Flag(v) is called the valence of v and is denoted n(v). It is
assumed that n(v) > 3. The edges of the graph are the pairs of flags forming a two-
cycle of the involution 7. The set of edges is denoted Edge(G). The subset of edges
which are loops is denoted by Loop(G). The edges which are not loops are called
"regular” and I denote the corresponding subset of Edge(G) by Edge,(G). The
two element subset of Flag(G) correspoding to an edge e € Edge(G) is denoted
flag(e). I denote by S the Riemann surface associated with the ribbon graph
G (see [K1], [B1] and references therein). I denote by |G| the one-dimensional
CW-complex which is the geometric realisation of the underlying graph G.

Definition 3. The even ribbon graph complex is the vector space generated by
equivalence classes of pairs (G, or(Q)), where G is a connected ribbon graph, or(QG)
is an orientation on the vector space

®v€Ve7't(G) (kFlag(v) D k)
and the relation (G, —or(G)) = —(G, or(Q)) is imposed. The differential is

d(G,or(G)) = Z (G/{e}, induced orientation)
e€Edge,(G)

The identification of my definition of the orientation with that one from ([K2])
follows from ([GK], 4.14). A choice of orientation can be fixed by a choice of a
flag from Flag(v) for all vertices v having even number of flags and a choice of an
order on the set of such vertices. Two different choices are related by a set of some
cyclic permutations on Flag(v) for vertices v having even number of flags and a
permutation on the set of such vertices. The two corresponding orientations differ
by the sign equal to the product of signs of all these permutations.

The induced orientation on G/{e} can be easily worked out. In the case when
the edge e connects two vertices v; and vy with even number of flags, assume, that
the order on the set of vertices with even number of flags is such that v; < vo and
no other such vertices are between them, and that the flags f; € Flag(v;), i = 1,2,
fixing the orientation, form the edge e. Then the induced orientation for G/{e}
is defined by placing the new vertex vy, obtained from v; and vy after shrinking
of e, to the place of v; and by choosing the element corresponding to og(f1) in
Flag(vg). In the case when the edge e connects two vertices v; and ve with odd
number of flags, the induced orientation for G/{e} is defined by placing the new
vertex v, to the lowest level in the hierarchy of vertices with even number of flags,
and by choosing the flag corresponding to og(f) in Flag(vg),where f is either of
the two flags forming e.

I denote via (C*,8) the complex dual to the (even) ribbon graph complex. We
identify the generators of both complexes corresponding to oriented ribbon graphs
when it does not seem to lead to a confusion.

4. THE PARTITION FUNCTION.

Since g is odd, the symmetric dual inner product g~ is defined on I Hom(A, k),
the dual space with parity inversed. If P denotes the isomorphism A — IT Hom(A, k)
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induced by g, then
97 (e, 0) = g(P o, P,
Denote by I*the dual to I, odd symmetric operator, acting on II Hom(A, k):

I*¢(a) = (-1)%¢(Ia),
one can check that B B
I*=PIP !,
since I is symmetric. The odd symmetric operator I* defines the even symmetric
pairing gf_l on ITHom(A, k) :

97 (0, 0) = g (TP p,), g7 € (TTA)*?

Definition 4. Given a ribbon graph G, the tensor product of the even symmetric
tensors (glfl)e, associated with every edge e of G, (97—1)6 € (ITA)®fteg(e) | defines
the canonical element

gj_;; = ®eceEdge(G) (97‘1)6, gié € (ITA)®Flas(@),

Definition 5. Define the (—1)"*-cyclically symmetric tensors o, € Hom((ITA)®" k),
n>2 v
an(may, ..., may) = (—1)2?;112§:1Efl(a1 CQ2 .t Qpe1 v Qp)

(the tensor from V®" is (—1)"*l-cyclically symmetric if under the elementary
cyclic shift it is multiplied by the Koszul sign resulting from parities of elements of
V plus the sign of the cyclic permutation, which is (—1)"*1)

Notice that the space Flag(v) is canonically oriented for a vertex v € Vert(G) of
odd valency, n(v) = 1mod 2, thanks to the cyclic order. For a vertex v € Vert(G)
of valency n(v) = 0mod2, let or(v) denotes an orientation on the vector space
Flag(v). Because of cyclic order on Flag(v), or(v) is fixed canonically by a choice
of an element f € Flag(v).

