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Abstract—We propose a novel blind source separation method
tailored for retrieving baseband signals having different band-
widths. Such a configuration is characterized by the existence
of inactive bands in the frequency domain. By exploiting the
eigenstructure of the mixtures covariance matrix calculated in
these inactive bands, we develop a simple yet efficient extraction
procedure that works in an ordered fashion, in which the sources
are extracted according to their degree of smoothness. Numerical
results attest the viability of the proposal.

Index Terms—Blind source separation, source extraction, silent
bands, frequency-domain approach, smooth signals.

I. INTRODUCTION

BLIND source separation (BSS) concerns the retrieval of
a set of signals (sources) by considering only mixed

versions of these original sources. Typically, a linear mixing
model is assumed, i.e. the vector x(t) = [x1(t) . . . xM (t)]T

containing the M mixtures is given by

x(t) = As(t), (1)

where s(t) = [s1(t) . . . sN (t)]T represents the N sources, and
A ∈ RM×N is the mixing matrix. The i-th column of A is
represented by ai, i.e. A = [a1 . . . aN ].

Independent component analysis (ICA) [1], [2] has been
widely employed to deal with the mixing model (1) when
M ≥ N . In ICA, which works under the assumption that the
sources are statistically mutually independent, one searches
for a separating matrix W that makes the retrieved sources
y(t) = Wx(t) as independent as possible. Alternatively, in
second-order methods, BSS is accomplished by exploiting
the time structure of the sources. For instance, when the
spectral contents of the sources are different, matrix W
can be estimated by jointly diagonalizing several mixtures
covariance matrices calculated at different time lags [3], [4].
In this approach, as well as in ICA, neither the scaling of the
sources nor their original order can be identified, i.e. the ideal
separating matrix is given by W = PDA−1, where P is a
permutation matrix and D a diagonal matrix.

More recently, much attention has been given to BSS
methods that make use of prior information not present in
the basic ICA and second-order methods frameworks. For
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instance, sparse component analysis (SCA) works under the
assumption that the sources can be represented, possibly in a
transformed domain, by sparse signals [5]. Another additional
prior information, close to the sparsity, that has been exploited
comes from the observation that, in applications such as speech
separation, the sources may be inactive in some time windows
(silent periods) [6], [7], [8].

In this letter, we also consider inactive sources. However,
instead of working in the time domain as done in [6], this
assumption is exploited in the frequency domain. This gives
us a BSS method able to extract baseband sources in an
ordered fashion: the signals having smaller bandwidths are first
recovered. The proposed method is particularly interesting for
extracting one or a few smooth sources from the observations
(this may be interesting, for instance, in chemical sensing [9]).
As our approach is founded on the eigenstructure of covariance
matrices in the frequency domain, it is denoted Second-Order
Frequency Identification (SOFI) algorithm.

II. PROPOSED METHOD

A. Assumptions

The following hypotheses are considered:
H1) M ≥ N , i.e. the number of mixtures is greater or equal

to the number of sources, which is assumed to be known.
H2) The sources covariance matrix is given by Rs =

E{s(t)s(t)T } = diag(σ2
s1

, . . . , σ2
sN

), where σ2
si

denotes
the variance of the i-th source.

H3) Each source si(t) is a baseband signal with maximum
frequency given by Bsi , where Bs1 6= Bs2 6= . . . 6=
BsN

.
Concerning the hypothesis H1, if M > N then a dimensional
reduction, e.g. via principal component analysis (PCA), should
be done to obtain M = N . Hypothesis H2 assures uncorrelated
sources. Finally, hypothesis H3 guarantees sources with differ-
ent spectral contents, which is a necessary condition for iden-
tifiability in methods based on second-order statistics. For the
sake of clarity, we also assume that Bs1 < Bs2 < . . . < BsN

.
In view of the permutation ambiguity, there is no loss of
generality in this additional assumption, and our method works
no matter the original order of the sources.

B. The covariance matrix eigenstructure in inactive bands

Eq. (1) also holds in the frequency domain1, i.e.

x(f) = As(f). (2)

1In this work, the discrete cosine transform (DCT) is used to obtain a
frequency domain representation. The DCT has the advantage of being a
real-valued transform.
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Fig. 1. DCTs of sources (first three signals) and the eigenvalues of Rx(f).
The number of null eigenvalues indicates the number of inactive bands.

