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ABSTRACT
Several criteria to design good space-time trellis codes
(STTCs) have been developed but an exhaustive search is still
required to obtain the best codes. In this paper, we propose
a new and fast method to design the best STTCs for 2n-PSK
modulations. This method is an extension of the set partition-
ing proposed by Ungerboeck applied for multiple input mul-
tiple output (MIMO) systems. Based on this design method,
new 4-PSK and 8-PSK codes are proposed and compared to
the best known codes.

1. INTRODUCTION

The MIMO systems use antenna arrays at both sides of a radio
link to drastically improve the reliability and/or the data rate
of the wireless communication. In order to exploit the per-
formance of the MIMO systems, several channel coding tech-
niques have been proposed. For example, the STTCs combine
the spatial diversity and time diversity in order to combat ef-
ficiently the signal fading. The STTCs have been proposed
by Tarokh et al. in [1], where the analytic bound and the first
design criteria have been obtained. The rank and the determi-
nant criteria have been proposed to design good codes in the
case of slow Rayleigh fading channels. For fast Rayleigh fad-
ing channels, the product distance and the Hamming distance
criteria have been proposed. In [2], Vucetic et al. proposed
the trace criterion for a slow Rayleigh fading channel. Based
on the Euclidean distance, this criterion governs the perfor-
mance for a great product of the number of transmit and re-
ceive antennas.

Thanks to these criteria, many 4-PSK and 8-PSK codes
have been proposed to decrease the bit and frame error rate
[1–5]. However, a systematic search has been required to find
these codes. The aim of this paper is to propose a new method
to design the best 2n-PSK codes with nT transmit antennas.
This method is an extension of the set partitioning proposed
by Ungerboeck [6–8]. In fact, he states the following rules to
design a trellis-coded modulation (TCM):

1. Each point of the constellation has the same number of
occurrences.

2. In the trellis, transitions originating from the same state
or merging into the same state should be assigned sub-
sets which contain signal points separated by the largest
Euclidean distance.

3. Parallel paths should be assigned signal points sepa-
rated by the largest Euclidean distance. Since there are
no parallel paths in the STTCs, this rule is not impor-
tant for the new design of the STTCs.

Thanks to this new method called ’coset partitioning’, it is
possible to design the best STTCs without an exhaustive
search. The paper is organised as follows. Section II describes
the representations of space-time codes and the existing de-
sign criteria. In section III, the new method is presented. In
the last section, new 4-PSK and 8-PSK are given and their
performance is compared to the best known codes.

2. SYSTEM MODEL

2.1. Representation of the space-time trellis encoder

We consider a 2n-PSK space-time trellis encoder with nT
transmit antennas and nR receive antennas. For n = 2, the
encoder is shown in Fig. 1.

Fig. 1. Space-time trellis encoder for 4-PSK and nT transmit
antennas



The encoder is composed of one input block of n bits and
ν memory blocks of n bits. The state is defined by the binary
values of the ν memory blocks of n bits. At each time t ∈ Z,
all the bits of a block are replaced by the n bits of the previous
block. The ith bit of the jth block xt−j+1

i , with i = 1 . . . n
and j = 1 . . . ν+1, is associated to nT multiplier coefficients
gki,j ∈ Z2n , k = 1 . . . nT , where nT is the number of transmit
antennas. With these nT × n(ν + 1) coefficients, we define
a generator matrix GGG with nT lines and ν + 1 blocks of n
columns:

GGG = [G1
1...G

1
n|...|Gν+1

1 ...Gν+1
n ] (1)

with Gji = [g1
i,j ...g

nT
i,j ]T ∈ ZnT2n . At each time t, the encoder

output yyyxt =
[
yt1y

t
2... y

t
nT

]T ∈ ZnT2n is given by

yyyxt = GGGxxxt (2)

where xxxt = [xt1,1...x
t
1,n..x

t
ν+1,1...x

t
ν+1,n]T is the extended-

state at time t of theL = n(ν+1) length shift register realized
by the input block followed by the ν memory blocks of n bits.