Definition 6. The tensors asn+1, n € N are cyclically symmetric and define canon-
tcal elements

@, € Hom((ITA)®Flag(®) )
for all vertices of odd wvalence. The tensors aa,, n € N, are cyclically anti-
symmetric, they define canonical elements a, € Hom((ILA)®F1e9() k) for all ver-
tices of even wvalence equipped with a choice of orientation or(v).

Proposition 2. Given an oriented ribbon graph G with orientation or(G), the
product over all vertices v of the (—1)*") 1 _cyclically symmetric tensors a., defines
the canonical element

AGor(Q) = ®v€Vert(G)a'U7 AG,or(Q) € Hom((HA)®Flag(G)a k)

Proof. The orientation or(G) is a choice of an element of Flag(v) for all vertices v
of even valence, and a choice of an order on the total set of such vertices of even
valencies. The first part gives a choice of orientation for all vertices of even valence.
Notice that the parity of «,, is even for odd n, and odd for even n. Therefore the
choice of order on the set of vertices of even valency the product ®,cveri(q)ow gives
a well-defined element from Hom((ITA)®F1@9(G) L), In more details, the orienta-
tion or(G) fixes the signs in the definition of ag o) € Hom((ILA)®F1e9(%) ) by
dictating for every vertex of even valence n(v) which element a; is to be placed the
first inside a;,(,), and then in which order the tensors a,(,) are to be multiplied,
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the other choices are irrelevant because the sign of cyclic permutation is always
positive for odd number of elements, and because «,, defines an even tensor for odd
n. U

Definition 7. The partition function ZIG’OT(G) of an oriented ribbon graph G is the

contraction of @ueveri(q)Qw With Qe Edge(q) (g%l)e. The sum over all equivalence
classes of connected ribbon graphs defines the cochain Zy

(4.1) Zr =3 2 G or(@)), Zr € (C*,6)
(G]

Notice that the element ZIG’OT(G) (G, or(@)) of (C*,8) does not depend on the

choice of or(G), since a change of orientation changes the signs of both Z[G’OT(G)

and (G, or(Q@)).

5. ACTION OF I ON THE TENSORS 97 L AND ap,.

I denote by I* the dual to I odd antisymmetric operator, acting on Hom(I1A, k):

I"p(a) = (=1)%p(la)
The action of any endomorphism of the super vector space Hom(IIA4, k) is naturally
extended to its tensor algebra @, (Hom(ILA,k))®" as a derivation, by the Leibitz
rule. The dual action on @&, (ITA)®™ corresponds to the similar extension of the
action of I on ITA.

Proposition 3. The result of action of the operator I on gf_lz‘s
(g; ) =g"
Proof.
I(g7") = g7 ("0, ¥) + (=1)%g7 (0, T'9) = g7 (I, T*]ep, ¥0) = g™ (0, ¥)
O

Consider the partition functions of an oriented ribbon graph G and the graph
G’ = G/{e'} obtained from G by contracting the edge ¢/ € Edge,(G), with its
induced orientation. The previous proposition shows that acting by I on the two-
tensor associated with the edge €’ gives

g7 Y)e =g,

where g1 € (ITA)2UF} ¢ = (f£), denotes the two-tensor inverse to g, associated
with the edge ¢’. T claim that inserting g_,' instead of (g; 1o for the edge e’ which

1s not a loop gives Z;G/{e/}»o’“(G/{e/})'

Proposition 4. The partition function ZIG/{e/}’OT(G/{e,}), for a regular edge €, is

equal to the contraction of @yecv ert(c)Qw With @ccBdge(c) e where he = (g;l)e for
e#e and hy = g.".

Proof. The part of the contraction involving g;l is

Z(*l)gakq»l('l)l cop) g (P ) a1 (WU - Un)
JTR%
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where {u,} is a basis in (ITA) and {u*} is the dual basis, u, and u, represent the
two flags of the edge ¢’, and

(%1 ®~-~®Uk®vk+1...®vn c (HA)‘X)FZGQ(U)

represents the flags corresponding to the new vertex of G/{e’} to which the edge
€¢’shrinks. Using the linear algebra identity

b= uuu(0) =Y (=1 uug ™ (u u”) g, b).
w 2
with b = vg41 ... v, I get
(V1 ... 0,) = Z(*l)gakH»l('Ul cop) g (P ) et (WU )
IR%
i.e. the tensor «, associated with the new vertex. O

Next proposition shows that acting by I* on «,, gives zero because I is a deriva-
tion of A, preserving g.

