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In this paper, we address multifiber optical networks with Wavelength Division Multiplexing (wDMm). Assuming that the
lightpaths use the same wavelength from source to destination, we extend the definition of the well-known Wavelength
Assignment Problem (WAP) to the case where there are k fibers per link, and w wavelengths per fiber are available.
This generalization is called the (k,w)-wAapP. We develop a new model for the (k,w)-wAP based on conflict hyper-
graphs. Conflict hypergraphs accurately capture the lightpath interdependencies, generalizing the conflict graphs used
for single-fiber networks. By relating the (k,w)-wAP with the hypergraph coloring problem, we prove that the former is
A P-complete, and present further results with respect to the complexity of that problem. We consider the two natural
optimization problems that arise from the (k,w)-wap: the problem of minimizing k given w, and that of minimizing w
given k. We develop and analyze the practical performances of two methodologies based on hypergraph coloring, one
for each of the two optimization problems, on existing backbone networks in Europe and in the USA. The first method-
ology relies on an integer programming formulation, and the second consists of a heuristic based on a randomized
algorithm.

Keywords: optical networks, wavelength division multiplexing, network design, wavelength assignment problem,
hypergraph coloring, integer programming, heuristics.

1 Introduction

Wavelength Division Multiplexing (wbM) is currently the most promising existing optical network tech-
nology, since it allows for efficient use of the high bandwidth offered by optical networks. Under wbwm,
wavelengths are used to implement fixed end-to-end connections — called lightpaths in this context — in
the network. The major constraint imposed by this technology is that different lightpaths cannot share the
same wavelength over the same link.

Our work focuses on studying wbm networks in real-life scenarios, from both theoretical and practical
perspectives. Perhaps surprisingly, from the telecommunications operator viewpoint, one of the largest
costs incurred while deploying an optical network stems from physically trench-digging to bury the optical
fibers. Hence, it is usual to have many fibers deployed between any two points of the network, giving rise
to multifiber wbm networks (or Mwns for short).

Minimizing the cost of such a network leads to the design problem known as the wavelength assignment
problem (WAP) [RS95, BBG+97, RS98, CFK*01]. The off-line version of the waP can be define as follows:
Given a wbMm network Al and a set of lightpaths satisfying traffic requests, assign wavelengths to the
lightpaths so that any two paths that cross the same link are assigned different wavelengths. Other issues
on MWNSs design, like optical routing, grooming, optical add-drop multiplexers placement and wavelength
translation, are out of scope of this paper although they may sway the cost of the network as a whole.

Unfortunately, the existing work on single-fiber network design cannot be extended to MwNs in a straight-
forward manner. For instance, the model used for the wap on single-fiber networks fails to fully capture
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the benefits of having more fibers per link when minimizing the total number of wavelengths used in the
network in MwNs. The addition of multiple fibers to the network incur an extra degree of freedom in
choosing the path wavelengths which was not present in single-fiber networks. Note that using k fibers per
link immediately allows for reducing the number of wavelengths by a factor of k. In fact, multifibers may
reduce the number of wavelengths required even further. For example, adding just one fiber to a single-fiber
network can decrease the number of wavelengths required to route n lightpaths from n to 1 [MS00, LS00].

Unfortunately, results of this flavor, which specifically determine the impact of having multifibers either
hold for very specific networks (as in [MS00, LS00]) or are very preliminary as far as modeling is con-
cerned [ZQ98, BBGK99, HV99].

In this paper, we generalize the WAP to the case where there are k fibers per link, and w wavelengths
per fiber are available — this generalization is called the (k,w)-wApP. Two optimization problems naturally
arise from the (k,w)-wApr: the problem of minimizing the number of wavelengths used, given k, and that of
minimizing the number of fibers k if we are given w.

In the literature, the efficiency of a k-fiber network is measured in terms of k and the number of wave-
lengths wy required by the (k,w)-wap, for fixed k. For a set of lightpaths with load £, w lies between %

and % The efficiency of the network is then defined asLW/kk.

