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A Bayesian Nonlinear Source Separation Method
for Smart Ion-selective Electrode Arrays

Leonardo T. Duarte, Student Member, IEEE, Christian Jutten, Fellow, IEEE, and Saı̈d Moussaoui

Abstract—Potentiometry with ion-selective electrodes (ISEs)
provides a simple and cheap approach for estimating ionic
activities. However, a well-known shortcoming of ISEs regards
their lack of selectivity. Recent works have suggested that smart
sensor arrays equipped with a blind source separation (BSS)
algorithm offer a promising solution to the interference problem.
In fact, the use of blind methods eases the time-demanding
calibration stages needed in the typical approaches. In this work,
we develop a Bayesian source separation method for processing
the outputs of an ISE array. The major benefit brought by the
Bayesian framework is the possibility of taking into account some
prior information, which can result in more realistic solutions.
Concerning the inference stage, it is conducted by means of
Markov chain Monte Carlo (MCMC) methods. The validity of
our approach is supported by experiments with artificial data
and also in a scenario with real data.

Index Terms—Blind source separation, ion-selective electrode,
chemical sensor array, Bayesian approach.

I. INTRODUCTION

ION-selective electrodes (ISEs) [2], [3], [4] are devices used
for estimating the ionic activity, a measure of effective

concentration of an ion in aqueous solution. The transducer
mechanism in an ISE is based on a sensitive membrane in
which the electrochemical potential depends on the concen-
tration of a given charged chemical specie. A typical example
of ISE is the glass electrode used for measuring the pH value.
Moreover, ISEs for ions such as ammonium, potassium, and
calcium are of great interest in applications like water quality
control [5] and biomedical monitoring [6], [7].

The most relevant drawback of an ISE concerns its lack of
selectivity, that is, an ISE may respond to interfering ions other
than the target one. While in some situations the interference
process can be negligible, there are other cases in which this
problem seems to be more accentuated, especially if the ions
under analysis have similar physicochemical properties. If no
care is taken in these cases, the measurements provided by the
ISE may become uncertain.

A possible way to overcome the interference problem relies
on the concept of smart sensor array (SSA). In a SSA, the data
acquisition is done through several ISEs. Then, the desired
information is extracted by a data processing block that tries
to exploit the diversity provided by the array. Typically, the
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development of a SSA follows a supervised paradigm, i.e. a
set of training (or calibration) samples is used to adjust the
parameters of the SSA data processing block. Despite the good
results obtained in both quantitative and qualitative analysis
(for example, see the electronic tongues [8]), supervised meth-
ods suffers from two practical problems: 1) the acquisition of a
sufficient number of training samples may be time-demanding,
and 2) the calibration procedure must be performed from time
to time due to the sensor’s drift. These limitations are the main
motivations for the use of unsupervised (or blind) methods.
In this new case, the SSA data processing block only uses
the array responses and some parametric knowledge on the
interference process. Therefore, the calibration stage may be
skipped or, at least, quite reduced.

In this work, we are interested in the problem of unsu-
pervised quantitative analysis via an ISE array, which can
be expressed as follows: there is a set of source signals,
each one representing the activity of a given ion. Due to
the interference phenomena in the transduction stage, the
signals recorded by the ISE array are mixed versions of the
sources. Then, our goal is to retrieve the sources using only
the ISE array outputs. This description is an example of a
Blind Source Separation problem (BSS) [9], [10], to which
the signal processing community has been devoting a great
deal of attention. The main difficulty in the application of
BSS methods to the problem treated in this work stems from
the nonlinear behavior of an ISE. While linear BSS is now a
well established matter, the more general problem of nonlinear
BSS is still a very challenging one (see [11]).

The first studies [12], [13], [14] on the design of BSS
methods for chemical sensor arrays were based on Independent
Component Analysis (ICA) methods [9]. Despite the encour-
aging results presented in these works, the developed methods
have several limitations. Firstly, they do not take into account
some prior information that would be useful for improving the
separation quality. For instance, the sources in our problem
are always non-negative, since they represent ionic activities.
Secondly, given that ICA methods works with the assumption
that the sources are statistically independent, they cannot be
used when the sources are correlated. Finally, all these works
were evaluated with synthetic data in noiseless situations.

In this paper, we propose a Bayesian source separation
method for processing the outputs of an ISE array. The
Bayesian approach has been proved to be attractive in several
domains including audio source separation [15] and spec-
troscopy data analysis [16]. Moreover, one of the main advan-
tages of this approach is exactly the possibility of incorporat-
ing prior information into our method and of working in noisy
scenarios. Finally, the advent of sampling techniques [17] such
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as Monte Carlo Markov Chain (MCMC) methods has provided
an efficient solution to the calculation of the complex integrals
that are usually associated with a Bayesian framework.

