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PRIORS FOR THE BAYESIAN STAR PARADOX

MIKAEL FALCONNET

ABSTRACT. We show that the Bayesian star paradox, first proved matieatiaby Steel
and Matsen for a specific class of prior distributions, osdara wider context including
less regular, possibly discontinuous, prior distribusion

INTRODUCTION

In phylogenetics, a particular resolved tree can be highppsrted even when the data is
generated by an unresolved star tree. This unfortunatetspéhe Bayesian approach
to phylogeny reconstruction is called th&ar paradox Recent studies highlight that the
paradox can occur in the simplest nontrivial setting, ngnfal an unresolved rooted tree
on three taxa and two states, see Yang and Ranﬂala [7] and Eewi. [IL]. Kolaczkowski
and Thornton|]]2] presented some simulations and suggdsedrtifactual high posteriors
for a particular resolved tree might disappear for very Iseguences. Previous simulations
in [[f] were plagued by numerical problems, which left unknaive nature of the limiting
distribution on posterior probabilities. For an introdoatto the Bayesian approach to
phylogeny reconstruction we refer to chapter 5 of Yzﬂg [5].

The statistical question which supports the star paradevhisther the Bayesian poste-
rior distribution of the resolutions of a star tree becomeiaum when the length of the
sequence tends to infinity, that is, in the case of three tadata@o states, whether the
posterior distribution of each resolution converges f8.11n a recent paper, Steel and
Matsen [13] disprove this, thus ruining Kolaczkowski and fiitton’s hope, for a specific
class of branch length priors which they daline More precisely, Steel and Matsen show
that, for every tame prior and every fixed> 0, the posterior probability of any of the
three possible trees stays above & with non vanishing probability when the length of
the sequence goes to infinity. This result was recognizedemg\@i] and reinforced by
theoretical results on the posterior probabilities by St{@]n

Our main result is that Steel and Matsen’s conclusion hadsfwider class of priors,
possibly highly irregular, which we calémpered Recall that Steel and Matsen consider
smooth priors whose densities satisfy some regularity itiond.

The paper is organized as follows. In Sectﬂ)n 1, we deschibdBayesian framework of
the star paradox. In Sectiﬁh 2, we define the class of tempei@d on the branch lengths
and we state our main result. In Sect[dn 3, we state an erten$ia technical lemma due
to Steel and Matsen, which allows us to extend their resultSectior{4, we prove our
main result. Sectioﬂ 5 is devoted to the proofs of internmediasults. In AppendiEA, we
prove that every tame prior, in Steel and Matsen’s sensepigpéred, in the sense of this
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2 MIKAEL FALCONNET

paper, and we provide examples of tempered, but not tamay, gistributions. Finally,
in Appendix@, we prove the extension of Steel and Matserchrigcal lemma stated in
SectiorB.

1. BAYESIAN FRAMEWORK FOR ROOTED TREES ON THREE TAXA

We consider three taxa, encoded by thetset{1,2, 3}, with two possible states. Phylo-
genies ort are supported by one of the four following trees: the starRgon three taxa
and, for every taxomin 1, the treeR; such that is the outlier. Relying on a commonly
used notation, this reads as

R1: (17(273))7 R2: (27(173))7 R3: (37(172))

The phylogeny based dr, is specified by the common length of its three branches, de-
noted byt. For eachi in 1, the phylogeny based dR is specified by a pair of branch
lengths(te,t; ), wherete denotes the external branch length antle internal branch length,
see figurd]L.

For instance, in the phylogeny basedrnthe divergence of taxa 2 and 3 occurtgdnits
of time ago and the divergence of taxon 1 and a common anagdtora 2 and 3 occurred
tj + te units of time ago.

FIGURE 1. The four rooted trees for three species.

We assume that the sequences evolve according to a twoestatiauous-time Markov
process with equal substitution rates (which we may takegimkl) between the two
character states.

Four site patterns can occur. The first one, denotes g such that a given site coincides
in the three taxa. The three others, denotedsbyith i in T, are such that a given site
coincide in two taxa and is different in the third taxon, whis taxoni. In other words, if
one writes the site patterns in taxa 1, 2 and 3 in this ordexamdly for any two different
characters,