In order to build a general framework around the (k,w)-wWAP, we propose a new tool for modeling con-
flicts arising in wavelength utilization in MWNs, based on hypergraphs. The conflict hypergraph, formally
defined in [Riv01], is a generalization of the popular conflict graph, used for the wap on single-fiber net-
works. We validate the concepts proposed in this work by considering both optimization problems (that of
minimizing k with fixed c, and that of minimizing w with fixed c) in the Pan-American backbone network.

The main contributions of this work can be summarized as follows:

o We formally define the (k,w)-wap for MwNs, where either the number of fibers, or the number of
wavelengths per fiber can be optimized.

e Using this new hypergraph model, we build a bridge between coloring results for hypergraphs in the
literature and the (k,w)-wAP.

o We analyze the complexity of the (k,w)-WAP in MWNSs. In fact, we prove that minimizing the number
of wavelengths is A P-complete, even in the case where the number of fibers is fixed in advance,
answering the open question with respect to the exact complexity of this problem. We also prove
some other related results.

e We analyze the practical performances of two methodologies based on hypergraph coloring on ex-
isting backbone networks in the USA. The first relies on an integer programming formulation and
the second consists on a heuristic based on a randomized approximation algorithm. We analyze the
feasibility of solving real-world (k,w)-waAp with existing LP/IP solvers. The field is still open to new
heuristics for hypergraph coloring.

The remainder of this paper is organized as follows. First, we present an overview of related work in
Sect. 2. In Sect. 3, we present the problem formulation, recall the definition of the hypergraph model and
prove that the (k,w)-wAP is A P-complete, and presenting other results with respect to the complexity of
the problems. In Sect. 4, we address the actual problem of designing a multifiber network, with respect
to the optimization of either parameter. Sect. 5 discusses our prototypes and their performance evaluation.
Finally, we conclude and present some future work in Sect. 6.

2 Related work

Motivated by the very large costs of deploying wbMm networks, a large volume of research has targeted
design issues on these networks in the past.

In single-fiber networks, it is usual to assume that two nodes are connected by one fiber of unlimited
capacity (i.e. able to carry any number of wavelengths). Hence the (1,w)-wap (formerly known simply as



On the design of multifiber wdm networks

WAP) is exactly the path coloring problem in standard graphs [CGK92], which has been proven equivalent
to the general vertex coloring problem. Thus, there exists a fixed & > 0 such that no approximation within
nd is possible unless 2 = A(P [Hoc97].

Therefore, a large amount of work concentrated on specific topologies and line networks, rings, trees,
meshes, and so on. Specific communication patterns have also been studied like All-to-All and multicast.

The design of multifiber networks has recently been studied under different models and traffic assump-
tions [2Q98, BBGK99, HV99, MS00, LS00]. For instance the (1,w)—WwAP is A P-complete on undirected
stars but becomes polynomial with an efficiency of 1 if 2 fibers are available on each link [MS00, LS0Q].

Dynamic traffic — which means that lightpaths have to be established and released dynamically — has
been studied in [Z2Q98], where multifiber networks were shown to be more efficient than single-fiber net-
works with the same capacity™ per link. Using multifiber links has also been shown to lead to performances
equivalent to those provided by limited wavelength conversion.

In [BBGK99], an integer program and heuristics that solve the static problem are discussed. They
consider path length constrained routing, wavelength assignment, wavelength conversion, and link failure
restoration. The objective is to minimize the total number of fibers used in the network. Two meta-heuristic
(simulated annealing and taboo-search) for MwNs design are proposed in [HV99]. Both papers show that
adding fibers could improve the network efficiency.

Some theoretical properties of MwNs have been studied in [MS00, LS00Q]. For instance, it was proven
that increasing the number of fibers per link often simplifies the optical routing problem: For all k and w,
there exist a network and a set of communication requests such that exactly w wavelengths are necessary to
solve the problem with k fibers per link while 1 wavelength is enough with k + 1 fibers.

3 Problem formulation and complexity

Inthis section, we formally define the (k,w)-waP, and recall the definition and complexity results of [Riv01]
related to the conflict hypergraph. We then prove that the (k,w)-wApP is A P-complete even in the case
where k is fixed, and present a lower bound on the number of colors needed in a (k,c)-coloring of a (hy-
per)clique.