Proposition 5.
I'(a,) =0

Proof. Tt follows from
(5.2) Z(—l)g"l(al covc(Tag)coocran) =1I(ag ... ca,)) =0

where €; = 23;11 aj, n>2. O

6. THE BOUNDARY OF THE COCHAIN Zj.

Combining the three propositions we get the following theorem.

Theorem 1. The boundary of the cochain Zy (4.1) is given by the sum over graph
with loops, each loop contributing the term similar to the one described in proposi-
tion 4 for reqular edges:

§Zr= Y. (Gor(G))zyP Ger@
(61, Loop(G) 2

where

loop,(G,or(G — _
zpr G @ = (@ (I @ (7] ® ).
e€Edge,(G) l€Loop(G) veVert(G)

Proof. The boundary of Z;

621 = 2\ VoG or(G) = X (Gor(G)) Sz or@e)
(G [G] e€Edge,(G)

For any ribbon graph G we have
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0 (Pro:p. 5) (

®e€Edge(G) (gf_l)e> I*(®v6Vert(G)a'u) =

_ (Prop. 3,4)
=17 (@egEdge(G)(gfl)e> (®veVe7.t(G)Ozv) =

— Z Z§G/{€}> or(G/Heb) | 4 Z}Oopv(Gvor(G))
e€Edge,(G)

O

7. COMPACTIFICATION AND THE stable RIBBON GRAPH COMPLEX (EVEN SCALAR
PRODUCT CASE).

To remedy the problem with contribution of loops, since they are not contracted
in the ribbon graph complex, one has to consider the complex in which all the
edges, including the loops, are allowed to contract. This leads to the complex of
stable ribbon graphs and the combinatorial compactification of the moduli space
of Riemann surfaces, which was introduced by Kontsevcih in [K1], two years be-
fore [K2], from completely different point of view in connection with the proof of
Witten conjecture. As far as I know it was not until the paper ([B1]) that this
compactification reappered in a new context more than ten yeras later, in my work
devoted to study of noncommutative Batalin-Vilkovisky equation. In loc.cit T have
related the complex of stable ribbon graphs with some modular variant of cyclic as-
sociative algebras. This leads, using in particular the dual to the map from loc.cit.,
proposition 11.3, and the same propagator (ng 1), to the construction of weights on
the stable ribbon graphs, completing the cochain Z; to a coboundary free cochain.

Definition 8. A stable ribbon graph G is a data (Flag(é),a,n,)\, {7,}), where

~

Flag(G) is a finite set, whose elements are called flags, \ is a partition on the set
Flag(@), o is a permutation from Aut(Flag(@)), stabilizing X, n is a fized-point
free involution acting on Flag(é) , and v, € Z>o is a nonnegative integer attached
to every cluster v of A. The clusters of the partition A are the vertices of stable
ribbon graph G. The edges are the orbits of the involution n. This data satisfy the

stability condition ...

In particular to any vertex v corresponds the integer v, and a permutation o, on
the subset of flags Flag(v) frm the cluster v, so that o = I1,0,,. I denote by Cycle(v)

~

the set of cycles of the permutation o, attached to a vertex v € Vert(G), and by

~

Cycle(G) the union of such sets which is the set of cycles of o. For ¢ € Cycle(G) 1

~

denote by Flag(c) the corresponding subset of Flag(G). Denote b, = |Cycle(v)]

7.1. Contraction of edges on the stable ribbon graAlphs. In order to describe
the action of the differential on the stable ribbon graph G one needs to describe the
result of the contraction of an arbitrary edge G/{e}. The contraction of edges in the
stable ribbon graphs is described combinatorially via compositions and contractions
on permutations, see ([B1]) and references therein, representing the corresponding
geometric operations on Sg. For the reader convenience I rephrase it here. For an
edge ending at vertices with v, = 0, b, = 1 this reproduces the standard contraction
on ribbon graphs.
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I identify the permutation o€ with multicyclic order on F lag(é), i.e. the col-
lection of cyclic orders on therrbits of 0. Then the result (EC the contraction of an
edge e = (ff), f, f' € Flag(G) is the stable ribbon graph G/{e} such that