Each encoder output ytk is mapped onto a 2n-PSK signal
given by: stk = exp(j π

2n−1 y
t
k). Each output signal stk is sent

to the kth transmit antenna. At each time t, the set of symbols
transmited simultaneously over the fading MIMO channel is
given by ssst =

[
st1s

t
2...s

t
nT

]T
.

An encoder can also be represented by a trellis, as shown
in Fig. 2 for 4-PSK 4 states STTC.
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Fig. 2. 4-PSK 4 states STTC

In the trellis, the states are described by the points and
the transitions between the states by the lines. Each transition
corresponds to an extended-state. The vector yyyi ∈ ZnT4 repre-
sents the MIMO symbol associated to an extended-state. The
index i is computed as the decimal value of this extended-
state, where xt1,1 is the least significant bit. In this example,
the trellis representation corresponds to the generator matrix
GGG = [y1y2|y4y8].

In the general case, for a 2n-PSK STTC, there are 2n tran-
sitions originating from the same state or merging into the
same state. Each MIMO symbol belongs to ZnT2n .

2.2. Design criteria

The main design criteria have been established in [1, 2] in or-
der to decrease the bit and frame error rate. In this paper, only
the case of slow fading channels is considered. Hence, the

fading coefficients are constant during one frame of Lf sym-
bols. Besides, we assume that the decoder uses a maximum
likelihood to estimate the transmitted symbols.

The main goal of this method is to reduce the pairwise
error probability (PEP) which is the probability that the de-
coder selects an erroneous sequence. It is possible to repre-
sent the Lf length transmitted frame beginning at time t = 0
by a nT × Lf dimension matrix SSS = [sss0sss1...sssLf−1]. An
error occurs if the decoder decides that an another frame
EEE = [eee0eee1...eeeLf−1] is transmitted. Let us define the nT ×Lf
difference matrix BBB = EEE − SSS. The nT × nT product matrix
AAA = BBBBBB∗ is introduced, where BBB∗ denotes the hermitian of
BBB. We define r = min(rank(BBB)) where BBB is computed for
all pairs of different coded frames (EEE,SSS). The design criteria
depend on the value of the product rnR.

The product rnR ≤ 3: two criteria have been proposed
[1, 9] to reduce the PEP. AAA has to be a full rank for any pair
(EEE, SSS) and the coding gain given by η =

∑
d

N(d)d−nR must

be minimized. N(d) is defined as the average number of error
events with determinant d = det(A).

The product rnR ≥ 4: it has been shown in [2] that the
PEP is minimized if the minimum trace ofAAA computed for all
pairs (EEE, SSS) withEEE 6= SSS is maximized.

In this paper we consider the case rnR ≥ 4 which is ob-
tained if the rank of the generator matrix GGG is greater than 1
and if there are at least 2 receive antennas.

3. COSET PARTITIONING FOR SPACE-TIME
TRELLIS CODES

3.1. Coset decomposition

The MIMO symbols belong to the group ZnT2n . This group can
be decomposed in cosets as in [10]:

ZnT2n =
⋃

g∈[ZnT2n /C0]
(g + C0) (3)

where C0 = 2n−1ZnT2 is a normal subgroup of ZnT2n such
as ∀v ∈ C0, v = −v. [ZnT2n /C0] denotes a set of cosets
representatives, one for each coset. In this paper, the coset
representatives are [ZnT2n /C0] = ZnT2n−1 mod 2. So, the group
ZnT2n is decomposed in 2nT (n−1) cosets.

Besides, it is possible to create n sets of these cosets. For
a 2n-PSK modulation and nT transmit antennas, the first set
of cosets isE0 = C0 = 2n−1ZnT2 . The other setsEi of cosets
with 1 ≤ i ≤ n− 1 are defined by

Ei =
⋃
gi

(gi + C0), with gi ∈ 2n−i−1ZnT2i \2n−iZ
nT
2i−1 (4)

Each coset Cp = p + C0 ∈ Ei with 0 ≤ i ≤ n − 2 is
called ‘relative to q = 2p ∈ Ei−1’.