This work is an extended version of the conference pa-
per [1], which only contained the basics of our method and
some preliminary results. In the present version, we detail
important aspects of our method and widely expand the results
section, including a comparison with a supervised technique.
Concerning the paper’s organization, we start with a descrip-
tion of the mixing model associated with the application in
mind. After that, in Section III, we describe the building blocks
of our Bayesian source separation scheme. In Section IV, we
conduct some experiments with artificial and real data to assess
the performance of our proposal. Finally, our conclusions are
presented in Section V.

II. PROBLEM STATEMENT

Let us consider a solution containing ns ions and an array
composed of nc electrodes. Due to the interference problem,
the response of the i-th ISE within the array at the instant t,
represented by yit, is dependent not only on the activity of its
target ion, sit, but also on the activities of the other ions in
the solution, sjt. According to the Nicolsky-Eisenman (NE)
equation [3], this phenomenon can be modeled as1

yit = ei + di log


sit +

ns∑

j=1,j 6=i

aijs
zi/zj

jt


 , (1)

where ei is a constant, zj is the valence of the j-th ion and
aij denotes the selectivity coefficients. Finally, di = RT/ziF ,
where R is the gas constant, T the temperature in Kelvin, and
F the Faraday constant. When the valences of the ions under
analysis are the same, the model (1) becomes a particular case
of the class of post-nonlinear (PNL) models [13]. Nonetheless,
when the valences are different and the ISEs within the array
have different ions as targets, the resulting model becomes
tougher due to the appearance of a nonlinearity inside the
logarithm term [14].

By arranging the response of each ISE within the array, the
mixing process can be expressed as follows:

Y = e · 11×nd
+ diag(d) log (A⊗z S) , (2)

where nd corresponds to the number of available samples,
Y ∈ Rnc×nd , e = [e1, . . . , enc ]

T , d = [d1, . . . , dnc ]
T , A ∈

Rnc×ns
+ and S ∈ Rns×nd

+ . The element it of Y corresponds
to yit and therefore the i-th row of Y corresponds to the time
response of the i-th ISE within the array. Analogously, the
element jt of S denotes the activity of the j-th ion at the
instant t, i.e. sjt. Matrix A contains the selectivity coefficients.
The vector of valences is denoted by z = [z1, . . . , zns ]

T ,
and the operator ⊗z describes the nonlinear transformation
inside the logarithm function present in the NE model (see
Eq. (1)). If the valences zi are equal, then ⊗z results in a
simple matrix multiplication. Finally, 11×nd

corresponds to a
vector (dimension nd) with all elements equal to one.

1In this work, log and ln stands for the logarithm of base 10 and the natural
logarithm, respectively.

In view of a possible model inaccuracy and/or of the
errors introduced by the measurement system, a more realistic
description for the array outputs is given by:

X = Y + N, (3)

where N ∈ Rnc×nd represents the noise terms. We assume
a zero mean additive white Gaussian noise (AWGN) with
covariance matrix Cn = diag(σ2), where the elements of the
vector σ2, the variances σ2

1 , . . . , σ2
nc

, are unknown.
With equations (2) and (3) in mind, we may formulate the

source separation problem treated in this work: given the array
response X and assuming that the valences zi are known, our
goal is to estimate the elements of S (ionic activities). Since
we envisage a blind method, the other parameters related to
the mixing model (except z) and the noise variance at each
electrode are also unknown and, thus, should be estimated.
Furthermore, as it will become clear later, there are other
unknown parameters, denoted by φ, which are related to the
prior distributions assigned to the sources. Henceforth, all
these unknown parameters will be represented by the vector
θ = [S,A,d, e, σ,φ] and the following notation will be
adopted: θ−θq represents the vector containing all elements
of θ except θq.

III. BAYESIAN SOURCE SEPARATION METHOD

The first step in Bayesian estimation is to assign an a
priori probability distribution function, or simply prior, for
each unknown parameter. This is done based on some available
knowledge or constraint related to the unknown parameters;
in Section III-A, we will discuss how this step can be
accomplished in our problem. Later, in Section III-B, we
will present the likelihood function p(X|θ) resulting from the
mixing model (Eqs. (2) and (3)). Then, in Section III-C, we
shall derive the posterior distribution, which can be seen as
an update of the priors using the information brought by the
likelihood function. According to the Bayes’ rule, the posterior
is given by p(θ|X) = p(X|θ)p(θ)/p(X). Given that p(X) is
not a function of the unknown parameters θ, we are mainly
interested in the following expression

p(θ|X) ∝ p(X|θ) p(θ). (4)

Finally, in Section III-D, we shall discuss how an inference
scheme based on (4) can be set to resolve our nonlinear source
separation problem.

