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ABSTRACT.We present here a number of test cases and meshes which were designed to form a
benchmark for finite volume schemes and give a summary of some of the results which were
presented by the participants to this benchmark. We address a two-dimensional anisotropic
diffusion problem, which is discretized on general, possibly non-conforming meshes. In most
cases, the diffusion tensor is taken to be anisotropic, and at times heterogeneous and/or dis-
continuous. The meshes are either triangular or quadrangular, and sometimes quite distorted.
Several methods were tested, among which finite element, discontinous Galerkin, cell centred
and vertex centred finite volume methods, discrete duality finite volume methods, mimetic meth-
ods. The results given by the participants to the benchmark range from the number of unknowns,
the errors on the fluxes or the minimum and maximum values and energy, to the order of con-
vergence (when available).

KEYWORDS:Anisotropic medium, diffusion process, finite volume schemes, benchmark

1. Introduction

The aim of this benchmark is to provide a number of test cases in order to test the
properties (convergence, robustness...) of existing discretization schemes for aniso-
tropic diffusion problems using general grids. In all test cases except test 8, the domain
Ω is the unit square. The boundary of the domain is divided into∂Ω = ΓD∪ΓN where
Dirichlet (resp. Neumann) boundary conditions are given onΓD (resp. onΓN ). The
considered diffusion problem is formulated as:

− ∇·(K∇u) = f onΩ, [1]

u = ū onΓD, [2]

K∇u · n = g onΓN , [3]



whereK : Ω → IR2×2 is the diffusion (or permeability) tensor,f the source term,
ū andg the Dirichlet and Neumann boundary conditions, andn denotes the outward
unit normal vector toΓN . For each test case, we propose some meshes which are
used for the discretization of Problem [1] by the various schemes. These meshes are
depicted in section 15 below.

2. The participating schemes and teams

Even though the benchmark is associated with the FVCA5 conference, the call for
submission was by no means restricted to finite volume schemes, and indeed several
types of schemes were submitted:

Cell centred schemes
• CMPFA: Compact-stencil MPFA method for heterogeneous highly anisotropic

second-order elliptic problems, by S. Mundal, D. A. Di Pietro and I. Aavatsmark, [?].

• FVHYB: A symmetric finite volume scheme for anisotropic heterogeneous
second-order elliptic problems, by L. Agelas and D. A. Di Pietro, [?].

• FVSYM: Numerical results with two cell-centered finite volume schemes for
heteregeneous anisotropic diffusion operators, by C. Le Potier, [?].

• SUSHI-P or SUSHI-NP (which are cell centred in their full barycentric version):
SUSHI: A Scheme Using Stabilization and Hybrid Interfaces for anisotropic hetero-
geneous diffusion problems, by R. Eymard, T. Gallouët and R. Herbin, [?].

Control volume finite element schemes
• CVFE: Numerical simulation for the anisotropic benchmark by a vertex-centred

finite volume method, by M. Afif and B. Amaziane, [?].

Discontinous Galerkin schemes
• DG-C: The Compact Discontinuous Galerkin Method for Elliptic Problems, by

A. Dedner and R. Klöfkorn, [?].

• DG-W: A discontinuous Galerkin flux for anisotropic heterogeneous second-
order elliptic problems, by D. A. Di Pietro and A. Ern, [?].

Discrete duality finite volume schemes
• DDFV-BHU: The DDFV "discrete duality finite volumes" and m-DDFV schemes,

by F. Boyer and F. Hubert, [?].

• DDFV-HER: Numerical experiments with the DDFV method, F. Hermeline, [?].
• DDFV-MNI : Some MPFA methods of DDFV type, by I. Moukouop Nguena and

A. Njifenjou, [?].

• DDFV-OMN: Tests with the Discrete Duality Finite Volume method, by P.
Omnes, [?].
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Finite element schemes
• FEP1, FEP2, FEQ1, FEQ2: A Galerkin Finite Element Solution, by G. Ansanay-

Alex, B. Piar and D. Vola, [?].

Lattice Boltzmann schemes
• LATTB Using Lattice Boltzmann scheme for anisotropic diffusion problems, by

F. Dubois, P. Lallemand and M. M. Tekitek, [?].

Mixed or hybrid methods
• MFD-BLS: Mimetic finite difference method, by K. Lipnikov, [?].

• MFD-FHE: Numerical investigation of a mimetic finite difference method, by B.
Flemisch and R. Helmig, [?].

• MFD-MAN : The mimetic finite difference method, by G. Manzini, [?].

• MFD-MAR: A mimetic finite difference method, S. Marnach, [?].

• MFE: Mixed finite element (Raviart Thomas) programmed by the benchmark
organizers for lack of a submission.

• MFV: Use of the mixed finite volume method, by C. Chainais-Hillairet, J. Dro-
niou and R. Eymard [?].

• SUSHI-P or SUSHI-NP (which are hybrid in their full hybrid version):SUSHI:
A Scheme Using Stabilization and Hybrid Interfaces for anisotropic heterogeneous
diffusion problems, by R. Eymard, T. Gallouët and R. Herbin, [?].

Nonlinear schemes

The schemes are nonlinear in order to ensure the positivity of the scheme (that is,
if the right hand side is positive then the solution is positive) or the discrete maximum
principle (that is, if the linear system stems from the discretization of an elliptic equa-
tion satisfying the maximum principle, then its solution is also bounded by the bounds
of the continuous system).

• FVPMMD: Numerical results with two cell-centered finite volume schemes for
heteregeneous anisotropic diffusion operators, by C. Le Potier, [?].

• NMFV: Nonlinear monotone finite volume method, by D. Svyatskiy, [?].

Of course, the above choice of categories is neither exhaustive nor unique. In fact,
most of these categories intersect: schemes are not so easy to classify, and some
schemes are known to be identical in special cases. We refer to the above-cited papers
for the details of the schemes and their implementation. Our purpose is to give here a
synthesis of the results presented by the participants and raise some questions on the
future trends in this field of research.

3. Nature of the results and notations

Some of the output results are given for all tests, and others only for those tests for
which we know of an analytical solution. Here are both lists.
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3.1. For all tests

• nunkw number of unknowns

• nnmat number of non-zero terms in the matrix

• sumflux the discrete flux balance, that is: sumflux = flux0+
flux1 + fluy0 +fluy1− sumf, where flux0, flux1, fluy0, fluy1 are
the outward numerical fluxes at the boundariesx = 0, x = 1, y = 0 and
y = 1 (for instanceflux0 is an approximation of −

∫
x=0

K∇u · n ds) and
sumf =

∑
K∈T |K|f(xK) wherexK denotes some point of the control volumeK.

Let us note that for vertex methods such as the finite element schemesFE or theCVFE

scheme, the pointsxK are the vertices of the mesh. For most cell centred schemes,
xK is chosen as the centre of gravity for most schemes. Some papers concerning
DDFV schemes (DDFV-OMN, DDFV-BHU) report results for values at two different
points, but we shall only present here the results withxK the centre of gravity of the
primal mesh.