So=XXX SI=YXX S=Xyx and sz=XxXy
Let{s,51,52,S3} denote the set of site patterns in the specific case desaiime@ of three
taxa and two states evolving in a two-state symmetric modskume that the counting
of site patterns is nj. Thenn = ng+ ny + ny + nz is the total length of the sequences
and, in the independent two-state symmetric model coresitierthis paper, the quadruple
(no, N1, N2, N3) is a sufficient statistics of the sequence data. We use tieerld¢d denote any
quadruplgno, ng, Nz, n3) of nonnegative integers such that=np+n; +n;+nz3=n> 1.
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For every site patters and every branch lengtli,t;), let pi(te,t;) denote the probability
thats occurs on tred}; with branch lengthste,t;). Standard computations provided by
Yang and Rannalzﬂ[?] show that

Apo(te,ti) = 1+ e %o 2e 4],

4py(te,t;) = 1+ e 4 — 2g4litle)

4pa(te, i) = 4pa(te, i) = 1 —e ™.
Let¥ = (T, T;) denote a pair of positive random variables representingithiech lengths

(te, 1), @anddt = (No, N1, N2, N3) denote a quadruple of integer random variables represent-
ing the counts of sites patterns= (ng, Ny, N2, N3).

2. THE STAR TREE PARADOX

Assuming that every taxon evolved from a common ancestemitin of phylogeny recon-
struction is to compute the most likely tr& To do so, in the Bayesian approach, one
places prior distributions on the treBsand on their branch lengtls= (Te, T;).

2.1. Main result. LetP(9 =n|R;,¥) denote the probability th&t = n assuming that the
data is generated along the tigeconditionally on the branch lengtfs= (T, T;). One
may consideiR; only since, for everyn = (ng, Ny, N2, N3), the symmetries of the setting
yield the relations

P =n|R,T) =P(9 = (o, n2,n3,n )[Ry, ),

and
P91 =n|R3,T) =P(M = (ng, N3, n1,ny)|Ry, T).
Notation 2.1. For every site pattern;slet R denote the random variable
R =pi(T) =pi(Te,Ti).
For every i inT and eveny, letM;(n) denote the random variable
nj+nyc

Mi(n) =P°PI'R, %, with {i,j,k}=T1.

We recall thaf, = P; and we note that, ifn| = no+ N1+ N2+ n3 = nwith n > 1, then, for
everyiin T,

Mi(n) = Py°P' Py M.
Fix n and assume thét| = no+n; + n;+n3z = nwith n > 1. For evenyi in 1, the posterior
probability of R; conditionally ondt = nis
B n! 1
~ no!m!np!ng! P(91=n)

P(R|9 = n) E(Mi(n)).

Thus, for every andj in T,
PR =n) Ei(n))

P(Rj[M=n) E(Mj(n))’

For everye > 0 and every in 7, let_4{¢ denote the set af such that, for both indicepin
T such thatj #1,

E(Mi(n)) > (2/€)E(M(n)).
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One sees that, for everyn T andn in 4%,
P(Ri|m: n) > 1787

which means that the posterior probability of tigeamong the three possible trees is
highly supported.

Recall that, under hypothed®s and for a tame prior distribution ofi= (Te, T; ), Steel and
Matsen prove that, for eveiyin 7, P(9 € .4{¢) does not go to 0 when the sequence length
n goes to infinity, and consequently that the posterior proihalP (R |91) can be close to

1 even when the sequence lengtis large.

As stated in the introduction, our aim is to prove the samelrésr tempered prior distri-
butions ofT = (Te, Ti), which we now define.

Notation 2.2. (1) For every s [0,1] and z< [0, 3], let
G(zs) =P (e *(1-e ) <sle*e(1+2eT) =2).

(2) For every positive t and every site patternlst g denote the probability that ®ccurs
ontree R, hence

4do=4po(0.) =1+3e™*, 4oy =4op=4gg=1-e*.

(3) Let4; denote a positive real number such that 4qp— ¢; and4qg+ ¢; < 4, for instance
4 =3e*(1—e ). Let | and | denote the intervals

| = [0,3]7 It = [4(.]0— 1—4,4q0— l—l—ft] C]0,3[.
(4) For every positive t and integer n, let
Qn(t) =P(Ti <1/nt<Te<t+1/n).

Definition 2.3 (Tempered priors) The distribution off = (Te, T;) is tempered if the fol-
lowing two conditions hold.

(1) For every t, there exists a real numbeyia ]0,1], an interval | around4qy — 1,
some bounded functiong Bome positive numbeosandk, an integer k= 1 and
some real numbers such that

O=g<&a< - <& 1<2<&,
and such that for every s ii®, s5] and every z in;|
k—1

G(z,s) — _Z)F.(z)s"”“Ei

< KTk,

(2) For every positive t, ntlogQy(t) — 0 when n— oo,

We detail the properties involved in Definiti@B and pdeexamples of tempered priors
in subsectiofi 22 below.