A. Defining the prior distributions
1) Prior distribution of the sources S: We adopted log-

normal distributions to model the sources. This distribution is
always non-negative which seems natural in our problem as
the sources represent ionic activities. Moreover, there are two
other aspects that motivate our choice. Firstly, the estimation of
the parameters of a log-normal distribution is not complicated.
As it will be checked later, it is possible to define conjugate
priors in this case2. Also, there is a practical argument behind

2From the Bayes’ rule p(X/Y ) ∝ p(Y/X)p(X). If p(X/Y ) and p(X)
belong to the same family, then p(X) is said to be conjugate with respect to
the likelihood p(Y/X). When the prior is conjugate, the Bayesian inference
only needs the update of the posterior distribution (see [18], for instance).
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this choice. Ionic activities are expected to have a small vari-
ation in the logarithmic scale. This can be taken into account
by the log-normal distribution, since such a distribution is
nothing but a Gaussian distribution in the logarithmic scale.
In mathematical terms, the prior assigned to sjt is given by

p(sjt) ∝ 1
sjt

exp

(
− (ln(sjt)− µj)2

2σ2
j

)
1[0,+∞[(sjt), (5)

where µj , σj are the distribution parameters and 1[0,+∞[(sjt)
is the indicator function. We assume that the samples are
independent and identically-distributed (i.i.d) and also that the
sources are mutually statistically independent3, that is

p(S) =
ns∏

j=1

nd∏
t=1

p(sjt).

2) Prior distribution of the sources hyperparameters φ:
The parameters φj = [µj σj ] in Eq. (5) are also unknown in
our problem and, thus, priors must be defined for them. We
adopted a Gaussian prior distribution for µj , that is:

p(µj) =
1√

2πσ2
µj

exp

(
−

(
µj − µµj

)2

2σ2
µj

)
, (6)

where µµj and σµj correspond to the hyperparameters. For
rj = 1/σ2

j , a Gamma distribution is considered:

p(rj) =
r

αrj
−1

j

Γ(αrj )β
αrj
rj

exp

(
−rj

βrj

)
1[0,+∞[(rj), (7)

where αrj
and βrj

are the hyperparameters. In Section III-D,
we will show that these two priors lead to conjugate pairs in
the estimation of µj and rj = 1/σ2

j .
3) Prior distribution of the selectivity coefficients A:

According to the literature in potentiometric sensors (see [3],
[19]), the selectivity coefficients are also non-negative. More-
over, it is rare to find a sensor whose response depends more
on the interfering ion than on the target one, that is, aij usually
lies in the interval [0, Amax] where Amax ∈ [0, 1]. Thus, an
uniform distribution can be assumed for each4 aij , that is

p(aij) ∝ 1[0,Amax](aij). (8)

If no additional information is available, one can set Amax =
1. However, it is possible to refine this information by using
databases such as [19] or by incorporating some information
acquired during the fabrication process. Finally, the coeffi-
cients of A are assumed mutually independent, i.e.

p(A) =
nc∏

i=1

ns∏

j=1

p(aij).

3If some information concerning a possible dependency between the sources
is available, it can be used for defining the priors. In this case, however,
one goes toward a less general approach that is useful only to the modeled
situation. Besides, the inference problem becomes more difficult in this case.

4In view of Eq. (1), we consider aij = 1 when i = j.

4) Prior distribution of the Nernstian slopes d: As already
discussed, di is related to physical parameters. For a room tem-
perature, it takes approximately 0.059/zi, and the electrodes
with such sensibility are said to have a Nernstian response.
However, due to the sensor fabrication process and aging,
a deviation from this theoretical value is usually observed.
Furthermore, even the injection scheme can play a role on
the value of this parameter [20]. This possible deviation from
the Nernstian value can be taken into account by setting a
Gaussian prior of mean µdi

= 0.059/ziV, i.e.:

p(di) ∝ exp

(
− (di − µdi)

2

2σ2
di

)
. (9)

σ2
di

must be high enough to correctly model the derivations
from the theoretical value. For example, for an electrode whose
target ion is monovalent, one obtains a coherent distribution
by setting σdi

= 0.01. Again, this knowledge could be refined
if additional information is available, or if the measurements
are conducted in different temperatures. Finally, we assume
that the elements of d are statistically independent.

5) Prior distribution of e: In contrast to the parameters di,
there is no theoretical value for ei. Still, as can be observed
in [2], [21], ei usually lies in the interval [0.05, 0.35]V. Hence,
the following Gaussian prior may be adopted

p(ei) ∝ exp
(
− (ei − µei)

2

2σ2
ei

)
, (10)

where the mean is given by µei = 0.20V and σ2
ei

must be de-
fined so (10) goes toward a flat prior in the interval [0.05, 0.35].
The elements of e are assumed mutually independent.

6) Prior distribution of the noise variance σ2
i : A very

common approach [16], [22] is to assign inverse Gamma priors
for the noise variances; that is, γi = 1/σ2

i is modeled through
a Gamma distribution with parameters ασi and βσi

p (γi) =
γ

ασi
−1

i

Γ(ασi)β
ασi
σi

exp
(−γi

βσi

)
1[0,+∞[ (γi) . (11)

The motivation behind this modeling comes from the fact that
it results in a conjugate pair. Moreover, it is possible to set
ασi and βσi to obtain a non-informative prior [22].