Flag(G/{e}) = Flag(@\{f, [},
oG/ier = <(ff/) ° UG) |Flag(@)\{f,f’}’

as a multicyclic order, i.e. oCG/1e} is the multi-cyclic order induced on Flag(CAi)\{ 5L}
by the multi-cyclic order on Flag(G) represented by the product (ff’) o c®, natu-
rally
G/{ey — G _
=1 prag@n sy

as a map, i.e. the involution na/{e} is the restriction of the involution 77@ on the
subset Flag(G)\{f, f'}. If an edge e = (ff'), f, f' € Flag(G) is not a loop, i.e.
f, f'are from two distinguished clusters v and v’ of A, then the clusters v and v’
collide to the new cluster having v = v, +7,- If an edge e is a loop then no vertices

must collide and the partition AG/{e} on Flag \{f f'} is induced from AG , if

G/{e} _

the flags f, f/ are from the same cycle of ¥ then 7, = 7; and if they are from

different cycles of oG then vy G/tey _ fyff. Lastly if f, f' are neighbors in a cycle of
oG ie. say o (f) = f’, then, by definition, G/{e} = @ , so that such loop do

v

not contribute to the boundary operator. This exception is dictated by the relation
of the stable ribbon graphs with the combinatorial compactification of the moduli
spaces from ([K1]), and leads to the interesting condition on the algebra A.

8. THE DIFFERENTIAL ON THE STABLE RIBBON GRAPH COMPLEX.

Definition 9. The (even) stable ribbon graph comple:r is the vector space genemted
by equivalence classes of pairs (G or(G)), where G is a stable ribbon graph, or(G)
s an orientation on the vector space

® Vert@) (kFla_](’U k_Cycle(v))

and the relation (é, for(@))) ( (@)) is imposed. The differential is
d(G,or(G)) = Z (G/{e}, induced orientation)

ecEdge(G)

Using the multi-cyclic order on Flag(@) ,as in section *** above, a choice of
orientation is fixed by a choice of a flag from every cycle of ¢ of even lenght and
a choice of order on the total set of such cycles. The induced orientation is also
analogous to the case of usual ribbon graphs, see ([B1]) for details.

9. WEIGHTS ON STABLE RIBBON GRAPHS.

I start by constructing the tensor ac, 5, € Hom((TTA)®Fla9(v) k) for any given

vertex v € Vert(G) with permutation o, € Aut(Flag(v)) and integer 7, attached,
together with a choice of orientation or(v) from kFe9(v) g ECvele(®) et g, =
(p1.--py) .. (T1...7¢) be a representation of o, compatible with or(v), in the
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sense that the order p; < ... < 7; on flags together with the order (p;...p,) <
... (11...7¢) on cycles gives or(v), put

9.1) ag, 4, (ma, ®...Qmar,)=

Yo
I (=1D)¥( Z eMay, ...ap ey e iey ar,..ar) [] (Z eSictieg ec,)

i
Hop oM, —1 ! £iGi

where {e,},{e"} is a pair of dual basises in A, g(e”,e,) = 6% , € is the Koszul
sign (taking into acount the passing of all 7’s to the left and then putting a; inside
(—1)2“1'6“16’“ .. .e“brleubr1 ).
Proposition 6. For any a,b e A
(9'2) Z(_l)e_#(ﬁ-‘rg-‘rl)euabeu _ (_1)55 Z(_l)e_”(a-i-z-i-l)eubaeu-
uw v
For any a,b € A,
(9.3) S (=D)TE Derge,b = (-1) 3 (-1)T @ Dpeqe,.

m v

Proof. 1f

bew = Brew
then

ﬁz = g(e”, bey) = g(e”b, e,)

SO

e’'b = Z Bet.

I
Therefore,
ST Db, — 3 (1P Y e, -
w I v

_ (71)(6-&-5-&-1)5 Z(—l)e_"(ﬂgﬁ)ﬁz(e“aey _ (71)55 Z(—l)e_"(agﬂ)e”bae,,
% v
The proof of (9.3) is analogous. O

Remark 1. It follows that Zu(—l)e_“ae“ae# and ZE’C(—l)egecegeCegec are in the
center of A.

It follows from (9.2) and (9.3) that for every cycle (p; ...p,) of o, the expres-
sion (9.1) is (—1)"*!-cyclically symmetric with respect to cyclic permutations of
Tap, ...ma, . And that the expression (9.1) is invariant under the changing the
order of cycles in the representation of o, up to the sign taking into account that
the total parity of e*1a,, ...a, e, differs from the parity of 7a, ...ma, by the
factor (—1)"*+1. Therefore, for a fixed choice of or(v), the expression (9.1) gives a
well-defined element o, € Hom((ILA)®¥149(*) ). Notice that for a vertex with
v, =0, b, =1 this gives the tensor «,, defined above.