Definition 1 The conflict hypergraph H = (V, E) of the paths P in A is a hypergraph such that each vertex
v €V corresponds uniquely to a path p € P, and such that for every link ¢ € L, there exists a hyperedge in E
containing the vertices that correspond to all the paths going through ¢ (and these are the only hyperedges
in E) n

A vertex coloring of the conflict hypergraph induces a feasible wavelength assignment to the paths if
and only if no hyperedge contains more than k vertices with the same color. This motivates the following
definition of the (k,c)-coloring.

Definition 2 Given a hypergraph H = (V,E) and a set of colors ¢ = {1...c}, amapping f :V — Cis
a (k,c)-coloring if and only if no hyperedge contains more than k vertices with the same color, that is,
VeeE,Vqe C, |{vee: f(v)=q} <k O

It is easy to see from Definitions 1 and 2, that there is a one-to-one correspondence between the (k,c)-
colorings of the conflict hypergraph of 2 and the feasible wavelength assignments to these paths. Thus,
the (k, c)-coloring problem is at least as difficult as the (k,w)-wap. Actually, these problems are equivalent
[RivO1]:

Theorem 1 The (k,c)-coloring problem is polynomially equivalent to the (k,w)-WAP on MWNS.

The (k,c)-coloring problem is clearly A_P-complete for general k, since it generalizes the graph coloring
decision problem when k = 1. Therefore,

Corollary 1 The (k,w)-WAP on a MWNs is A P-complete for a general k.
Moreover, we prove below that the problem remains difficult even when k is fixed.

T The capacity of a link is the sum of the capacities of each fiber in the link.
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Theorem 2 The (k,c)-coloring problem is A P-complete for any fixed k.

Proof: We reduce this problem to (standard) coloring on graphs. That is, given a graph G with n nodes
and m edges, we have to answer “Can G be colored using c colors or less?”. To prove that (k,c)-coloring is
AN P-complete, we answer the graph coloring question by calling the (k, ¢)-coloring oracle. We can assume
that ¢ < n because otherwise the answer is trivially yes.

We extend G into a hypergraph H in the following way. Let Knt be a hypergraph with n nodes that
contains all the possible hyperedges of rank t. We start by adding a Kg k41 clique to H, which can trivially
be (k,c)-colored. Fix one of the possible colorings of the clique. We will now make that coloring the only
feasible one (up to permutations of the colors). For that, we add ¢ new nodes to H, each with a different
color pre-assigned and then all the possible (k + 1)-hyperedges that do not join k + 1 nodes of the same
color. The coloring that we fixed is, of course, feasible for this structure by construction. If we vary the
cardinality of nodes having a color, that is clearly infeasible because there is a clique included. If we
permute the colors there will be a hyperedge preventing that to be feasible.

The construction above allows us to claim that we have k + 1 nodes having each of the ¢ colors. Now,
returning to the original graph, for each edge we add ¢ hyperedges as follows: for each color X, include any
of the k — 1 nodes that have color X in the structure and the two endpoints of the edge. Every one of these
hyperedges means that the two nodes cannot be colored using the same color, which is what we need for
graph coloring.

If we can (k,c)-color the hypergraph, then we can also color the graph with c colors. What remains
to be seen is that the transformation is polynomial on the parameters. We added c(k + 1) nodes which is
polynomial on the input. We added less than the maximum possible number of (k + 1)-regular hyperedges,
which is equal to

o(k+1)\ _ (k4 1)k+?
( k+1 )S k+1)r 7

which is certainly polynomial on ¢ (k is fixed). Then we added mc more hyperedges for preventing color
repetitions. Therefore, recalling that ¢ < n, a bound for the total number of hyperedges added is O(nk+® +
mn), which completes the proof. 0

Corollary 2 The (k,w)-WAP on a MWNs is A P-complete for any fixed k.

3.1 A lower bound

Extending the notion of cliques in graphs, we can give a lower bound on the number of colors needed in
a (k,c)-coloring, by using (hyper)cliques, as follows. Recall that K is a hypergraph with n nodes that
contains all the possible hyperedges of rank t.

Lemma 1l A (k,c)-coloring of Kn; is feasible if and only if

[E] ift >k,
¢ { 1 otherwise.