B. Probabilistic modeling of the mixing process

Based on the mixing model defined in Section II and on
the assumption of i.i.d. Gaussian noise which is also spatially
uncorrelated, the likelihood is defined as

p(X|θ) =
nd∏
t=1

nc∏

i=1

Nxit

(
ei + di log

( ns∑

j=1

aijs
zi/zj

jt

)
, σ2

i

)
, (12)

where Nxik
(µ, σ2) denotes a Gaussian random variable in xik

with mean µ and variance σ2.
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C. Bayesian inference

Having defined the priors p(θ) and the likelihood p(X|θ),
we may now apply the Bayes’ rule to obtain the posterior
distribution p(θ|X). Given that the unknown variables of our
problem are mutually independent (except S and φ), the prior
distribution factorizes and, as a consequence, the posterior
distribution becomes

p(θ|X) ∝ p(X|θ) p(S|φ) p(φ) p(A) p(e) p(d) p(σ). (13)

This a posteriori distribution can be used in the derivation
of an inference scheme to estimate the parameters of interest.
For instance, one may adopt the minimum mean square error
(MMSE) estimator [23], which is given by

θMMSE =
∫

θ p(θ|X)dθ. (14)

The exact implementation of this estimator is difficult because
the analytical evaluation of this integral is hard in the problem
considered here. Nonetheless, a good approximation of (14)
can be provided by sampling methods. The idea here is to
approximate the MMSE estimator using samples obtained
from the posterior distribution p(θ|X). If, for instance, the
generated samples are represented by θ(1), θ(2), . . . , θ(M),
then expression (14) can be approximated by

θ̃MMSE =
1
M

M∑
m=1

θ(m). (15)

According to the law of large numbers, θ̃MMSE = θMMSE

as M → +∞. This important result gives the theoretical
foundation for the above-described methodology, which is
referred as Monte Carlo integration [17].

D. Gibbs sampling scheme

The implementation of the MMSE estimator boils down to
the task of generating samples from p(θ|X). In this work, this
is done by the Gibbs’ sampler, a Markov Chain Monte Carlo
(MCMC) method tailored for simulating joint distributions.
The idea in MCMC methods is to generate a Markov chain
that admits the desired distribution (p(θ|X) in our case) as
stationary distribution. Assuming that x ∼ p(x) stands for the
sampling operation, i.e. x is a sample from the distribution
p(x), then the Gibbs’ sampler can be summarized as follows:

1) Set initial samples θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
N ;

2) For m = 1 to M , do

θ
(m)
1 ∼ p(θ1|θ(m−1)

2 , θ
(m−1)
3 , , . . . , θ

(m−1)
N ,X)

θ
(m)
2 ∼ p(θ2|θ(m)

1 , θ
(m−1)
3 , . . . , θ

(m−1)
N ,X)

...
θ
(m)
N ∼ p(θN |θ(m)

1 , θ
(m)
2 , . . . , θ

(m)
N−1,X)

end.
Note that the Gibbs’ sampler simulates a high-dimensional

joint distribution by sequentially sampling from the condi-
tional distribution of each variable5. Therefore, aiming at the

5Actually, the Gibbs’ sampler requires only the conditional distributions up
to a proportional gain.

implementation of the Gibbs sampler for our problem, we
should obtain the conditional density for each element of θ.
In the sequel, this will be accomplished by observing that

p(θq|θ−θq
,X) ∝ p(X|θ)p(θq) (16)

and by considering the likelihood function (12) and the prior
distributions (defined in Section III-A).

1) Conditional distributions for the sources: Substituting
expressions (12) and (5) into (16), one has

p(sjt|θ−sjt ,X) ∝ exp

[
nc∑

i=1

− 1
2σ2

i

(
xit − ei

− di log
(
aijs

zi/zj

jt +
ns∑

b=1,b6=j

aibs
zi/zb

bt

))2

− (ln(sjt)− µj)
2

2σ2
j

]
1

sjt
1[0,+∞[(sjt). (17)

2) Conditional distributions for the sources hyperparame-
ters φ: Because p(X|θ) is not a function of the parameters
φj = [µj σj ], the conditional density of µj is given by

p
(
µj |σj ,S(j,:)

) ∝ p
(
S(j,:)|µj , σj

)
p(µj), (18)

where S(j,:) denotes all the elements of the j-th row. By
substituting (5) and (6) into (18), we obtain:

p
(
µj |σj ,S(j,:)

) ∝
nd∏
t=1

[
exp

(
− (ln(sjt)− µj)

2

2σ2
j

)]

exp

(
−

(
µj − µµj

)2

2σ2
µj

)
. (19)

The first term of (19) can be rewritten as a Gaussian function
in µj , with mean µLµj

= 1/nd

∑nd

t=1 ln(sjt) and variance
σ2

Lµj
= σ2

j /nd. Thus, (19) becomes a product of two Gaussian
distributions which is also a Gaussian distribution, i.e.:

p
(
µj |σj ,S(j,:)

) ∝ exp


−

(
µj − µPostµj

)2

2σ2
Postµj


 , (20)

where6 σPostµj
= σ2

Lµj
σ2

µµj
/(σ2

Lµj
+ σ2

µµj
) and µPostµj

=
(µLµj

σ2
µµj

+ µµµj
σ2

Lµj
)/(σ2

Lµj
+ σ2

µµj
).