We now state our main result, which is an extension of SteglMatsen’s result to our
more general setting.

Theorem 2.4. Consider sequences of length n generated by a star tfemnR taxa with
strictly positive edge length t. L&t be the resulting data, summarized by site pattern
counts. Consider any prior on the three resolved tréRs Ry, Rs) which assigns strictly
positive probability to each tree, and a tempered priordittion on their branch lengths
T= (Te,Ti)-
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Then, for every i inr and every positive, there exists a positivé such that, when n is
large enough,

PP(RI) >1-¢) = 0.
We prove Theorerp 3.4 in Sectifh 4.

2.2. Motivation and intuitive understanding of Definition In Definition 2.3, con-
dition [3 is easy to describe, to illustrate and to check, evtiile content of conditiofj 1
might be more difficult to grasp. Conditi¢h 1 involves a Tayéapansion arounsi= 0 of
the conditional cumulative distribution functien— G(z,s), where the Taylor coefficients
depend orz. Such a Taylor expansion roughly describes the prior 8istion whert; — 0
and wherte is roughly constant. The precise definition®fz,-) and the technical result
stated in PropositioE.Z are both dictated by our approathe proof of Theorer@A.
A key hypothesis is thaty = 0 while & > 2, which means that we are given a limited
expansion o6 G(z ) up to a better order thast whens — 0.

At this point, the reader can wonder how to check if a giveompis tempered or not and

if the verification is simply possible in concrete casesegithe convoluted aspect of this
definition. Hence we now present some explicit examplesmpgred priors. We begin

with the following result.

Proposition 2.5. Assume that = (Te, Ti) has a smooth joint probability density, bounded
and everywhere non zero. Then the distributiof ef (T, T;) is tempered.

As a consequence, every tame prior fulfills the hypothesFéropositio, hence every
tame prior is tempered, as claimed in the introduction. Thise includes the exponential
priors discussed if{[7]. We prove Propositjor] 2.5 in Appef#]i

However some tempered priors are not tame, as illustratéuddpllowing example where
Steel and Matsen’s condition fails.

Definition 2.6. Let a> 0 and b> 0. Let(t,), (yn) and(rn) denote sequences of positive
numbers, indexed byx 1 and defined by the formulas
th=n"? y,=1+2e r,=vy, (n’b —(n+ 1)’b) .

Finally, let

r= Mn.

Proposition 2.7. In the setting of Definitio@.G, assume the following:
(i) 3a< min{1,b}.
(i) The random variable;Ts discrete and such that, for everyenl,
]P)(-n = tn) == rn/r.

(i) The random variable ¢lis continuous, independent of, Tvith exponential law
of parameted, that is, with densitgte * on t > 0 with respect to the Lebesgue
measure.

Then, the distribution of = (Te, Ti) is not tame but it is tempered, for the parameters

k=3, a=b/a, =1 =2 &=3
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Since the distribution of; is an accumulation of Dirac masses, the prior distributibn o
% = (Te, Ti) cannot be tame.

Yet, the fact that the prior distribution is tempered doesamne only from the fact that
the distribution ofT; is discrete. For a degenerate exampld; = 0 almost surely, then
G(z,s) = 1 for everys > 0, andG(z,-) has no Taylor expansion around zero whose first
term is a positive power of. Note that in this particular case, the Bayesian star parado
does not occur.

However, under the conditions of Proposit A3(z,-) has a Taylor expansion at 0 ful-
filling condition[] of Definition[2.8. We prove this in Appendh

We provide below some examples of less ill-behaved digiohs which are tempered but
not tame, and an example of a distribution which does notlfatfindition[}, hence is not
tempered.

Proposition 2.8. Assume thatglis a continuous random variable, with exponential law
of paramete#, that is, with densityte=* on t > 0 with respect to the Lebesgue measure,
and that Tis a random variable independent qf Then, the following holds.

(i) If the distribution of Tis uniform onl0, 8], with 6 > 0, the distribution of =

(Te, Ti) is tempered but not tame.

(i) If the distribution of T has densit;@ti"’1 on the intervall0, 1], for a given® in
(0,1), the distribution off = (Te, T;) is tempered but not tame.

(iii) If the distribution of Thas densityog(1/t;) on the interval0, 1], the distribution
of ¥ = (Te, Ty) is not tempered.

(iv) If the distribution of Thas densitytt;jlog(1/t;) on the interval0, 1], the distribu-
tion of ¥ = (T, Tj) is not tempered.

Note that in cas€iv), the density function off = (Te,T;) is bounded, non smooth but
continuous, but the distribution is not tempered.