The residualsumflux is a measure of the global conservativity of the scheme;
hence, it is expected to be of the order of the machine precision for all schemes which
are based on a local conservation of fluxes. In fact, it was very useful in debugging
codes; however, for the sake of conciseness, we choose not to display its value here
since it is indeed of the machine precision order for FV type schemes and of the mesh
size order for purely Galerkin finite element type schemes (FE).

• umin: value of the minimum of the approximate solution.

• umax: value of the maximum of the approximate solution.

• ener1, ener2, whereener1 andener2 are approximations of the energy fol-
lowing the two expressions (which are identical in the continuous setting):ener1,
ener2

E1 =
∫

Ω

K∇u · ∇udx, E2 =
∫

∂Ω

K∇u · nudx [4]

Even thoughE1 andE2 converge to the same value on fine grids, there can be
a noticeable difference betweenE1 andE2 on the coarsest meshes. Note also that
we get an upper bound of the continuous valueE1 = E2 by using a conformal finite
element method and lower bound with the mixed finite element (Raviart–Thomas)
method.

3.2. When the analytical solution is known and the mesh refined

Let us denote byu the exact solution, byT the mesh and byuT = (uK)K∈T the
piecewise constant approximate solution.

• erl2, relative discreteL2 norm of the error, for instance:

erl2 =


∑
K∈T

|K|(u(xK)− uK)2∑
K∈T

|K|u(xK)2


1
2

.
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• ergrad relativeL2 norm of the error on the gradient, if available

• ratiol2: for i ≥ 2,

ratiol2(i) = −2
ln(erl2(i))− ln(erl2(i− 1))

ln(nunkw(i))− ln(nunkw(i− 1))

• ratiograd, for i ≥ 2, same formula as above withergrad instead oferl2.

• erflx0,erflx1, erfly0,erfly1 relative error betweenflux0, flux1,
fluy0, fluy1 and the corresponding flux of the exact solution:

erflx0 =
∣∣∣∣flux0 +

∫
x=0

K∇u · n∫
x=0

K∇u · n

∣∣∣∣
(except for the fluxes at y=0 and y=1 for case test 2 - numerical locking - because
these are zero).

• erflm L∞ norm of the error on the meanvalue of the flux through the edges of
the mesh, if available (give the definition of numerical flux(K∇u · n)T )

erflm = max
{∣∣∣∣ 1
|σ|

∫
σ

(K∇u · n− (K∇u · n)T )
∣∣∣∣ , σ edges ofT

}
.

• ocvl2 order of convergence of the method in theL2 norm of the solution as
defined byerrl2 with respect to the mesh size:

ocvl2 =
ln(erl2(imax))− ln(erl2(imax− 1))

ln(h(imax))− ln(h(imax− 1))

whereh is the maximum of the diameter of the control volume.

• ocvgradl2 order of convergence of the method in theL2 norm of the gradient
as defined byergradl2 with respect to the mesh size, same formula as above with
ergrad instead oferl2.

4. Test 1: mild anisotropy

A homogeneous anisotropic tensor is first considered:K =
(

1.5 0.5
0.5 1.5

)
.

4.1. Test 1.1: smooth solution,mesh1 (triangular mesh) andmesh4 (distorted
quadrangular mesh)

In this first test, we consider a very regular solution:u(x, y) = 16x(1−x)y(1−y),
we setf = −∇ · (K∇u), and we consider Dirichlet boundary conditions:ΓD =
∂Ω, ΓN = ∅, andū = u|∂Ω. The schemes were first tested on a series of “regular”
triangular meshes:mesh1, a picture of which is given in Figure 13. We give in Figure
1 theL2 norm of the error versus the number of unknowns (upper left), the square root
of the number of non zero matrix terms (upper right) and the step sizeh (lower left)
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for all schemes for meshesmesh1. As can be seen on Figure 1, all schemes show an
order 2 convergence except for the two higher order schemesFEP2 andDG-C, which
are order 3. The schemesDDFV-HER, FEP2 andDG-C (see Figure 2) have an order 2
convergence with respect to theL2 norm of the gradient; all other schemes show an
order 1 convergence.

Note that when calculating the error with respect tonunknw andnnmat, the order
of convergence remains the same (as expected) but the relative position of the schemes
vary, as may be seen on the graphs of Figure 1. The behaviour or theL2 norm of the
gradient with respect to the three previous variables is depicted in Figure 2.

The same test was then carried out on two distorted quadrangular meshesmesh4_1
andmesh4_2 depicted in Figure 15. From Table 1 below, we can see that almost all
schemes satisfy the discrete maximum principle on this test and meshes. The DG
schemesDG-C andDG-W provide small negative values while the nonlinear (positive)
schemeNMFV exceeds the maximum value 1. Note that some schemes include the
boundary conditions in the calculation of the minimum and maximum values and
others not. In the second case, if these minimum and maximum values are not equal
to the boundary conditions, they can be taken as a measure of the accuracy of the
scheme.

4.2. Test 1.2:mesh1 (triangular mesh) andmesh3 (locally refined non-conforming
rectangular mesh)

We consider here the following exact solution:u(x, y) = sin ((1− x)(1− y)) +
(1 − x)3(1 − y)2, with the right hand sidef = −∇ · (K∇u), boundary conditions
(ΓD = ∂Ω, ΓN = ∅) andū = u|∂Ω. We use both the triangular meshmesh1 and the
locally refined non-conforming rectangular meshmesh3, which is depicted in Figure
14. TheL2 norm of the error and the gradient with respect withnunknw, nnmat and
h are given in Figures 3 and 4 for the triangular meshmesh1 and, in Figures 5 and 6
for the locally refined non-conforming rectangular meshmesh3.

As can be seen on Figure 3, the orders of convergence of the schemes are the
same as in the case of Test 1.1. Similar results are observed on the locally refined
non–conforming rectangular meshmesh3.

Note from Figures 2, 4 and 6 that theL2 norm of the gradient error is lower with
the DDFV schemes than for the other second order schemes.

5. Test 2: Numerical locking [?, ?]

In this test, the permeability tensor is defined by:

K =
(

1 0
0 δ

)
, with δ = 105 or 106.
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Figure 1. L2 norm of the solution error for test 1.1, versusnunknw (upper left),nnmat (upper
right) andh (lower left) for the triangular meshesmesh1_i
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right) andh (lower left) for the triangularmesh1_i
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mesh 4_1 mesh 4_2
umin umax umin umax

CMPFA 9.95E-03 1.00E+00 2.73E-03 9.99E-01
CVFE 0.00E+00 8.43E-01 0.00E+00 9.14E-01
DDFV-BHU 1.33E-02 9.96E-01 3.63E-03 9.99E-01
DDFV-HER 0.00E+00 1.03E+00 0.00E+00 1.01E+00
DDFV-MNI -3.09E-01 1.03E+00 0.00E+00 1.00E+00
DDFV-OMN 1.34E-02 1.03E+00 3.65E-03 1.01E+00
DG-C -2.33E-03 9.96E-01 -3.24E-04 9.99E-01
DG-W -7.90E-05 9.22E-01 -8.18E-06 9.66E-01
FEQ1 0.00E+00 8.61E-01 0.00E+00 9.37E-01
FEQ2 0.00E+00 9.99E-01 0.00E+00 1.00E+00
FVHYB 2.14E-03 9.84E-01 7.16E-04 9.93E-01
FVSYM 7.34E-03 9.59E-01 2.33E-03 9.89E-01
MFD-BLS 8.54E-03 9.55E-01 2.44E-03 9.87E-01
MFD-FHE 9.73E-03 9.45E-01 2.90E-03 9.83E-01
MFD-MAN 6.64E-03 9.71E-01 1.50E-03 9.93E-01
MFD-MAR 8.82E-03 9.60E-01 2.47E-03 9.88E-01
MFV 1.08E-02 9.42E-01 3.34E-03 9.82E-01
NMFV 1.30E-02 1.11E+00 3.61E-03 1.04E+00
SUSHI-NP 7.64E-03 8.88E-01 2.33E-03 9.61E-01