In view of assumption H3, the baseband sources are inactive
in certain frequency bands. For instance, the spectrum of the
signal having smaller bandwidth, s1(f), is inactive beyond the
frequency Bs1 .

Sources having inactive bands can be detected through
second-order statistics [6], [10]. Indeed, let us consider a fre-
quency band, represented by γ, where K signals are inactive,
i.e. for f ∈ γ, ∃κ1, . . . , κK / sκ1(f) = . . . = sκK

(f) = 0.
In this case, the mixing model becomes overdetermined (N
mixtures and N−K sources) and, thus, the covariance matrix
of the mixtures in the band2 γ, Rx(γ), becomes rank deficient.
The key point here is that the number of null eigenvalues
corresponds to the number of inactive sources, i.e. it is possible
to search, in a blind fashion, all the inactive bands by analyzing
the profile of the eigenvalues of Rx(f) for all frequencies. This
is illustrated in Fig. 1 which shows the DCT of three baseband
sources3 and the eigenvalues of Rx(f).

In practice, the identification of inactive bands is done by
searching for the eigenvalues that are smaller than a pre-
defined threshold φ. However, suppose that one of the sources,
say s1, is much less powerful than the other ones. In this
case, even when all the sources are active, the eigenvalue
of Rx(f) associated with s1 is much smaller than the other
eigenvalues, which may lead to an incorrect inactive period
detection. As shown in [10], [6], this problem can be mitigated
by replacing the ordinary eigenvalue decomposition by the
generalized eigenvector decomposition (GEVD) of the matri-
ces (Rx(f), Rx([0, 1])). As a corollary of the result shown
in [10], the number of null generalized eigenvalues associated
with the GEVD of (Rx(f), Rx([0, 1])) also gives the number
of inactive sources in the frequency window (size W ) centered
at f .

2The following notation is adopted: given a vector x(f) of signals in a
frequency representation, Rx([Bx1 , Bx2 ]) and Rx(f) denote, respectively,
the covariance matrix of x(f) calculated in the band [Bx1 , Bx2 ] and in a
frequency window of size W centered at f .

3We consider the normalized frequency where B = 1 corresponds, in the
analog domain, to Fs/2 (Fs being the sampling frequency).

C. SOFI algorithm

In this section, we discuss how the SOFI algorithm makes
use of the particular eigenstructure of Rx(f) for sequentially
extracting the sources. A first step in this context is to estimate,
through a sliding-window of size W , the covariance matrix
Rx(f) for all frequencies. Then, as discussed before, the
generalized eigenvalues of (Rx(f), Rx([0, 1])) can be used to
identify the inactive frequency bands. In practical terms, this
is done by comparing the generalized eigenvalues at a given
frequency f with a pre-established threshold φ.

Based on the information brought by the generalized
eigenvalues, one can identify, for instance, the frequency
interval f ∈ [Bs1 , Bs2 ], in which only s1(f) is inactive.
The key point here is that the generalized eigenvector v1

associated with the unique null generalized eigenvalue of
(Rx([Bs1 , Bs2 ]), Rx([0, 1])) is orthogonal to all the columns
of A except a1. Indeed, in this situation one has

Rx([Bs1 , Bs2 ])v1 = 0. (3)

As the sources are uncorrelated (H2) and s1(f) is inactive in
the interval [Bs1 , Bs2 ] (H3), one can write4

Rx([Bs1 , Bs2 ]) = ARs([Bs1 , Bs2 ])A
T =

[a2 . . .aN ]diag(σ2
s2(f), . . . , σ

2
sN (f))[a2 . . .aN ]T . (4)

By substituting Eq. (4) into Eq. (3), one readily obtains
vT

1 A = [α 0 . . . 0], where α 6= 0, which means that v1 can be
used to extract the smoothest source s1(f).

Even though the idea described above aims at the extraction
of the smoothest source, i.e. the one having bandlimited
in Bs1 , it can also be used for recovering the remaining
sources. This can be achieved through a deflation procedure
(see [11] for instance), in which the goal is to eliminate the
contribution of the estimated source ŝ1(f) = vT