Similarly to the case of µj , the conditional density of rj =
1/σ2

j is given by p
(
rj |µj ,S(j,:)

) ∝ p
(
S(j,:)|µj , rj

)
p(rj).

Thus, by considering (5) and (7), one has

p
(
rj |µj ,S(j,:)

) ∝
nd∏
t=1

[
√

rj exp
(
−0.5rj (ln(sjt)− µj)

2
) ]

r
αrj

−1

j exp

(
−rj

βrj

)
1[0,+∞[(rj). (21)

6The derivation of the mean and variance of a product of two Gaussian can
be found in [23].
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We can rewrite p(rj |µj ,S(j,:)) as a Gamma distribution, i.e.

p
(
rj |µj ,S(j,:)

) ∝ r
αP ostrj

j exp

(
− rj

βPostrj

)
1[0,+∞[(rj),

(22)
where αPostrj

= αrj
+ nd/2 and β−1

Postrj
=(∑nd

t=1 (ln(sjt)− µj)
2
)
/2βrj

It is now clear that we
obtain a conjugate pair and, thus, we can sample from
p

(
rj |µj ,S(j,:)

)
by sampling from a Gamma distribution.

3) Conditional distribution of aij: The derivation of
the conditional distribution of p(aij |θ−aij ,X) is close to
the one conducted for sjt. Indeed, by considering expres-
sion (12), (16), and (8), it turns out that

p(aij |θ−aij ,X) ∝ exp

[
− 1

2σ2
i

nd∑
t=1

(
xit − ei−

di log
(
aijs

zi/zj

jt +
ns∑

b=1,b 6=j

aibs
zi/zb

bt

))2]
1[0,1](aij). (23)

4) Conditional distribution of di: Using Eqs. (12) and (9),
and after some straightforward calculations, p(di|θ−di,X) can
be written as the following Gaussian distribution

p(di|θ−di ,X) ∝ exp


−

(
di − µPostdi

)2

2σ2
Postdi


 , (24)

where σPostdi
= σ2

Ldi
σ2

µdi
/(σ2

Ldi
+ σ2

µdi
), µPostdi

=
(µLdi

σ2
µdi

+ µµdi
σ2

Ldi
)/(σ2

Ldi
+ σ2

µdi
), and

µLdi
=

(
∑nd

t=1 (xit − ei)) log
(∑ns

b=1 aibs
zi/zb

bt

)

(
log

(∑ns

b=1 aibs
zi/zb

bt

))2 , (25)

σ2
Ldi

=
σ2

µdi(
log

(∑ns

b=1 aibs
zi/zb

bt

))2 . (26)

5) Conditional distribution of ei: The development of this
expression is similar to the one performed for di. After some
calculations, it is not difficult to show that

p(ei|θ−ei ,X) ∝ exp

(
−

(
ei − µPostei

)2

2σ2
Postei

)
, (27)

where σPostei
= σ2

Lei
σ2

µei
/(σ2

Lei
+ σ2

µei
), µPostei

=
(µLei

σ2
µei

+ µµei
σ2

Lei
)/(σ2

Lei
+ σ2

µei
), and

µLei
=

∑nd

t=1

(
xit − di log

(∑ns

b=1 aibs
zi/zb

bt

))

nd
(28)

σ2
Lei

= σei/nd. (29)

6) Conditional distribution of the noise variance σi: As
discussed before, the attribution of a Gamma prior for γi =
1/σ2

i culminates in a conjugate pair. Indeed, by considering
expressions (12) and (11), one can show that p(γi|θ−γi ,X)
can be reduced to the following Gamma distribution:

p(γi|θ−γi ,X) ∝ γ
αP ostσi

−1

i exp

(
−γi

βPostσi

)
1[0,+∞[, (30)

where αPostσi
= ασi + nd/2 and β−1

Postσi
=

1
2

∑nd

t=1

(
xit − ei − di log

(∑ns

b=1 aibs
zi/zb

bt

))2

+ β−1
σi

.

E. Algorithm Description

Let us make some remarks on the final algorithm, which
is summarized in Tab. I. In a first step, we must define hy-
perparameters that lead to non-informative distributions [18].
For instance, in the experiments described in Section IV,
this strategy was implemented by setting the following values
for the variances of the Gaussian priors: σ2

di
= 0.01 and

σ2
ei

= 0.03. Moreover, a high value of the parameter σ2
µj

,
which is related to the sources prior, was defined (σ2

µj
= 100).