Table 1. Test 1.1: Minimum and maximum of the approximate solutions formesh 4_1 and
mesh 4_2

The exact solution is taken to beu(x, y) = sin(2πx)e−2π
√

1/δy; note that since
δ is large, the solution is almost constant in they variable. We consider Problem [1]
with non-homogeneous Neumann boundary conditions (ΓD = ∅ andΓN = ∂Ω), so
that the right hand side isf = −∇ · (K∇u) and the Neumann boundary condition
g = (K∇u ·n)|∂Ω. Furthermore, we shall ensure the uniqueness of the solution to [1]
by enforcing the condition

∫
Ω

u dx = 0. The meshes are the triangular meshesmesh1.

This test was mentioned in [?] as causing some numerical locking problems for
finite volume and finite element schemes, and in fact, some schemes could not give
the solution. We give in Tables 2 and 3 the minimum and maximum values obtained
with those schemes which passed the test, and on what grid they are obtained, along
with the convergence order for the error of the solution and its gradient. The behaviour
of theP1 finite element scheme seems good except on the very first grid where, even
though the maximum principle is satisfied, the maximum and minimum values are
close to 0, and quite far from the exact ones; this is also the case for the schemesDG-
W SUSHI-NP (but this latter scheme does not converge well on finer grids). TheP2
finite elements also give good results, even if the rate of convergence is a bit under the
theoretical rate on the last grids. Note that the schemeDDFV-OMN satisfies the discrete
maximum principle for bothδ = 105 andδ = 106. Most schemes seem to encounter
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Figure 3. L2 norm of the solution error for test 1.2, versusnunknw (upper left),nnmat (upper
right) andh (lower left) for the triangularmesh1_i
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right) andh (lower left) for the triangularmesh1_i
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Figure 5. L2 norm of the solution error for test 1.2, versusnunknw (upper left),nnmat (upper
right) andh (lower left), for the refined non-conforming rectangularmesh3_i
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Figure 6. L2 norm of the gradient error for test 1.2, versusnunknw (upper left),nnmat (upper
right), andh (lower left), for the refined non-conforming rectangularmesh3_i
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min(umin), i max(umax), i ocvl2 ocvgrad erflm
CMPFA -1.10E+00, 1 1.04E+00, 3 1.09 / 6.36E+02
CVFE -1.01E-00, 2 1.01E-01, 2 2.00 1.00 1.55E+01
DDFV-BHU -9.27E-01, 1 1.17E+00, 1 1.76 1.21 7.51E+00
DDFV-HER -4.20E-01, 2 9.12E+00, 4 / / 7.16E-03
DDFV-OMN -8.24E-01, 1 7.76E-01, 1 2.00 1.00 2.11E+00
DG-W -1.18E-01, 1 1.18E-01, 1 2.00 1.00 1.69E+01
FEP1 -9.48E-03, 1 9.75E-03, 1 2.00 1.01 /
FEP2 -9.56E-01, 1 9.56E-01, 1 2.97 2.00 /
FVSYM -1.76E+00, 2 1.80E+00, 2 2.38 1.47 7.29E+00
MFD-BLS -6.50E+00, 2 5.75E+00, 2 2.54 / 3.59E+01
MFD-FHE -6.50E+00, 2 5.75E+00, 2 2.54 1.51 3.59E+01
MFD-MAN -6.62E+00, 2 5.50E+00, 2 2.49 1.50 3.58E+01
MFD-MAR -6.50E+00, 2 5.75E+00, 2 2.53 / 3.59E+01
MFE -6.50E+00, 2 5.75E+00, 2 2.53 1.47 3.59E+01
MFV -6.50E+00, 2 5.75E+00, 2 2.41 1.51 3.58E+01
SUSHI-P -6.50E+00, 2 5.75E+00, 2 2.53 1.47 3.59E+01
SUSHI-NP -1.93E-02, 4 1.89E-02, 4 0.37 1.99 /

Table 2. Test 2, (numerical locking)δ = 105

some difficulties on the first two (forδ = 105) or three (forδ = 106) coarsest meshes
(locking effect). Note also the very similar behaviour of the schemesMFE, MFD-FHE,
MFD-BLS, MFD-MAN , MFD-MAR andSUSHI-P on this test case.

6. Test 3: oblique flow

This test case represents a flow with boundary conditions such that the pressure
driven flow “would like” to go from vertex (0,0) to vertex (1,1), but is impeded by a
homogeneous anisotropic tensor with high permeability in a direction at 40 degrees
from the horizontal and low permeability in the orthogonal direction. This test case is
inspired by a talk given by I. Aavatsmark in Paris in December 2006 at GDR MOMAS.
The permeability tensor is:

K = Rθ

(
1 0
0 δ

)
R−1

θ ,

whereRθ is the rotation of angleθ = 40 degrees andδ = 10−3.
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min(umin), i max(umax), i ocvl2 ocvgrad erflm
CMPFA -1.72E+00, 1 1.72E+00, 1 2.27 / 9.84E+04
CVFE -1.01E-00, 2 1.01E-00, 2 2.00 1.0 4.90E+01
DDFV-BHU -9.17E-01, 1 1.19E+00, 1 2.11 1.35 1.38E+01
DDFV-HER -2.10E-01, 2 7.10E-01, 1 / / 1.64E-01
DDFV-OMN -8.19E-01, 1 7.82E-01, 1 2.00 1.00 1.62
DG-W -1.17E-01, 1 1.17E-01, 1 2.00 1.00 5.34E+01
FEP1 -2.93E-03, 1 3.02E-03, 1 2.00 0.99 /
FEP2 -9.50E-01, 1 9.50E-01, 1 2.96 2.00 /
FVSYM -3.62E+00, 2 3.62E+00, 2 2.31 1.50 2.30E+01
MFD-BLS -6.59E+00, 3 6.08E+00, 3 2.53 / 1.14E+02
MFD-FHE -6.59E+00, 3 6.08E+00, 3 2.53 1.51 1.14E+02
MFD-MAN -6.62E+00, 3 5.83E+00, 3 2.51 1.50 1.14E+02
MFD-MAR -6.59E+00, 3 6.08E+00, 3 2.53 / 1.14E+02
MFE -1.86E+01, 2 1.63E+01, 2 2.5 1.23 1.14E+02
MFV -6.59E+00, 3 6.08E+00, 3 2.41 1.51 1.14E+02
SUSHI-P -1.86E+01, 2 1.63E+01, 2 2.5 1.23 1.14E+02
SUSHI-NP -6.48E-03, 5 6.42E-03, 5 0.046 1.98 /