1 x(f) to x(f).
In mathematical terms, this procedure is given by

x(f) ← x(f)− h1ŝ1(f) (5)

where h1 = E{x(f)ŝ1(f)}/E{ŝ2
1(f)} (this vector minimizes

E{(x(f)− h1ŝ1(f))2}).
As the outcome of the first deflation is a BSS problem with

N mixtures and N − 1 sources, we reduce the dimension of
x(f) via PCA to obtain a (N−1)×(N−1) model. After that,
we retrieve a similar scenario to the one that we had before the
first GEVD, but now s2(f) appears as the smoothest source.
Therefore, this signal can be estimated through the GEVD of
Rx([Bs2 , Bs3 ]) and Rx([0, 1]). Finally the remaining sources
can be extracted by repeating the same steps described so far,
as detailed in Algorithm 1.

Some remarks on the SOFI algorithm. First, if the extraction
of only a few smooth sources is envisaged, then there is no
need to estimate the eigenvalues profile for all frequencies:
one may stop when the number of inactive bands is equal to
the number of sources to be extracted. Second, even when H3
is only approximated, the SOFI algorithm can recover all the
sources except those having the same bandwidth.

4Without loss of generality, s2(f), . . . , sN (f) are supposed centered here.
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Algorithm 1 SOFI algorithm
1: if M > N , reduce the dimension of x(t) to N via PCA

end if
2: Calculate a frequency representation of the mixtures ⇒

xi(f) = DCT (xi(t)), for i = 1, . . . , N
3: For all frequencies f , estimate Rx(f) (covariance matrix

calculated in a frequency window of size W and centered
in f ) and compute the GEVD of (Rx(f), Rx([0, 1]))

4: Based on the number of generalized eigenvalues smaller
than φ for each frequency, identify the frequency bands
[0, Bs1 ],[Bs1 , Bs2 ], . . .,[BsN

, 1]
5: for i = 1 to N − 1 do
6: Compute GEVD(Rx([Bsi , Bsi+1 ]),Rx([0, 1])) ⇒ vi is

the generalized eigenvector associated with the smallest
generalized eigenvalue.

7: Estimation of si(f) ⇒ ŝi(f) = vT
i x(f)

8: Deflation step ⇒ Eq. (5)
9: Reduce the dimension of x(f) to N − i through PCA

10: end for

III. EXPERIMENTS

Before describing the experiments5, let us discuss the se-
lection of W and φ. W acts as a sort of frequency resolution
in the sense that a small W allows the separation of sources
having close bandwidths. Of course, too small a W means
that only few samples are used in the estimation of Rx(f), i.e.
there is a tradeoff between frequency resolution and estimation
accuracy. In the experiments provided in this section, we
checked that a good empirical strategy to set W is to consider
about 5% of the total number of samples.

Ideally, the smaller the threshold φ, the better the silent peri-
ods detection is and, consequently, the better the performance
is. This was actually observed in experiments with noiseless
models. For example, in Fig. 2, we plot the index SIR1 as a
function of φ (we considered here the extraction of one source
from three mixtures). Note, however, that the influence of φ
is minimal when φ < 0.1. In noisy scenarios, the definition
of φ is more tricky and requires a visual inspection of the
eigenvalues profile (see Sec. III-C)

A. Source Separation

We here consider the separation of the sources shown in
the first column of Fig. 3: an exponential signal and three
signals obtained from low-pass filtering of white Gaussian
noise; the respective bandwidths are given by Bs1 = 0.2,
Bs2 = 0.5, and Bs3 = 0.8. The mixtures are shown in the
second column of Fig. 3 (2000 samples were considered).
The third column of Fig. 3 presents the signals recovered
by the SOFI algorithm (W = 71 and φ = 0.001). The
original order of extraction is kept in Fig. 3; note that SOFI
indeed ranks the components according to their smoothness.
The performance indices in this case were: SIR1 = 63 dB,

5The performance is assessed by the signal-to-interference ratio: SIRi =

10 log

(
E{si(t)

2}
E{(si(t)−ŝp(i)(t))

2}

)
, where si(t) and ŝp(i)(t) are, respectively,

the original source and its corresponding estimation after scale normalization.
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Fig. 2. Performance as a function of the threshold φ.
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Fig. 3. Example of source separation: sources (first column), mixtures
(second column) and retrieved signals (third column).