3.2. Coset partitioning

Calderbank et al. give an alternative to the set partitioning. It
is based on the observation that the points of the constellation
of a convolutional encoder can be regarded as a finite set of
points from a group [11]. The group is partitioned into cosets.
The Euclidean distances between the elements of the cosets
are maximized. The coder selects at each time one coset. In
each coset, it selects one element. It is possible to adapt the
works of Ungerboeck and Calderbank et al. for the STTCs. In
fact, the MIMO constellation can be seen as a finite subgroup
of ZnT2n . The goal of this method is that all the MIMO symbols
originating from or merging to the same state belong to the
same coset. The elements of these cosets must be separated
by the largest Euclidean distances. Thus, for a 2n-PSK STTC
with 2nν states, the generator matrixGGG is constituted by ν+1
blocks of n columns. To design the STTCs with the coset
partitioning, each block i must generate a subgroup. Thus,
the following rules must be respected:

• For each block k, its first columnGk1 must belong toC0

with 1 ≤ k ≤ ν + 1.

• The columns Gki with 2 ≤ i ≤ n and 1 ≤ k ≤ ν + 1
must belong to the cosets relative to an element gener-
ated by the first (i− 1) columns or in C0.

After the choice of all columns ofGGG, it is possible to permute
the columns and the lines of each block to obtain codes which
respect the coset partitioning. Many subgroups exist and we
show in the next section how to select the optimal elements to
create the best generator matricesGGG.

3.3. Design example: 4-PSK 4 states STTC with nT trans-
mit antennas

The MIMO symbols belong to ZnT4 . This group can be di-
vided in 2 subsets: E0 = C0 and E1 =

⋃
(gi + C0) with

gi ∈ ZnT2 \[0...0]T . The generator matrix GGG has 2 blocks
of 2 columns: B1 = [G1

1, G
1
2] and B2 = [G2

1, G
2
2] which

give GGG = [G1
1G

1
2|G2

1G
2
2]. If the coset partitioning is used

to design a STTC, the columns of each block of GGG genera-
tes a subgroup of ZnT4 . We note Λν+1 the set of MIMO
symbols generated by the coder. It is possible to represent
it with the trellis form. Fig. 3 shows the 4-PSK 4 states
STTC where ΛF1 = {yyy0, yyy1, yyy2, yyy3 = yyy1 + yyy2 mod 4} and
ΛM1 = {yyy0, yyy4, yyy8, yyy12 = yyy4 + yyy8 mod 4} are subgroups of
ZnT4 . Each coset of Λν+1/ΛF1 or of Λν+1/ΛM1 corresponds
respectively to the set of MIMO symbols originating from the
same state and the set of MIMO symbols merging into the
same state. Thus, the generator matrix is GGG = [yyy1yyy2|yyy4yyy8].
The rule 2 of Ungerboeck’s method is: transitions originat-
ing from the same state or merging into the same state in the
trellis should be assigned subsets which contain signal points
separated by the largest Euclidean distances. In order to ex-
ploit the coset partitioning, the Euclidean distances between

the elements of respectively ΛF1 and ΛM1 must be maximized
thanks to the selection of {y1, y2} and {y4, y8}.
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Fig. 3. 4-PSK 4 states STTC with cosets

Since each block of n elements (n = 2 for 4-PSK) of
GGG generates a subgroup of ZnT2n , the rule 1 of Ungerboeck’s
method is respected.

3.4. Design example: 4-PSK 16 states STTC with nT
transmit antennas

The MIMO symbols belong to ZnT4 . This group can be di-
vided in 2 sets of cosets: E0 = C0, E1 =

⋃
(gi + C0) with

gi ∈ ZnT2 \[0...0]T . The matrixGGG has 3 blocks of 2 columns:
B1 = [G1

1, G
1
2], B2 = [G2

1, G
2
2] and B3 = [G3

1, G
3
2] which

give GGG = [G1
1G

1
2|G2

1G
2
2|G3

1G
3
2]. In the case of a 4-PSK 16

states STTC designed with coset partitioning, the trellis can
be represented as shown in Fig. 4.