Table 3. Test 2 (numerical locking)δ = 106

The source term is equal to zero (f = 0). We use a uniform rectangular family of
meshesmesh2_i. Dirichlet boundary conditions are considered,ΓD = ∂Ω with ū a
continuous and piecewise linear function defined by:

ū(x, y) =


1 on ((0, .2)× {0.} ∪ {0.} × (0, .2)
0 on ((.8, 1.)× {1.} ∪ {1.} × (.8, 1.)
1
2 on ((.3, 1.)× {0} ∪ {0} × (.3, 1.)
1
2 on ((0., .7)× {1.} ∪ {1.} × (0., 0.7)

The solution features a Z across they = x axis; it is depicted in Figure 7 (approxi-
mate solution obtained by the schemeDDFV-BHU on a very fine grid). The maximum
principle is not always easy to verify for such a solution and is violated, on coarse and
fine grid, by most DDFV implementations, the DG schemes and the schemeFVHYB

(see Table 4). Note also that, as previously mentioned, theFEQ2 energy, equal to
2.42E − 01, is an upper bound of the exact energy, while theMFE energy, equal to
2.41E − 01, is a lower bound of this energy. On the coarse grid, the scheme which
gives the closest energy to these values isLATTB (see Table 4). However, it may be
seen in Table 5 that the schemeLATTB is not so good with respect to the fluxes, for
which the schemeMFD-FHE seems to be the most accurate. From this table, we can
notice that most of the schemes give a reasonable approximation of the outward flux
on the boundary.
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Figure 7. Approximate solution on a fine grid for Test 3, oblique flow

7. Test 4: vertical fault

The medium considered here is a pile of anisotropic layers with a fault in the
middle, which leads to a discontinuity of the layers atx = .5. Each geological layer
is meshed with one layer of discretization cells only. The domainΩ is decomposed as
Ω = Ω1 ∪ Ω2, with Ω2 = Ω \ Ω1, with Ω1 = Ω`

1 ∪ Ωr
1, and

Ω`
1 = (0.; .5]×

(⋃4
k=0[.05 + 2k × .1; .05 + (2k + 1)× .1)

)
,

Ωr
1 = (.5; 1)×

(⋃4
k=0[2k × .1; (2k + 1)× .1)

)
.

It is described in Figure 8 whereΩ1 is in black andΩ2 in white. The diffusion tensor

(0,0)

(1,1)(0,1)

(1,0)

Figure 8. The computational domain and approximate solution on a fine grid (320× 320) for
Test 4, vertical fault
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umin_i umax_i ener1 eren_i i
CMPFA 6.90E-02 9.31E-01 / / 1

9.83E-04 9.99E-01 / / 7
CVFE 0.00E+00 1.00E+00 2.24E-01 8.42E-02 1

0.00E+00 1.00E+00 2.42E-01 3.33E-03 7
DDFV-BHU -4.72E-03 1.00E+00 2.14E-01 9.60E-02 1

-5.31E-04 1.00E+00 2.42E-01 7.11E-06 7
DDFV-HER -4.72E-03 1.00E+00 2.14E-01 9.46E-02 1

-5.96E-08 1.00E+00 2.42E-01 1.91E-05 7
DDFV-MNI -4.73E-03 1.00E+00 2.14E-01 9.61E-02 1

-1.07E-03 1.00E+00 2.42E-01 1.86E-04 5
DDFV-OMN 1.04E-01 8.96E-01 1.81E-01 3.68E-03 1

1.01E-03 9.99E-01 2.42E-01 1.77E-06 7
DG-C -9.35E-02 1.07E+00 5.04E-01 9.88E-02 1

-1.32E-03 1.00E+00 2.42E-02 2.48E-05 7
DG-W -4.11E-02 1.04E+00 1.90E-01 5.67E-01 1

-3.71E-03 1.00E+00 2.44E-01 2.85E-05 7
FEQ1 0.00E+00 1.00E+00 2.21E-01 3.67E-01 1

0.00E+00 1.00E+00 2.44E-01 3.17E-02 7
FEQ2 0.00E+00 1.00E+00 2.64E-01 3.41E-01 1

0.00E+00 1.00E+00 2.42E-01 0.00E+00 7
FVHYB -1.75E-01 1.17E+00 2.13E-01 2.55E-01 1

-1.00E-03 1.00E+00 2.42E-01 8.19E-03 6
FVSYM 6.85E-02 9.32E-01 2.20E-01 0.00E+00 1

4.92E-04 9.99E-01 2.42E-01 0.00E+00 8
LATTB 1.14E-01 8.86E-01 2.42E-01 1.64E-02 1

9.36E-04 9.99E-01 2.42E-01 3.00E-04 7
MFD-BLS 6.09E-02 9.39E-01 2.38E-01 4.44E-15 1

1.29E-03 9.99E-01 2.42E-01 6.74E-13 7
MFD-FHE 7.06E-02 / 2.19E-01 2.09E-01 1

1.00E-03 9.99E-01 2.42E-01 1.05E-04 7
MFD-MAN 7.56E-02 9.24E-01 1.91E-01 1.87E-14 1

8.01E-04 9.99E-01 2.42E-01 3.70E-14 8
MFD-MAR 6.09E-02 9.39E-01 2.38E-01 9.85E-13 1

1.00E-03 9.99E-01 2.42E-01 1.97E-10 8
MFE 3.12E-02 9.69E-01 1.25E-01 2.46E-02 1

5.08E-04 9.99E-01 2.41E-01 2.91E-03 8
MFV 1.22E-02 8.78E-01 4.85E-01 8.23E-07 1

7.92E-04 9.99E-01 2.42E-01 9.74E-06 7
NMFV 1.11e-01 8.88e-01 2.33e-01 1.45e-01 1

1.28E-03 9.99E-01 2.45E-01 1.94E-02 7
SUSHI-NP 6.03E-02 9.40E-01 2.25E-01 3.01E-01 1

8.52E-04 9.99E-01 2.43E-01 1.28E-02 7

Table 4. Test 3, the values of umin, umax and the energies
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flux0_i flux1_i fluy0_i fluy1_i i
CMPFA -1.94E-01 1.94E-01 -1.18E-01 1.18E-01 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 7
CVFE -2.28E-01 2.28E-01 -1.86E-01 1.86E-01 1

-1.94E-01 1.94E-01 -9.97E-02 9.97E-02 7
DDFV-BHU -1.82E-01 1.82E-01 -1.20E-01 1.20E-01 1

-1.93E-01 1.93E-01 -9.86E-02 9.86E-02 7
DDFV-HER -1.82E-01 1.82E-01 -1.21E-01 1.21E-01 1

-1.93E-01 1.93E-01 -9.85E-02 9.85E-02 7
DDFV-MNI -1.83E-01 1.83E-01 -1.21E-01 1.21E-01 1

-1.94E-01 1.94E-01 -9.82E-02 9.82E-02 5
DDFV-OMN -1.80E-01 1.80E-01 -1.35E-01 1.35E-01 1

-1.93E-01 1.93E-01 -9.86E-02 9.86E-02 7
DG-C -1.88E-01 1.60E-01 -1.60E-01 1.88E-01 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 7
DG-W -1.71E-01 1.71E-01 -9.93E-02 9.93E-02 1