Concerning the Gibbs’ sampler, the resulting conditionals
for almost all parameters are given by standard distributions
(normal and Gamma) and, thus, sampling is straightforward
in these cases. However, p(sjt|θ−sjt ,X) and p(aij |θ−aij ,X)
result in non-standard distributions, thus requiring more so-
phisticated sampling methods. In this work, this task is accom-
plished by the Metropolis-Hasting (MH) algorithm [17]. Based
on an instrumental distribution g(x; y), the MH algorithm
simulates a given distribution p(x) in an iterative fashion;
given x(t), the current sample of p(x), the following iteration
is done for obtaining the next sample x(t+1):

1) x∗ ∼ g(x; x(t)) (generation of a candidate sample);
2) Calculate a = min

(
1, p(x∗)g(x(t);x∗)

p(x(t))g(x∗;x(t))

)
;

3) u ← sample from a uniform distribution in [0, 1];
4) if u ≤ a, x(t+1) = x∗ (accept the proposed sample)

else x(t+1) = x(t) (reject the proposed sample).
In this work, truncated Gaussian are considered as instrumental
distributions; in order to obtain good acceptance rate, we
conducted, for each situation, preliminary simulations to adjust
the variances of these distributions.

As the resulting Markov chain of the Gibbs’ sampler
takes some time to converge to its stationary distribution, the
samples obtained in a first period (burn-in period) are not taken
into account by the estimator (see Eq. (31)). A simple visual
inspection of the evolution of some channel states was done for
determining the burn-in period. However, more sophisticated
strategies for convergence monitoring can be envisaged.

A last step in our algorithm concerns a post-processing stage
for dealing with the scale and translation ambiguities inherent
in blind methods [10]. For example, in PNL mixtures, the
best we can do is to obtain an estimation s̃jt given by s̃jt =
ajsjt +bj , where aj and bj are unknown, and sjt is the actual
source. Given that this ambiguity in not acceptable in a sensing
problem, we are forced to use at least two calibration points
in order to retrieve the scale and translation parameters. This
can be done by a simple linear regression, i.e. we need to
find aj and bj that minimize the mean squared error J =
1/Ncal

∑Ncal

n=1 (s̃(c)
jn −s

(c)
jn )2, where s

(c)
jn denotes the calibration

points and s̃
(c)
jt the corresponding estimations.

IV. EXPERIMENTAL RESULTS

To assess the proposed solution, we conducted in a first
moment a set of experiments considering artificially generated
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TABLE I
PROPOSED BAYESIAN SOURCE SEPARATION ALGORITHM

1) Define hyperparameters µµj
,σ2

µj
,αpj

,βpj
,ασi

,βσi
;

2) Random initialization of the current samples θ0;
3) Run Gibbs sampler

For m = 1 to M do
• For j = 1, · · · , ns,t = 1, · · · , nd

sm
jt ∼ p(sjt|θ−sjt

, X) (Eq. (17))
• For j = 1, · · · , ns

µm
j ∼ p(µj |θ−µj

, X) (Eq. (20))
σm

j ∼ p(σj |θ−σj
, X) (Eq. (22))

• For i = 1, · · · , nc,j = 1, · · · , ns

am
ij ∼ p(aij |θ−aij

, X) (Eq. (23))
• For i = 1, · · · , nc

dm
i ∼ p(di|θ−di

, X) (Eq. (24))
em

i ∼ p(ei|θ−ei
, X) (Eq. (27))

σm
i ∼ p(σi|θ−σi

, X) (Eq. (30))
end

4) Infer the sources through the Bayesian MMSE estimation

s̃jt =
1

M − B

M∑

m=B+1

s
m
jt, ∀j, t, (31)

where B denotes the number of iterations of the burn-in period.
5) Retrieve the source scale using Ncal calibration points (Ncal ≥ 2).

data. Then, in subsection IV-B, we test our proposal in a real
situation. In both cases, the performance of each estimated
source was inferred according to the following index:

SIRi = 10 log

(
E{s2

i }
E{(si − ŝi)

2}

)
, (32)

where si denotes the actual source and ŝi its respective
estimation (after correct scaling). A global index is defined
as SIR = 1/ns

∑ns

i=1 SIRi.

A. Experiments with artificial data

We made use of the database of selectivity coefficients
presented in [19] to define the following testing scenarios:
• First scenario (ns = 3 and nc = 3): array of three

electrodes (one K+-ISE, one NH+
4 -ISE and one Na+-

ISE) to estimate K+, NH+
4 and Na+. Mixing system

parameters: A = [1 0.16 0.40; 0.25 1 0.19; 0.40 0.13 1],
d = [0.059 0.050 0.055]T and e = [0.095 0.105 0.110]T .

• Second scenario (ns = 2 and nc = 2): array of two
electrodes (one Ca2+-ISE and one Na+-ISE) to estimate
the activities of Ca2+and Na+. Mixing system param-
eters: A = [1 0.39; 1 0.20], d = [0.026 0.046]T and
e = [0.100 0.090]T .

In the first scenario we have a PNL model as mixing system
(see Eq. (1)). In the second one, the mixing system is com-
posed of a nonlinear mixing mapping followed by component-
wise logarithm functions. Finally, we consider noisy mixtures
with a signal-to-noise ratio of SNR = 18 dB in both cases.