ΛF
1 = {yyy0, yyy2, yyy1, yyy3}

yyy4 + ΛF
1 = {yyy4, yyy6, yyy5, yyy7}
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Fig. 4. 4-PSK 16 states STTC

On the left side of the trellis, there are the MIMO sym-
bols yyyi with 0 ≤ i ≤ 63 originating from the same states
are represented. On the right side of the trellis, we have
the MIMO symbols merging into the same states. In this
case, the generator matrix has 3 blocks of 2 columns GGG =
[yyy1yyy2|yyy4yyy8|yyy16yyy32] as shown in Fig. 4. There are two steps
to designGGG:



• The first step is to select the elements of the first and
the last block. The first block and the last block of
each generator matrix generate respectively the sub-
groups ΛF1 = {yyy0, yyy1, yyy2, yyy3 = yyy1 + yyy2 mod 4} and
ΛM1 = {yyy0, yyy16, yyy32, yyy48 = yyy16 + yyy32 mod 4}. Each
coset of Λν+1/ΛF1 and of Λν+1/ΛM1 corresponds to the
transitions originating from the same state and the tran-
sitions merging into the same state. The Euclidean dis-
tances between the elements of each subgroup created
by the columns of these blocks must be maximized.

• The second step is the selection of B2. The vectors
of B2 must also generate a subgroup. So, it is pos-
sible to represent a simplified trellis as shown in Fig.
5 where the new points x3,1x3,2 = {00, 01, 10, 11}
of Fig. 5 are defined as a set of ’states of level 2’.
Each state of level 2 is constituted by 4 real states
{00x3,1x3,2, 01x3,1x3,2, 10x3,1x3,2, 11x3,1x3,2}. The
new lines correspond to the ’transitions of level 2’
which are constituted by 4 real transitions. If a coset
partitioning is used, we have ΛF2 = ΛF1 ∪ (ΛF1 + yyy4) ∪
(ΛF1 + yyy8) ∪ (ΛF1 + yyy12) which is a subgroup of ZnT2n

(with yyy4 + yyy8 = yyy12 mod 4). Thus, a partition chain is
obtained: Λν+1/ΛF2 /Λ

F
1 .The choice of y4 and y8 must

maximimize the minimum Euclidean distance between
two different elements of ΛF2 .
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Fig. 5. Simplification of trellis 4-PSK 16 states STTC with
cosets

It is possible to make a chain partition with the MIMO
symbols merging into the different levels of states: Λν+1/ΛM2
/ΛM1 . Each element of Λν+1/ΛM2 corresponds to one coset
of MIMO symbols merging into a same state of level 2. As
shown in Fig. 5, ΛM2 is given by: ΛM2 = ΛM1 + ΛF1 . Thus,
ΛM2 is already defined by the previous selections.

At the end, we permute the elements of each block to find
the codes with the best trace.

3.5. Design example: 8-PSK 8 states STTC with 4 trans-
mit antennas

The MIMO symbols generated by the 8-PSK 8 states STTCs
with 4 transmit antennas belong to Z4

8 = E0 ∪ E1 ∪ E2.
E0 = C0 = 4Z4

2, E1 =
⋃

(g + C0) with g ∈ 2Z4
2\[0 0 0 0]T

and E2 =
⋃

(h+ C0) with h ∈ Z4
4\2Z4

2. The generator ma-
trix GGG is constituted by 2 blocks of 3 columns. To generate

GGG we can proceed as follows. We must select 3 elements of
Z4

8 for the 2 blocks which create subgroups of Z4
8. The min-

imum Euclidean distance between two different elements of
each group must be maximized. In fact, these two subgroups
correspond to the transitions originating from the same state
and to the transitions merging into the same state. An ’op-
timal’ subgroup of Z4

8 is generated thanks to one element of
C0 = E0, one element of E1 and one element of E2. After
the selection of two good blocks, we search the code with the
optimal trace. We obtain: GGG =

 4 2 1 0 0 4
4 6 3 0 4 2
0 4 2 4 2 3
0 0 4 4 6 7

.