-1.93E-01 1.93E-01 -9.86E-02 9.86E-02 7
FEQ1 -3.05E-01 3.05E-01 -2.50E-01 2.50E-02 1

-1.94E-01 1.94E-01 -9.93E-02 9.93E-02 7
FEQ2 -1.27E-01 1.27E-01 -3.60E-02 3.60E-02 1

-1.93E-01 1.93E-01 -9.86E-02 9.86E-02 7
FVHYB -2.47E-01 2.47E-01 -1.86E-01 1.86E-01 1

-1.95E-01 1.95E-01 -1.01E-01 1.01E-01 6
FVSYM -1.95E-01 1.95E-01 -1.18E-01 1.18E-01 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 8
LATTB -1.46E-01 -2.57E-01 -1.52E-01 5.57E-01 1

-1.96E-01 1.96E-01 -9.56E-02 9.56E-02 7
MFD-BLS -1.97E-01 1.97E-01 -1.15E-01 1.15E-01 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 7
MFD-FHE -1.93E-01 1.93E-01 -9.57E-02 9.57E-02 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 7
MFD-MAN -2.12E-01 2.12E-01 -1.44E-01 1.44E-01 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 8
MFD-MAR -1.97E-01 1.97E-01 -1.15E-01 1.15E-01 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 8
MFE -2.67E-01 2.67E-01 - 2.22E-01 2.22E-01 1

-1.93E-01 1.93E-01 -9.88E-02 9.88E-02 8
MFV -8.52E-02 8.52E-02 8.52E-02 -8.52E-02 1

-1.93E-01 1.93E-01 -9.87E-02 9.87E-02 7
NMFV -1.71e-01 1.72e-01 -1.66e-01 1.65e-01 1

-1.94E-01 1.94E-01 -9.79E-02 9.76E-02 7
SUSHI-NP -1.80E-01 1.80E-01 -1.14E-01 1.14E-01 1

-1.93E-01 1.93E-01 -9.85E-02 9.85E-02 7

Table 5. Test 3, the fluxes
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K is anisotropic and heterogeneous, and is given by:

K =
(

α 0
0 β

)
, with


(

α
β

)
=

(
102

10

)
onΩ1,(

α
β

)
=

(
10−2

10−3

)
onΩ2

A Dirichlet boundary condition is imposed:̄u(x, y) = 1 − x on ΓD = ∂Ω (so that
ΓN = ∅) and the right hand side is assumed equal to zerof = 0. Note that the
exact solution of this problem should stay between 0 and 1; it is therefore interest-
ing to see whether the schemes respect these bounds (discrete maximum principle),
especially on coarse meshes (which are used in oil industry, for instance). Problem
[1] is discretized using the non-conforming rectangular meshmesh5 (see Figure 16),
the conforming20× 20 square meshmesh5reg and a reference mesh, for instance the
320× 320 square meshmesh5ref .

umin umax ener1 eren
CMPFA 4.55E-02 9.56E-01 / /
CVFE 0.00E+00 1.00E+00 45.9 1.04E-02
DDFV-BHU 4.04E-02 9.61E-01 42.1 3.65E-02
DDFV-HER 0.00E+00 1.00E+00 49.3 1.75E-01
DDFV-OMN 4.04E-02 9.62E-01 42.2 3.65E-02
DG-W -3.34E-01 1.33E+00 43.5 1.38E-02
FVHYB 4.52E-02 9.59E-01 41.4 6.12E-02
MFD-BLS 3.31E-02 9.71E-01 33.9 7.93E-14
MFD-MAN 2.84E-02 9.75E-01 31.4 1.16E-12
MFD-MAR 4.03E-02 9.60E-01 41.1 1.30E-13
MFV 4.93E-02 9.54E-01 49.9 4.21E-05
NMFV 4.33E-02 9.58E-01 / /
SUSHI-NP 1.32E-03 9.99E-01 39.1 6.67E-02

Table 6. Test 4, non-conforming rectangular mesh:mesh5. The values ofumin, umax and the
energies

From Table 8, we see that the energies given by theFEQ1 scheme and theMFE

scheme on the reference mesh are both equal to 43.2, which means that this is also the
value of the continuous energy. On the fine mesh, all schemes give an approximate
energy which is close to this value, and the results on the fluxes are also quite homo-
geneous. If we now look at what are the schemes that give the energy which is closest
to 43.2 on the coarse mesh (Table 6), we find that the closest is given byDG-W (error
of less than 0.5 %), and that the outward fluxes (Table 7) given byDG-W are also
close to the reference ones (Table 9). However, neither the upper nor the lower bound
is respected by the scheme. This illustrates the well-known fact that precision and
robustness are difficult to obtain simultaneously. Other schemes (DDFV-BHU, DDFV-
OMN, FVHYB, MFD-MAR, SUSHI-NP) give an energy and fluxes which are reasonably
close to the reference ones (some schemes are better for the energy, other better for
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flux0 flux1 fluy0 fluy1
CMPFA -45.2 46.1 -0.95 4.84E-04
CVFE -46.6 48.5 0.87 8.02E-04
DDFV-BHU -40.0 41.8 -1.81 9.08E-04
DDFV-HER -40.0 41.8 -1.81 9.08E-04
DDFV-MNI -43.8 45.5 -2.8 1.18E+00
DDFV-OMN -40.0 41.8 -1.81 9.08E-04
DG-W -43.1 45.3 -2.19 1.50E-03
FVHYB -44.3 46.3 0.49 1.55E-04
MFD-BLS -32.3 36.2 -3.94 1.22E-03
MFD-MAN -29.7 34.1 -4.37 1.01E-03
MFD-MAR -39.8 42.5 -2.68 9.95E-04
MFV -44.0 50.3 -8.03 1.72E+00
NMFV -43.2 44.5 -1.23 2.32E-04
SUSHI-NP -40.9 43.1 -2.21 6.94E-04

Table 7. Test 4, non-conforming rectangular mesh:mesh5. The fluxes

umin umax ener1 eren
CMPFA 1.32E-03 9.99E-01 / /
CVFE 0.00E+00 1.00E+00 43.3 6.25E-04
DDFV-BHU 1.31E-03 9.98E-01 43.2 1.27E-03
DDFV-HER 0.00E+00 1.00E+00 43.8 1.64E-02
DDFV-MNI 00E+00 1.00E+00 43.8 6.23E-02
DDFV-OMN 1.32E-03 9.99E-01 43.2 1.28E-03
DG-C -2.20E-06 1.00E+00 43.2 1.46E-04
DG-W -2.21E-09 1.00E+00 43.2 7.63E-04
FEQ1 0.00E+00 1.00E+00 43.3 2.31E-03
FEQ2 0.00E+00 1.00E+00 43.2 0.00E+00
MFD-BLS 1.32E-03 9.99E-01 43.2 2.84E-12
MFD-FHE 2.12E-02 1.00E+00 43.2 3.53E-04
MFD-MAN 1.32E-03 9.99E-01 43.2 4.71E-14
MFD-MAR 1.32E-03 9.99E-01 43.2 2.69E-12
MFE 1.32E-03 9.99E-01 43.2 4.20E-04
MFV 1.32E-03 9.99E-01 43.2 1.88E-05
NMFV 1.32E-03 9.99E-01 43.2 5.92E-04
SUSHI-NP 1.32E-03 9.99E-01 43.1 8.88E-04