A choice of orientation or(@) on stable ribbon graph can be identified with a
choice of orientation or(v) on every vertex plus a choice of order on the set of
vertices with odd number of cycles of even length. These are precisely the vertices
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for which the tensor oy, , is odd. Therefore for a choice of or(G) the product
Dpevert(G) Xov.y, gives a well-defined element from Hom((TTA)®Flag(@) k),

Definition 10. A choice of orientation or(@) on a stable Tibbon graph G allows

to define the linear functional ag . &) on (HA)®FZ“9(G) :

a@,or(@) - ®v€Vert(CA¥)aUv7'Yv
For the propagator I use the same bilinear form associated with h-inverse of the
odd supersymetry I.
Definition 11. Given a ribbon graph G, the tensor product of the even symmetric
tensors (g;l)e, associated with every edge e of G, (g%l)e € (TA)®flage) - defines
the canonical element

-1 -1 -1 Flag(G
gf,@ = ®eeEdge(@) (gf Jes g‘f,@ € (HA)® 9(G),

Definition 12. The partition function 2?»07'(@
G s the contraction of @ ey ery (@Yo, With Ocepage(d) (gf—l)e' As above, the

of an oriented stable ribbon graph

-~

element ZIG’OT(@) (G,or(G)) of (C*,8) does not depend on the choice of or(G).
The sum_over all equivalence classes of connected stable ribbon graphs defines the
cochain Zg

(9.4) 71 =3 287G, or(@)), Z1 € (C, )
(G

10. THE CANCELATION OF ANOMALY.

In this section I discuss the condition imposed on A in order that the weights in-
troduced below behave correctly with respect to the contraction of a loop encircling
a boundary component.

Condition 2. For any a € A the super trace of the operator of multiplication by a
18 zero:

(10.1) Z(fl)“g(u“,a “uy) =0

m

Below I describe different sufficient conditions for (10.1) to hold. All of them
trivially hold in our basic examples.

Assume that I(}",[pi, ¢;]) = 0, pi, ¢i- symplectic basis in L for g(I-,-) in partic-
ular, for example if ker(7); = 0.

Proposition 7. Assume that 1(Y_,[pi,q:]) = 0, where p;, q;- symplectic basis in Lo
for g(I-,-) then (10.1) holds

Proposition 8. Assume that Ag is semisimple,then (10.1) holds

Proof. The statement is trivial for a € Ay. Let {z,|z, € Ao} be a linear basis in
Ap and {§,|¢,, € A1} be the dual basis in Ay, so that

g(xlu EV) = 61“’

Let us denote by K, the operator of left multiplication by a acting on A and by
R, the operator of right multiplication. From

g(x,uv ag,u) = g(x#a7€;¢)
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it follows that
Tr Kola, = Tr Ry |4,

Let us show that Tr Ry|a, = Tr Kg4|a,. If Ao is semisimple then t(a, b) = TrKqp|a,
is a nondegenerate invariant even inner product on Ag and

TrKala, = Zt(gm‘lgﬂ) = Zt(gu%gu) = Tr Ra|a,
j j

where ¢, is the orthonormal basis for ¢ in Ay ®y k. O

Proposition 9. Assume that the factor algebra by the nil radical Ag/nil(Ao) is
simple, then (10.1) holds.

Proposition 10. Contracting any loop whose flags are neighbors in the sense that

~

o(f) = [, so that the loop encircles some boundary component of the surface S(G),
gives zero.

Z(—l)ga;ﬁz(vl .. .vkuuuy)gfl(u“,u”) =0

nv

Proof. Taking a = vy - ... - vy the statement is reduced to (10.1). O

11. ACTION OF I ON THE TENSORS Q,  AND gf_é.

11.1. Action of I on the tensors a,, -, -

Proposition 11.

(11.1) (g, 4.) =0

Proof. Tt follows from the fact that I is a derivation of the multiplication and of
the bilinear form. It follows from

g(Ieuv eu) + (71)81/9(6”7]6#) =0

that if
Ie, = Z IZe,,
then
Ie? = (—1)"+1 ZIZ@“.
I
Therefore
S (D) EDI(eMae, + > (1) e al(e,) =0
o v
for any a € A. Now (11.1) follows from (5.2). O

The immediate consequence is the invariance of ag or(@) under the action of
derivation 1.