Remark 1: Some codes may have first i null columns in
the (ν + 1)th block with 0 < i < n. The number of states is
2nν−i. In this case, the columns which generate the subgroup
ΛM1 (MIMO symbols which merge into a same state) are the
first i columns of νth blocks and the last n− i columns of the
(ν + 1)th block.

4. NEW CODES AND PERFORMANCE ANALYSIS

In Table 1, Chen’s 4-PSK codes and new corresponding codes
are shown for 3 transmit antennas/32 states and 4 transmit an-
tennas/64 states. The new code with 4 transmit antennas has
a higher value of the minimum trace than that of the Chen’s
equivalent code. The new code with 3 transmit antennas has
a trace equal to the trace of the Chen’s corresponding code,
but, the minimum Euclidean distance between two differents
elements generated by each block of the new code are higher.
In Table 2, Chen’s 8-PSK 8 states codes and new correspond-
ing codes are shown for 3 and 4 transmit antennas. The new
code with 3 transmit antennas has a trace equal to the trace
of the Chen’s corresponding code and the code with 4 trans-
mit antennas has a trace lower than the Chen’s corresponding
code. We compute the minimum Euclidean distance between
the elements generated by each block. Their minimum value
is higher than that of the Chen’s corresponding code.

nT 2νn Code GGG Trace

3 32 Chen

[
0 2 2 1 1 2 0 2
2 2 3 2 2 3 0 0
2 0 3 2 2 1 0 0

]
24

New 1

[
0 2 2 1 2 1 0 1
2 1 2 1 0 2 0 2
2 1 2 3 2 1 0 3

]
24

4 64 Chen

 0 2 3 2 3 0 3 2
2 2 1 2 3 0 2 0
2 0 0 2 2 3 1 1
1 2 2 0 2 1 3 2

 38

New 2

 2 3 0 2 2 3 0 2
0 2 2 1 2 1 2 3
2 3 0 2 0 2 2 3
2 1 2 1 2 3 2 1

 40

Table 1. New 4-PSK code based on the Euclidean distance
criteria

The performance of each code is evaluated by simulation
in a slow Rayleigh fading channel. The channel fading coef-
ficients are independent samples of a complex Gaussian pro-
cess with zero mean and variance 0.5 per dimension. These
channel coefficients are assumed to be known at the decoder.
Each frame consists of 130 4-PSK or 8-PSK symbols. For
the simulation, there are 2 receive antennas. The decoding is



nT 2νn Code GGG Trace

3 8 Chen

[
2 4 0 3 2 4
1 6 4 4 0 0
3 2 4 0 4 2

]
12

New 3

[
0 4 2 4 6 1
4 6 1 4 2 3
4 2 3 0 4 2

]
12

4 8 Chen

 2 4 0 3 2 4
1 6 4 4 0 0
3 2 4 0 4 2
7 2 4 5 4 0

 16.58

New 4

 4 2 1 0 0 4
4 6 3 0 4 2
0 4 2 4 2 3
0 0 4 4 6 7

 16

Table 2. New 8-PSK codes based on the Euclidean distance
criterion

performed by the Viterbi’s algorithm. Fig. 6 shows the per-
formance of the 4-PSK 64 states codes for 3 and 4 transmit
antennas given in Table 1. Similary, Fig. 7 shows the perfor-
mance of the new 8-PSK codes and the corresponding Chen’s
codes of Table 2.

Fig. 6. Performance of 4-PSK 64/32 states STTCs

Fig. 7. Performance of 8-PSK 8 states STTCs

5. CONCLUSION

A new and fast method to design easily the best 2n-PSK
STTCs with nT transmit antennas has been presented in this
paper. This method reduces significantly the number of possi-
ble codes which must be analysed with an exhaustive search.

The proposed method is based on the set partitioning pro-
posed by Ungerboeck and an extension of the work proposed
by Calderbank. This method is called ’coset partitioning’.
Thanks to this method, new 4-PSK and 8-PSK codes are ob-
tained. It is shown that these new codes outperform the best
known codes.
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