Table 8. Test 4, the square320 × 320 meshmesh5ref . The values ofumin, umax and the
energies

the fluxes), while respecting the discrete maximum principle. Note that the MFD im-
plementationsMFD-BLS and MFD-MAN give surprisingly low values of both energy
and fluxes in comparison withMFD-MAR.
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flux0 flux1 fluy0 fluy1
CMPFA -42.1 44.4 -2.33 7.97E-04
CVFE -42.2 44.5 -2.25 7.98E-04
DDFV-BHU -42.1 44.4 -2.33 7.94E-04
DDFV-HER -42.0 44.3 -2.35 7.97E-04
DDFV-MNI -39.9 42.6 -2.68 8.01E-04
DDFV-OMN -42.1 44.4 -2.33 7.97E-04
DG-C -42.1 44.5 -2.32 7.98E-04
DG-W -42.1 44.5 -2.32 7.96E-04
FEQ1 -42.2 44.5 -2.16 7.96E-04
FEQ2 -42.1 44.5 -2.32 7.96E-04
MFD-BLS -42.1 44.4 -2.33 7.96E-04
MFD-FHE -42.1 44.5 -2.47 7.98E-04
MFD-MAN -42.1 44.4 -2.33 7.97E-04
MFD-MAR -42.1 44.4 -2.33 7.96E-04
MFE -42.1 44.4 -2.33 -7.96E-04
MFV -42.1 44.4 -2.33 8.33E-04
NMFV -42.1 44.4 -2.33 7.97E-04
SUSHI-NP -42.1 44.4 -2.33 7.97E-04

Table 9. Test 4, the square320× 320 meshmesh5ref . The fluxes

8. Test 5: heterogeneous rotating anisotropy

This test is inspired from [?, ?]. The permeability tensor is a rotating anisotropic
tensor:

K =
1

(x2 + y2)

(
10−3x2 + y2 (10−3 − 1)xy
(10−3 − 1)xy x2 + 10−3y2

)
,

and we consider the following smooth exact solution:

u(x, y) = sin πx sinπy, f = −∇ · (K∇u).

Problem [1] is then solved with non-homogeneous boundary conditions:ΓD = ∂Ω,
ΓN = ∅ andū(x, y) = sinπx sinπy, and approximated on the uniform rectangular
mesh2.

We give in Figure 9 theL2 norm of the error versus the number of unknowns
(upper left), the square root of the number of non-zero matrix terms (upper right) and
the step sizeh (lower left) for all schemes for meshesmesh2. As can be seen in Figure
9, all schemes show an order 2 convergence except for the two higher order schemes
FEP2 andDG-C, which are order 3. As for theL2 norm of the gradient is concerned, all
the schemes, even higher order schemes, show an order 2 convergence, with an error
with respect tonunkw, nnmat andh minimized by the DDFV schemes (see Figure
10).
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Figure 9. L2 norm of the solution error for test 5, versusnunknw (upper left),nnmat (upper
right) andh (lower left), for the rectangular meshmesh2
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Figure 10. L2 norm of the gradient error for test 5, versusnunknw (upper left),nnmat (upper
right) andh (lower left), for the rectangular meshmesh2
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umin umax
CMPFA -1.06E-01 1.09E+00
DDFV-HER 0.00E+00 1.01E+00
DG-C -7.95E-04 1.02E+00
DG-W -7.68E-02 1.06E+00
FEQ1 0.00E+00 1.05E+00
FVHYB -1.92E+01 5.38E+00
FVSYM -8.67E-01 2.57E+00
MFE -1.62E+00 1.90E+01

Table 10.Test 5: minimum and maximum values on the coarsest mesh for the schemes which
do not satisfy the maximum principle

All schemes converge when the mesh is refined, but some schemes violate the
discrete maximum principle, as may be seen in Table 10. Note that the schemesMFE

andFVHYB violate it even on the fine grids.

9. Test 6: oblique drain

This test case represents a situation which is encountered in underground flow en-
gineering where an oblique drain consisting in a very permeable layer concentrates
most part of the flow; this drain is meshed with only one layer of discretization cells.
In the case of a pressure gradient driven transport, as often described in reservoir
engineering, it seems important that the discretization cells consist in only one ho-
mogeneous material: numerical experiments show that otherwise the solution may be
badly approximated. Here we consider the steady case, but wish to verify that the
outward fluxes are as close as possible to the exact values for the meshes considered
here, both for the conforming and non-conforming meshes.

The domainΩ is composed of 3 subdomains:

Ω1 = {(x, y) ∈ Ω; φ1(x, y) < 0},

Ω2 = {(x, y) ∈ Ω; φ1(x, y) > 0, φ2(x, y) < 0},

Ω3 = {(x, y) ∈ Ω; φ2(x, y) > 0},

with φ1(x, y) = y − δ(x− .5)− .475 andφ2(x, y) = φ1(x, y)− 0.05.

We take the slope of the drainδ = 0.2 and define the exact solution and the source
term by:

u(x, y) = −x− δy, onΩ, f = −∇(K∇u),

where the permeability tensorK is such that its principal axes are parallel and perpen-
dicular to the drain:

K = Rθ

(
α 0
0 β

)
R−1

θ ,
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with θ such thatδ = tan θ and:(
α
β

)
=

(
102

10

)
onΩ2 and

(
α
β

)
=

(
1

10−1

)
, onΩ1 ∪ Ω3.

Problem [1] is considered with non-homogeneous Dirichlet boundary conditions:
ΓD = ∂Ω, ΓN = ∅ and ū(x, y) = −x − δy, and approximated on the conforming
mesh:mesh6 and the non-conforming meshmesh7.

As the exact solution is affine on the whole domain, only a few schemes (CVFE,
DDFV-HER, MFV, NMFV) are not exact on such a problem. Moreover, they all satisfy
the discrete maximum principle. The interest of this case lies in the approximation
of the interface fluxes, which could be used for instance for the approximation of a
coupled system of diffusion and convection equations.

10. Test 7: oblique barrier

This test case is similar to the Test 6, except that we now have to deal with a barrier,
and the aim is that the scheme should respect this barrier as well as the outward fluxes.

We take the same geometry as test 6 above, with the slope of the drainδ = 0.2.

We take the exact solution to be

u(x, y) =


− φ1(x, y) onΩ1,

− φ1(x, y)/10−2 onΩ2,

− φ2(x, y)− 0.05/10−2 onΩ3,

andf = −∇·(K∇u), where the permeability tensorK is heterogeneous and isotropic:

K =
(

α 0
0 α

)
, with α =

{
1 onΩ1 ∪ Ω3,
10−2 onΩ2.