Proof Sketch: The case where t <Kk is trivial. The main argument of the case where t > k is counting how
many times a color can be repeated. 0

The lemma above bounds the number of colors required to color any hypergraph that contains Kny,
yielding the following generalization of the fact that the chromatic number of a graph is larger than the size
of its maximum clique (just maket =2 and k = 1).

Corollary 3 Let H be a hypergraph containing Kn¢. If H can be (k,c)-colored, with k < t, then ¢ > [n/k].
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4 Tools for designing MWNS

In this section, we will present two scenarios in the design of multifiber networks. The equivalence between
solving the wap for 2 and computing (k,c)-colorings of H allows us to concentrate on the latter. For
instance, the problems we consider are the problems of finding the minimum k (resp. c) such that there is
a feasible (k,c)-coloring of H with c (resp. k) given. We address these two problems in Sect. 4.1 and 4.2,
respectively.

4.1 Minimizing the number of fibers

We consider first the problem of minimizing the number of fibers when the number of colors is given. This
problem can be formulated as a Minimax Integer Program [Sri96]. For instance, we define (0, 1)-integer
variables xjj, for all i € V and 1 < j <, such that xjj = 1 if and only if node i is colored with color j and

Xij = 0 otherwise. The variable k is a common upper bound for the constraints defined by each hyperedge.
The optimal number of fibers can be found by solving the following IP.

Integer Program 1

minimize k (minimize # of fibers)
s.t. Xi 1 V node i
2 IC

;Xic
i€

kzoy Xic

IA

k Y color ¢, V hyperedge H

m

{0,1}  Vcolorc, Vnode i.

Recently, Srinivasan showed that if the optimal solution of the LP relaxation is rounded randomly, with
positive probability, a solution that is feasible and not too large can be encountered [Sri96]. A simple algo-
rithm, discussed in [Lu98], can compute a solution that is not too far from the one proposed by Srinivasan.
It is a simple randomized algorithm that takes c¢ as input and computes a suitable k, for which it can assure,
with high probability that it is not too far from the minimum possible k. Then, it proceeds with these three
steps.

1. Color randomly all the nodes with c¢/3 colors.

2. Detect hyperedges whose constraints violate a (k, ¢)-coloring and re-color their nodes randomly with
another set of ¢/3 colors.

3. Detect hyperedges whose constraints violate a (k, ¢)-coloring again, but now color them exhaustively
with the last set of ¢/3 colors.

The values of ¢ (given) and k (computed by the algorithm) must satisfy a certain constraint, which de-
pends also on the maximum load £ and on the maximum degree A. Indeed, for the minimum k that satisfies
these constraints, it is unlikely that we have many bad hyperedges after the second step, and thus the algo-
rithm can be shown to run in polynomial time [Lu98]. As the k returned by the algorithm may be too large
for practical purposes, we exploit this idea in Sect. 5 in order to define a heuristic for the same problem. The
heuristic proposed performed well in all the simulations considered, often outperforming Lu’s algorithm.

4.2 Minimizing the number of wavelengths

Given the number of fibers k, we now would like to minimize the number of colors ¢ such that a valid
(k,c)-coloring of the hypergraph exists. We present an Minimax IP formulation for this problem below. We
define a variable % for each node and each color: x;c = 1 if node i is colored with color ¢, and 0 otherwise.
We have seen that the number of colors is bounded by [n/k] (this bound is tight if the graph is a clique).
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Integer Program 2

min Zyc (minimize # of colors)
[

ZXiC = 1 Y node i
C

; Xie < Kk VY color ¢, hyperedge H
i€

Xic < VYe Y color c,node i
Xie,Ye € {0,1} V color ¢,node i

There are O(n?) variables and O(n?m) constraints (we could reduce the number of constraints to O(nm)
if the solver generates cuts automatically).

The drawback of this IP formulation is that it is not symmetric and thus Branch-and-Bound will waste
a lot of time iterating trough similar solutions [MT96]. The problem arises because after a variable is
constrained by the algorithm, a permutation of them may still be feasible. This problem can be solved using
automatic pruning techniques, as described in [Mar01].