We tested our method in a situation where the sources are
given by log-normal distributions (the number of samples was
nd = 500). For the first scenario, we considered P = 50000
iterations for the Gibbs sampler with a burn-in period of B =
30000. The number of calibration points used in the post-
processing stage was Ncal = 5. The performance indices in
this situation were SIR1 = 12.83 dB, SIR2 = 19.0 dB, SIR3 =
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Fig. 1. Artificial data (first scenario): ISE array outputs (mixtures).
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Fig. 2. Artificial data (first scenario): actual sources (gray) and their
estimation (black).

17.4 dB, and SIR = 16.4 dB, which indicates that our proposal
was able to achieve a good source separation. To illustrate that,
we show in Fig. 1 the mixed signals, and in Fig. 2, the actual
sources and their respective estimations.

In the second scenario, we considered P = 25000 iterations
for the Gibbs sampler with a burn-in period of B = 18000,
and Ncal = 3 calibration points were used. The performance
indices in this case were SIR1 = 17.4 dB, SIR2 = 16.2 dB,
and SIR = 16.8 dB. Again, our method was able to provide
fair estimations of the sources.

B. Experiments with real data

A well-known example of interference in ion sensing con-
cerns the estimation of ammonium and potassium. These ions
play an important role in applications such as water quality
monitoring and food industry [3]. A brief look at [19] confirms
that in many ammonium and potassium electrodes one has
selectivity coefficients that are not negligible. Moreover, in
some situations, these coefficients can reach quite high values,
which represents a strong interference process.

We conducted a set of experiments where a solution
containing K+and NH+

4 was analyzed through an ISE array
composed of one K+-ISE and one NH+

4 -ISE. The activities of
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Fig. 3. Real data: responses provided by the ISE array.

both ions were varied according to the following procedure.
Initially, a solution containing a high concentration of potas-
sium (10−1M) was prepared. Then, by injecting a solution
containing ammonium chloride (NH+

4 Cl), the concentration
of NH+

4 was increased whereas the concentration of K+was
decreased. We repeat the same experiment but starting with
a different initial concentration of K+(almost 10−4M). After
joining these two experiments in a single dataset, we obtained
the sources (the variation in time of ionic activities7) shown
in Fig. 5. The total number of samples of the two experiments
altogether was nd = 170.

In Fig. 3, we present the responses of the ISE array.
Since we have access to the inputs and to the outputs of
the electrode array, it is possible to analyze the fitness of
the NE model for this case, that is, we can have an idea
about the amount of noise in the mixing model. Concerning
the potassium electrode, we measured a signal-to-noise ratio
(SNR) of SNRK+ = 24 dB. For the ammonium electrode,
this value was given by SNRNH+

4
= 20 dB. We assumed a

Gaussian modeling for the noise in each electrode, and, to
have an insight into the pertinence of such assumption, the
distribution of the regression errors is plotted in Fig. 4.
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Fig. 4. Histograms of the regression errors resulting from a fitting with the
NE model. The black curves correspond to the fitted Gaussian distribution.

After scale and translation normalization with Ncal = 4
calibration points, the performance indices (average of 30
experiments) obtained by the Bayesian method in this scenario
were SIR1 = 24.0 dB, SIR2 = 22.5 and SIR = 23.2.

7The ionic activities were estimated by using the actual concentrations and
the Debye-Hückel formalism [2].
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Fig. 5. Real data: Retrieved signals (black) and actual sources (gray).

Concerning the parameters of the Gibbs sampler, the number
of performed iterations was P = 10000 and the burn-in
period was B = 7000. The obtained signals are shown in
Fig. 5. Despite a small residual interference, mainly for the
K+activity, the method was able to provide good estimations
of the sources. On the other hand, the application of a PNL
source separation method based on ICA [24] provided poor
approximations of the sources (SIR1 = 7.6 dB, SIR2 = −0.3
and SIR = 3.6).

C. On the number of calibration points used in the post-
processing stage

We argued in the introductory section that the main benefit
brought by BSS methods is the reduction of the calibration
step. However, as mentioned before, our BSS method needs at
least two calibration points for retrieving the correct sources’
scales. From this apparent paradox, we may ask ourselves why
not simply use the available training points in a supervised
context. For example, we could define a separating system
(inverse of NE model) where the estimate ŝjt is given by

ŝjt =
nc∑

i=1

a∗ij10
xit−e∗i

d∗
i . (33)

Then, we could estimate a∗ji, d∗i , and e∗i based on a su-
pervised approach, i.e. by minimizing the MSE error J =∑ns

j=1

∑nd

t=1 (ŝjt − sjt)
2. We will refer to such strategy as the

supervised-NE algorithm.
In fact, the argument presented in the last paragraph is some-

what naive since it implicitly assumes that the performance
of a supervised method does not depend on the number of
training samples, which is not the case. Indeed, in Fig. 6, we
present the evolution of the training error of the supervised-
NE method as the number of calibrations points Ncal grows.
In this figure, which represents an average of 100 runs, one
can note that supervised-NE method requires, at least, Ncal =
25 for providing good estimations. Conversely, our proposal
requires only Ncal = 5 to provide equivalent estimations8.
This is achieved because the “real” data processing in our

8In Fig. 6, if the test error were plotted, then the difference between the
supervised NE method and the Bayesian method would become even smaller.
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Fig. 6. Performance index as the number of calibration points grows.

proposal is done by the Bayesian BSS algorithm, whereas
the calibration points are only used to circumvent the signal
ambiguities. Hence, although the complete suppression of the
calibration stage is not possible, our method can work even if
only a few calibration samples are available.