Proposition 12. I*ag or(@ =0
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11.2. Action of I on gf_é and contractions of edges. As it was shown in the

proposition 3, acting by I on the two-tensor associated with an edge e’ gives
I(g‘f_l)e’ = ge_/17
where g_' € (ITA)®LIY e/ = (ff), denotes the two-tensor inverse to g. The

next proposition shows that, inserting g;l instead of (gf_l)e/ for arbitrary edge ¢’

7(G/{e'}or(G/{e

and contracting with QG or(G) gives Z; }), the partition function of the

oriented stable ribbon graph G/{e'}.

Proposition 13. For arbitrary edge €’ the partition function 2}67 {e}or(G/{eD)
is equal to the contraction of G o (&) with ®eeEdge(€:)'h8 where he = (g;l)e for
e#e and hy = g.'.

Proof. Consider first the case when ¢’ is not a loop. Then the term of the contrac-
tion of Dpevert(@) v with ®e€Edge(@),he , involving g;l is

> (g, (a1, . ax, Un)g ™ U, U ) g, v, (Ups Qs - )

8%

where {U,} is a basis in (ITA) and {U*} is the dual basis in Hom((IIA),k) , U,
and U, represent the two flags of the edge ¢’. Using the identities (9.2) and (9.3)
the tensor o, , 5, can be represented in the form:

I (=1)¢( Z Ustry ...ar,eMa, .. ap e, e ey ] (Z eSietieg ec)))

Hoyseees iy, —1 ! €irCi
Using as above the linear algebra identity

b= Z U UH(b) = (=1)7U,g™ (U*, U")g(U,,,b).

v

— (—1)€ Hy Ho £i pCi
b=(-1) g Ury oo ar €y . cap ey € ey 1‘ g evieieg ec,)

Hoyoeees My, —1 §iCi

I get the tensor a,, ., with b substituted instead of U,. Using again (9.2) and
(9.3) to bring it to the standard form( 9.1), I get precisely the tensor associated
with the new vertex in G/{e'}, i.e. with the two permutations o, and o, merged
at the flags of ¢/, with Y new = 7, + 7, etc. Let’s now ¢ = (ff’) is a loop , f,
' € flag(v). Then if f and f’ are in the same cycle of o,, assuming that flags f,

/' are not neighbors, o(f) # f', o(f") # f. :

Z (=1)7g 1 (U*,U")e"a,, ...ay, Unap,, ., --ap,_Upay ...a, ;=

Vo

= g eap, ...apeta, ..., €., ...ap ey
Using (9.3) it is transformed to

K iz
E e"ap, .. apap ... ap exefay  ..oap €y
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And the tensor oy, - is transformed to agnew , ~corresponding to the permutation

o obtained from o, by dissecting one cycle into two at flags f and f’. Similarly

if fand f’ are in the two different cycles then the result is the tensor Qgnew ynew

corresponding to the permutation o} obtained from o, by merging the two cycles

at flags f and f’ and with 4% = 5, 4+ 1. In both cases I get precisely the
tensor corresponding to the tranformed vertex v in CA}/ {’}. Finally if f, f are
neighbors,say o(f) # f', then the insertion of g 'instead of (gf_l)e/ gives zero
because of the property (10.1) imposed on A. O

12. THE BOUNDARY OF THE EXTENDED COCHAIN Zj.

Combining the results from the previous sections I get the following theorem.
Theorem 2. The boundary of the cochain Z; (9.4) is zero
871 =0
Proof. The boundary of Z
621 = ¥ 2 V8@ or(@) = S (Cor(@) Y Z{O e
[G7] [G] e€Edge(G)

For any stable oriented ribbon graph G I have

(G/{e}, or(G/{e}) | (Prop13)
> 4 -

e€Edge(G)
-1
=1 (®eEEdge(@)(gf )6) (®'u€Vert(CA¥)aD‘ov,wv) =

-1 * (Prop. 12)
= <®eEEdge(CA¥)(gf )e) 1 (®U€V€7‘t(é)aaa‘uv7v> -

0
U

13.
14. GAUGE TRANSFORMATIONS AND COBOUNDARIES.

Same arguments as in the previuos section show that if one modifies I via
I—I+][I,B)

then the cohomology cochain is modified by a coboundary .
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