SIR2 = 30dB, SIR3 = 30 dB, and SIR4 = 27dB. Note
that the SIR decreases as the extraction procedure progresses;
this is typical in deflation-based approaches and is due to the
accumulation of errors from the precedent iterations.

B. Extraction of a smooth signal from a large number of
mixtures

We consider the extraction of an exponential signal from
N mixtures of N sources having bandwidths between 0.4 and
0.9. As shown in Tab. I, the SOFI algorithm (with φ = 0.0001
and W = 101) has led to high SIRs, even for a large N .
We also show in this table the performances achieved by the
SOBI [3] and FastICA [2] algorithms6. As these two methods
do not rank the sources, the exponential source was obtained
by analyzing each retrieved signal7.

6The FastICA did not conevrge for N = 50 and N = 70.
7[12] proposed a method to extract smooth sources based on the FastICA.

As the idea was to force the first component to be the smoothest one, the
performance of this constrained FastICA approach is equivalent to that of the
ordinary FastICA (symmetric orthogonalization version).
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TABLE I
EXTRACTION OF THE SMOOTHEST SIGNAL: SIR ( dB) FOR DIFFERENT

NUMBER OF SOURCES N (AVERAGE OVER 50 EXPERIMENTS).

N = 2 N = 10 N = 20 N = 50 N = 70
SOFI 86.7 72.5 68.7 63.2 55.5
SOBI 61.0 43.7 40.4 36.3 34.9

FastICA 39.2 23.7 19.6 − −
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Fig. 4. Source extraction: mixtures (first and second columns). Third column
contains: actual source, its estimation, and a filtered version of this estimation.

C. Source extraction in a noisy situation

We here consider the extraction of the exponential depicted
in Fig. 4 (first row third column) from M = 10 mixtures
(first two columns of Fig. 4) of N = 5 sources (signals
of bandwidths Bs2 = 0.4, Bs3 = 0.6, Bs4 = 0.8 and
Bs5 = 0.9). Each mixture was corrupted by additive white
Gaussian noise of signal-to-noise ratio (SNR) equal to 15 dB.
Regardless of noise, it is still possible8 to identify the inactive
bands; by inspecting Fig. 5 it is clear that the inactive bands
can be identified by looking at the eigenvalues lower than
approximately 0.1 (this value is thus attributed to the threshold
φ). The first inactive band is thus the one in which there is
only one eigenvalue lower than φ (B̂s1 = 0.03 and B̂s20.43
in this case). The SOFI algorithm (W = 301) provided the
second signal (SIR1 = 10.4 dB) of the third column in Fig. 4.
Note that the estimated bandwidths can be used to improve
the extracted source. Indeed, after low-pass filtering (stopband
at B̂s1 = 0.03), we obtained SIR1 = 23.9 dB (see the third
column, last row of Fig. 4). For matter of comparison, the
performance of the SOBI algorithm was SIR1 = 10.4 dB.

Finally, we consider the same situation described above but
now with a noise of SNR = 10 dB. Again, based on a visual
inspection of the eigenvalues profile, we set φ = 0.4. The per-
formance obtained by the SOFI algorithm was SIR1 = 6.0 dB,
and SIR1 = 22.6 dB after low-pass filtering at the estimated
B̂s1 = 0.013. A similar performance of the SOBI algorithm
was obtained (SIR1 = 6.0 dB).

8This is due to the GEVD; if the ordinary EVD were considered, the noise
terms would be taken as inactive sources.
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Fig. 5. Generalized eigenvalues of (Rx(f),Rx([0, 1])) in a noisy scenario.

IV. CONCLUSION

We introduced in this letter the SOFI algorithm, a BSS
method tailored for separating baseband signals. By exploiting
the existence of inactive bands, we developed a simple algo-
rithm that is based on second-order statistics and on a deflation
procedure. As it could be checked in simulations, the proposed
method performs well even in the presence of noise; moreover,
it outperformed standard BSS algorithms in the problem of
extracting a smooth signal from a great number of mixtures.
Future works include the derivation of an automatic strategy
for adjusting the parameter φ in noisy scenarios.
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