D. Discussion

The experiments with artificial data attested that the pro-
posal can achieve good estimations even in the difficult case
where the valences are different. In the scenario with real data,
the Bayesian algorithm achieved a much better performance
than the ICA-based PNL algorithm. In fact, in this case the
sources were clearly dependent and, thus, they violated the
fundamental assumption of any ICA method. Evidently, a
scenario with dependent sources also poses a problem to a
Bayesian method, since there is no guarantee that the provided
data representation is unique in such a case. Nonetheless,
in contrast to ICA, a Bayesian method does not optimize a
functional associated with the statistical independence. Rather,
it searches for a “good” data representation given a set of prior
information. Thus, in the Bayesian approach, the independence
should be seen as a simplifying assumption, that is, we are
just omitting an additional prior information to the inference
machine, which may still work.

Concerning the algorithm’s convergence, we observed that
the Gibbs sampler may get trapped in local minima, thus
leading to poor estimations. For the situations with two sources
the percentage of poor convergences9 was 3% for artificial
data and 7% for the real case; in the case with three sources,
this value attained 17%. Although we do not have access to
the source, it is still possible to identify a bad solution: we
observed that poor convergence usually implies in a significant
mismatch between the representation provided by the Bayesian
algorithm and the actual array response.

Another important point concerns the execution time of
our method. For the experiments with real data, the MCMC
algorithm took about10 26s to perform 10000 iterations. Nev-

9These percentages were obtained through a visual inspection after 30
executions.

10The method was implemented in Matlab (Windows XP) and the simula-
tions were performed in a Intel Core 2 duo 3GHz, 2048MB RAM.

ertheless, the algorithm took 380s to perform 50000 iterations
in the situation with three sources. This points out a well-
known drawback of MCMC-based Bayesian methods: their
computational burden can become quite large as the number
of sources and samples grows.

Finally, let us make a remark concerning the choice of the
priors. In this work, we tried to define priors 1) that ease the
resulting inference problem and 2) that, based on the avail-
able information, limit the range of the unknown parameters.
Evidently, there is no guarantee that our choices are optimum
and, as we mentioned before, a large dataset of measurements
would permit to refine the priors’ definition. An interesting
issue in this context would be to compare the selected priors
with alternative models. Because the possibilities are non-
exhaustive, we consider a single example where, instead
of log-normal priors for the sources, Gamma distributions
are considered. This distribution also describes non-negative
variables and, moreover, provides a flexible solution as it can
model from sparse to almost uniform sources [16].

After applying the solution with the Gamma modeling to
process the real data, the obtained performance (average of
30 experiments with Ncal = 4 calibration points) —SIR1 =
22.4 dB and SIR2 = 17.5 dB —was inferior to that of the
log-normal prior. Furthermore, unlike the log-normal case, it
is not possible to find a conjugate prior in the estimation of the
Gamma distribution parameters. Thus, it becomes necessary
to incorporate an additional MH algorithm into the Gibbs’
sampler, which increases the algorithm’s complexity and has
the inconvenient of requiring the definition of instrumental
distributions, which is not an easy task.

V. CONCLUSIONS

In this work, we proposed a Bayesian source separation
method for unsupervised quantitative analysis via an ISE array.
A MCMC algorithm, the Gibbs sampler, was used in the
inference stage. We defined the prior distributions based on
informations that are usually available in a chemical sensing
problem, such as the non-negativity of the sources. The result-
ing separation method did well in different scenarios, including
in a real problem where the estimation of the activities of
ammonium and potassium was desired. The results shown
that ISE arrays equipped with blind source separation can
operate even if only a reduced number of calibration points is
available. This nice feature can pave the way for alternatives to
supervised methods. For example, a less demanding calibration
step could ease analysis in the field.

Despite the encouraging results, there are still some ques-
tions that demand future work. A first one concerns the
possibility of increasing the precision of the developed source
separation method. Indeed, in our experiments with real data,
the remaining small interference would not be acceptable
in very-high-precision applications. We believe that a more
precise mixing model could increase the estimation quality.
In this spirit, a first step is to search for alternatives to the
NE model that take into account, for example, dynamics
aspects of the interference modeling. Furthermore, it could be
equally interesting to develop a Bayesian framework based on
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a temporal modeling for the sources, since chemical sources
do have a time-structure.
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