We consider Problem [1] with Dirichlet boundary conditions:ΓD = ∂Ω, ΓN = ∅,
andū = u|∂Ω, and discretize the problem using the meshmesh6.

The exact solution of this problem being piecewise affine, most of the schemes are
exact on this test; the non-exact schemes are:CVFE, DDFV-HER, DDFV-OMN, MFV,
NMFV. A few schemes (namely some DDFV and DG schemes) have values which are
less than the exact minimum (see Table 11).

11. Test 8: perturbed parallelograms [?]

This test case was given to us by I. Aavatsmark [?], and is meant to test the schemes
for the violation of the maximum principle within the domain. The domainΩ is a
parallelogram, which is represented in Figure 11. The parameters shown in Figure 11
areX = 1, Y = 1/30 andθ = 30◦.
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erl2 ergrad umin umax
CMPFA 1.23E-15 / -5.54 5.37E-01
CVFE 1.83E-05 3.86E-05 -5.57 5.75E-01
DDFV-BHU 1.38E-14 5.86E-14 -5.575 5.75E-01
DDFV-HER 6.53E-08 / -5.575 5.75E-01
DDFV-MNI 1.38E-15 3.48E-14 -5.58 5.75E-01
DDFV-OMN 3.79E-08 4.51E-08 -5.58 5.75E-01
DG-C 1.39E-13 1.88E-12 -5.58 5.75E-01
DG-W 1.18E-14 1.89E-14 -5.58 5.75E-01
FEQ1 3.79E-15 6.49E-14 -5.575 5.75E-01
FEQ2 6.12E-15 8.19E-14 -5.575 5.75E-01
FVHYB 1.24E-15 5.10E-14 -5.54 5.37E-01
FVSYM ε ε -5.53 5.37E-01
MFD-BLS ε / -5.54 5.37E-01
MFD-FHE 3.25E-15 4.73E-15 -5.54 5.37E-01
MFD-MAN 1.39E-15 1.92E-15 -5.54 5.37E-01
MFD-MAR 8.19E-13 / -5.54 5.37E-01
MFV 1.40E-08 4.69E-08 -5.54 5.37E-01
NMFV 4.98E-03 / -5.54 5.37E-01
SUSHI-NP 1.30E-15 1.35E-14 -5.54 5.37E-01

Table 11.Test 7, the conforming mesh:mesh6 (ε = machine precision)

X

Y
θ

Ω

Figure 11. Parallelogram-shaped domainΩ showing the distancesX andY and the angleθ

The medium is homogeneous and isotropic withK = Id. Problem [1] is consid-
ered with homogeneous Dirichlet boundary conditions:ΓD = ∂Ω, ΓN = ∅ on the
perturbed parallelogram meshmesh8; see Figure 18.

The source termf is equal to zero (f = 0) in all cells except cell(6, 6) where∫
cell(6,6)

f(x) dx = 1.

Note that the solutionu of this problem should be a function with a maximum in
cell (6, 6), decreasing smoothly to zero towards the boundary. Ifu shows internal
oscillations or ifu < 0, Hopf’s first lemma is violated.
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umin umax
Fine grid 1.07E-24 4.10E-01
CMPFA -2.31E-02 1.03E-01
CVFE -1.23E-03 4.24E-02
DDFV-BHU -1.25E-03 8.22E-02
DDFV-HER -1.61E-03 8.99E-02
DDFV-MNI -1.46E-03 6.69E-02
DDFV-OMN -1.77E-03 8.36E-02
DG-C -7.33E-03 1.05E-01
DG-W -9.03E-03 6.57E-02
FEQ1 -4.17E-03 4.90E-02
FEQ2 -5.07E-03 8.04E-02

umin umax

FVHYB -3.38E-02 1.12E-01
FVSYM -7.21E-02 1.52E-01
FVPMMD 1.22E-09 3.99E-01
MFD-BLS -1.03E-01 1.85E-01
MFD-FHE -6.54E-02 1.44E-01
MFD-MAR -2.62E-02 9.07E-02
MFV -8.08E-03 5.81E-02
NMFV 3.05E-15 9.42E-02
SUSHI-NP -1.19E-03 5.65E-02
SUSHI-P 3.26E-06 6.77E-03

Table 12.Minimum and maximum values for Test 8

flux0 flux1 fluy0 fluy1
Fine grid 5.46E-21 5.46E-21 5.00E-01 5.00E-01
CVFE -1.17E-05 2.63E-05 2.87E-01 5.54E-01
DDFV-BHU -5.814E-10 -3.35E-10 4.97E-01 5.02E-01
DDFV-HER 2.45E-10 -1.83E-10 4.80E-01 5.11E-01
DDFV-MNI -4.37E-05 6.50E-05 5.07E-01 4.93E-01
DDFV-OMN -6.86E-10 -4.86E-10 4.98E-01 5.02E-01
DG-C -1.66E-07 1.41E-07 5.08E-01 4.92E-01
DG-W 5.02E-01 0.00E+00 4.98E-01 0.00E+00
FEQ1 5.51E-06 7.15E-05 5.46E-01 4.89E-01
FEQ2 -5.52E-05 1.96E-05 4.98E-01 5.01E-01
FVSYM 1.37E-04 -1.15E-04 4.96E-01 5.04E-01
FVPMMD 1.76E-06 3.5E-06 4.55E-01 5.44E-01
MFD-BLS -5.14E-04 -3.13E-03 5.01E-01 5.03E-01
MFD-FHE 4.48E-04 -4.08E-03 5.03E-01 5.01E-01
MFD-MAR -1.79E-02 2.61E-03 5.05E-01 5.10E-01
MFV -2.30E-02 4.95E-02 2.74E-01 6.99E-01
NMFV 0.00E+00 0.00E+00 4.99E-01 5.01E-01
SUSHI-NP 7.35E-04 1.29E-04 4.99E-01 5.00E-01
SUSHI-P -4.21E-02 -3.29E-02 5.38E-01 5.37E-01

Table 13.Boundary fluxes for Test 8

In the first line of Tables 12 and 13, we give the minimum and maximum values
and the fluxes obtained with the schemeSUSHI-P for a201× 201 uniform grid which
was chosen parallel to the axes. The behaviour of the corresponding approximate
solution is represented in Figure 12.
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Figure 12. Approximate solution on a fine uniform grid for Test 8

The minimum valueumin given by the schemes ranges from−7.21E−02 (FVSYM)
to 3.26E − 06 (SUSHI-P), while the maximum valueumax ranges from6.77E − 03
(SUSHI-P) to 3.99E − 01 (FVPMMD).

There are only three schemes which remain positive, namelyNMFV, FVPMMD and
SUSHI-P. Both latter schemes, however, provide fluxes which differ from the expected
fluxes (which are calculated from a fine grid discretization and given on the first line
of Table 13). The only scheme which respects positive while also yielding the correct
flux is NMFV, which is a nonlinear scheme. This reinforces the conjecture [?] that
nonlinear schemes should be used if positiveness is sought, even in the case of linear
problems,.