5 Implementation and Performance Evaluation

To computationally evaluate the problems, we implemented the two integer programs and the approximation
algorithm, described in Sect. 4. This allowed us to evaluate the tradeoff between the performance and the
running time of the exact version and the approximation. As we implemented an approximation algorithm
for the problem of minimizing k, and computing exact solutions is equivalent for both problems, we used
that problem to compare the results. We also report our findings in the experience of solving the problem
of minimizing c.

We used instances based on several networks and will present the results we had using an American one
which consists of 78 cities, interlinked by 102 arcs (see Fig. 1(a)).

In order to generate a demand matrix, we used a gravitational model. Weights are associated to the
cities. In order to basically represent the importance of every city in terms of traffic: we made the weights
proportional to the distance to 5 main population areas in the USA. Finally, the number of requests between
every two cities was made proportional to the product of the two weights while keeping the outgoing number
of requests from every city equal to the weight. Using different weights, we generated instances that were
used for the benchmarks. We report on a relatively big instance with 2022 requests and a load of 520.

Routing was implemented through a minimum cost disjoint path problem for each origin-destination pair.
For each origin and destination, we computed the shortest total distance of two disjoint paths linking them
and distributed all the demand among the two paths. Routing the requests in such a way ensures that short
paths are selected while maintaining two disjoint routes from each origin to each destination, which helps
to improve the reliability.

When solving the exact version of the minimization of the number of fibers, the solver found feasible
solutions reasonably fast when restricting to small instances. Except for the biggest instances (the American
network with many colors), the solver did not have difficulties in proving optimality. It was expected,
though, that when the instances grew bigger, the running time was going to degrade because the underlying
problem is A’P-hard. Nevertheless, this does not seem to be an issue for the instances generated from
real-world networks.

Results

Optimal and approximate computations of the number of fibers needed, as a function of the number of
colors available, are depicted in Fig. 1(b). On the left hand side, one can see that the running time of the
approximate algorithm is almost a constant compared to the running time of the IP solved by CPLEX. This
is of great interest when compared to right hand side, which shows that the approximate number of fibers is
close to the optimal one up to a factor lying between 2 and 3.
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Fig. 1: Optimal and approximate computations on American network

It is important to notice that in these instances, and often with real-world networks, the number of colors
equals its lower bound, that is the load of the network divided by the number of fibers. It is known that
pathological examples can be constructed although they do not usually appear in real instances.

The biggest dependency of the running time of the Integer Program 2, that optimizes the number of colors,
is on the number of variables representing the colors. Initially, we used as many colors as the number of
requests, because that is an upper bound. Obviously, this did not scale well when the size of the instances
increased to real-world problems. Instead, we performed a binary search for the upper bound of the colors.
We relied on the observation that when the bound is too small, the IP solver returns quickly that no feasible
solution exists. On the other hand, when the upper bound is not tight, it takes too much time to solve the
first node of the Branch-and-Bound tree because there are too many variables. With this strategy, we got
IPs of the correct size that could be handled by the solver. As expected though, due to the symmetry in the
formulation (the labeling of the colors can be permuted without altering the solution), the enumeration of
the nodes of the Branch-and-Bound tree could not be completed in general. In any case, we had a proof of
optimality. Indeed, we found that when using one less color, the LP relaxation of the problem was already
not feasible. Therefore, showing a feasible solution with that many colors was enough. Indeed, it would be
interesting to characterize the integrality gap of that problem.

6 Conclusion

In this paper, we have proposed a framework to model the WAP in MWNS, reducing it to a coloring problem
on hypergraphs. Practically, the coloring problem appeared to be tractable since its straightforward IP for-
mulation gave optimal solutions reasonably fast. On the other hand, in all our real-world instances we found
wg = [L/K]. Hence, the efficiency gain due to multifiber flexibility was not observed. However, since ad-
hoc constructions prove that this gain can be enormous, practical instances could still be found where such a
gain appear. Furthermore, the heuristic that we implemented turned out to be very fast, but did not perform
very well, despite the provably good asymptotic properties of the underlying randomized approximation
algorithm. Therefore, we are currently working on the design of other heuristics for hypergraph coloring.

Another interesting research direction is to address the design of MwNs in the case where the routing is
not fixed in advance. In such a case the lightpaths are not given, and one needs to design both the routing
and the wavelength assignment at once. We believe that, as soon as k is large enough, this problem can be
practically solved to optimality.
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