12. Test 9: anisotropy and wells [?]

Here, Ω is again the square unit domainΩ = (0, 1) × (0, 1). The medium is
homogeneous and anisotropic with

K = M(−θ)
[
1 0
0 10−3

]
M(θ), M(θ) =

[
cos θ sin θ
− sin θ cos θ

]
, [5]

whereθ = 67.5◦.

The source densityf is zero in all cells. Problem [1] is considered with homo-
geneous Neumann boundary conditions (ΓN = ∂Ω) on a square uniform gridmesh9
with 11 × 11 cells. The pressure is fixed in two cells, approximating a sink and a
source with fixed pressure:

u = 0 in cell (4, 6),

u = 1 in cell (8, 6).
[6]

The solutionu of this problem should satisfyu ∈ [0, 1]. This discrete problem could
arise from a coarse discretization of a flow field with two wells, and where the pressure
is given at the well, each well being represented by one grid cell. Of course, if the mesh
were refined, then all the new fine cells that are included in the coarse mesh cells(4, 6)
and(8, 6) should be set to 0 and 1 respectively .

However, the point here is not the convergence of the method as the mesh tends to
0, but rather its behaviour with respect to the discrete maximum principle on a coarse
grid. In particular, we would like the scheme to give an approximate solution that:

1) stays between 0 and 1,
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2) does not oscillate within the domain,

3) has no extremum on the outer (no-flow) boundary.

umin umax
CMPFA -6.77E-01 1.68E+00
CVFE -1.16E-01 1.12E+00
DDFV-BHU -1.38E-01 1.14E+00
DDFV-HER -1.03E-01 1.10E+00
DDFV-OMN -7.07E-02 1.07E+00
DG-C -1.02E-03 9.98E-01
FEQ1 -2.36E-02 1.02E+00
FEQ2 -5.94E-03 1.01E+00
FVHYB -3.69E-02 1.04E+00
FVSYM -7.63E-02 1.07E+00

umin umax

FVPMMD 0.00E+00 1.00E+00
MFD-BLS -4.30E-02 1.04E+00
MFD-FHE -4.21E-02 1.04E+00
MFD-MAR -4.30E-02 1.04E+00
MFE 0.00E+00 1.00E+00
MFV -1.22E-01 1.07E+00
NMFV 1.83E-02 1.01E+00
SUSHI-NP -1.00E+00 2.00E+00
SUSHI-P 0.00E+00 1.00E+00

Table 14.Values of umin and umax for Test 9

0.03 0.03 0.04 0.03 0.02 0.08 0.25 0.48 0.73 0.90 0.97
0.03 0.03 0.03 0.02 0.03 0.14 0.34 0.59 0.81 0.94 0.97
0.03 0.03 0.04 0.02 0.06 0.21 0.44 0.69 0.88 0.96 0.97
0.03 0.03 0.04 0.02 0.10 0.30 0.53 0.78 0.94 0.97 0.97
0.03 0.03 0.05 0.02 0.17 0.41 0.62 0.89 0.96 0.96 0.97
0.03 0.04 0.04 0.00 0.28 0.50 0.72 1.00 0.96 0.96 0.97
0.03 0.04 0.04 0.11 0.38 0.59 0.83 0.98 0.95 0.97 0.97
0.03 0.03 0.06 0.22 0.47 0.70 0.90 0.98 0.96 0.97 0.97
0.03 0.04 0.12 0.31 0.56 0.79 0.94 0.98 0.96 0.97 0.97
0.03 0.06 0.19 0.41 0.66 0.86 0.97 0.98 0.97 0.97 0.97
0.03 0.10 0.27 0.52 0.75 0.92 0.98 0.97 0.96 0.97 0.97

Table 15.Values given by theMFE scheme for Test 9

On this test, most of the schemes which were tested violate the Hopf lemmas, as
can be seen in Table 14. TheSUSHI-NPscheme, although it does not show internal
oscillations, has extreme values which are very much out of the bounds (-1.00 and
2.00) while the extremal values of most of the other schemes violate their bounds
from less than 10 per cent. Most of the schemes for which the values are provided
show oscillations of the solution. The only schemes which remain positive are the
schemesFVPMMD, SUSHI-P andNMFV. This latter scheme, however, provides values
which are greater than 1 (it is positive, but does not respect the discrete maximum
principle) and shows some small internal oscillations. The schemesFVPMMD and
SUSHI-P provide values which stay within the bounds 0 and 1, and show very little
oscillations within the domain. However, the values provided by the schemes are quite
different, since the values given byFVPMMD on the boundary range from roughly 0.3
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to 0.6, while those given bySUSHI-P range from 0.02 to 0.98., values which are close
to those given by theMFE scheme in Table 15.

13. Conclusion

This paper proposes a comparison of about 20 numerical approximations for a fam-
ily of two-dimensional anisotropic diffusion problems. The nine tests presented here
involve both a wide class of diffusion tensors (anisotropic and at time heterogeneous
and/or discontinuous) and a wide class of (sometimes non-conforming) meshes.

A first remarkable feature of the benchmark is the relative homogeneity of the
results which are obtained by the different methods. In some cases, the convergence
curves are so close to one another that it is difficult to distinguish them. It is therefore
difficult to rate the schemes, and we did not attempt to do so. The choice of a scheme
is problem dependent. It may result from considerations on robustness (postiveness,
maximum principle, etc.) and accuracy, but can also be largely influenced from other
considerations such as existing codes, coupling problems or merely data structures.

As predicted by the theory, we observe that the higher order schemesFEP2, FEQ2
or DG-C feature a better order of convergence for theL2 norm of the solution and
also asymptotically for theL2 norm of its gradient. Nevertheless, DDFV methods are
able to provide particularly low errors of the gradient, which are even smaller than the
higher order schemes on coarse meshes.

The robustness of the schemes with respect to the maximum principle is a great
challenge. The results vary from one scheme to another, according to the meshes or to
the anisotropy of the diffusion tensor. Cell centred schemes and the mimetic scheme
generally seem a bit more robust than the DG or DDFV schemes. However, in more
severe cases, it seems, as conjectured in [?], that nonlinear schemes likeFVPMMD

or NMFV should be used even for linear problems to ensure the positiveness of the
schemes.

We expect to enrich this benchmark with other existing methods and with some
other challenging problems in view to improve the existing methods or develop some
new algorithms. We also hope that this benchmark will serve as a bridge between
the different scheme developers: it has proven that the behaviour of the schemes is
comparable on the cases which are studied here, and it would be interesting to compare
them on a more mathematical basis. We finally plan to extend this benchmark to some
coupling between such an anisotropic elliptic equation and a transport equation and
why not to 3D anisotropic diffusion problems.
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15. The meshes

We give here the figures of the families of meshes which were used here, except
for the uniform square meshes. The family of meshes mesh2 is a uniform square
mesh, with size ranging from 3.54E-01 (mesh2_2) to 5.52E-03 (mesh2_7). The mesh
mesh9 is a 11×11 uniform square mesh. For more details seehttp://www.latp.
univ-mrs.fr/fvca5/, where the data files are also given.

Figure 13. Triangular mesh with acute angles: meshesmesh1_1 (left) andmesh1_4 (right)
– Mesh size ranging from 2.50E-01 (mesh1_1) to 3.91E-03 (mesh1_7)
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