We prove Propositiof 3.8 in Appendi} A.

3. EXTENSION OF STEEL AND MATSEN'S LEMMA

The Bayesian star paradox due to Steel and Matsen reliesemhaital result which we
slightly rephrase as follows. For every nonnegative teald every0, 1] valued random
variableV, introduce
~ M _ EVY{(1-V))

Mt E(VYH)
Proposition 3.1 (Steel and Matsen's lemma)et0< n < 1 and B> 0. There exists a
finite K, which depends on and B only, such that the following holds. For evégdyl]
valued random variable V with a smooth probability densitydtion f such that f1) >0
and|f’(v)| < Bf(1) for everyn < v< 1, and for every integer k K,

2kR, > 1.

M =E(VY), R=1

Indeed the asymptotics & whenk is large depends on the behaviour of the distribution
of V around 1.

Our next proposition proves that the conclusion of Steeldatsen’s lemma above holds
for a wider class of random variables.
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Proposition 3.2. Let V a random variable of0,1]. Suppose that there exists an integer
n>1and real number® < vg <1, a >0, & andy;, such that

O=g<a< <& 1<1l<eg,
and, foreveryy<v<1,

n-1

PV >v)— ijl(lfv)"’+£i < yh(1—v)oten,
i=

Then there exists a finit(y), which depends continuously gn= (,..., ), such that
for every t> 6(y),

2R > a.

Remark 1. We insist on the fact thaA(y) depends continuously on the multiparameter
Y= (Yo,-..,¥h). To wit, in the proof of Propositio@ﬁ, we apply Proposilt@ with
bounded functions of z. This means that for every z,iore gets a numbef which
depends on z through the bounded functions such that theotontthe distribution of V
holds. The continuity of ensures that there exists a number independent of z such that
Proposition[5.5 holds.

Remark 2. If one computes a Taylor expansion of the functien #(V > v) atv=1" un-
der the conditions of Steel and Matsen’s lemma, one seesdhitions of Propositiof 32
hold. Hence Propositioh 3.2 is an extension of Steel and dfégdemma.

We prove Propositiofi 3.2 in Appendik B. The proof of Theofed2lies on it.

4. SYNOPSIS OF THE PROOF O HEOREMP.4

This section is devoted to a sketch of the proof of Theofeln 2vé use the definitions
below. Note that the sék(") defined below is not the set introduced by Steel and Matsen.
For a technical reason in the proof of Proposi2 statddw, we had to modify their
definition. Note however that Propositio4.2 and 4.3 bedosvadaptations of ideas in
Steel and Matsen’s paper.

Notation 4.1. Define functiond; as follows. For every nonnegative integers (ng, n1, Nz, n3)
such thain| = ng+ny +ny+nz =nwithn> 1,

No — gon
ofr) = "%,
and, for every iint,
n—1/3(n—n
NEELEELE

For every c> 1, introduce
Y= {n;In]=n, —2c < Ny(n) < —¢, —2c < Az(n) < —¢, —c < Hp(n) < 0}.
For everyiint and every positive, let A',] denote the event

Ay ={viet, j#i, EMi(N)|N) > nE(M;(N)|N)} .
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Sincel; + Ay + Az = 0, everyn in F{" is such that 2 < Ay (n) < 4c. We note thaf(" is
not symmetric about and gives a preference to 1. That is why we only deal \A\i};hn

)

the following proof. To deal with\., one would change the definititﬁa‘n accordingly.

From the reasoning in Secti@ 2, it suffices to prove that ¥ergpositiven, there exists
a positived such that, whenis large enough,

1
P(A;) > 0.
Suppose that one generate® 1 sites on the star trd&, with given branch length and

let 91 = (Np, N1, N2, N3) denote the counts of site patterns defined in Seﬂion 1, hdnee
N1 +No+Nz=n.

From central limit estimates, the probability of the ev%m € Fc(”)} is uniformly bounded
from below, say by > 0, whennis large enough. Hence,

P (A%) > oF (A3 eR")
We wish to prove that there exists a positivendependent of such that fon large enough
and for everyn in F" and forj=2andj =3,
E(M1(n)) = caE(Mj(n)).
This follows from the two results below, adapted from Stewl Matsen’s paper.

Proposition 4.2. Fix t and assume that is in ch). Then, when n is large enough, for
j=2and j=3,

E(Mj(n)|4Ry—1€cl) > EMj(n)|4Ro—1¢ It).

Proposition 4.3. Fix t and assume that is in Fc(”). Then, there exists a positivg inde-
pendent of ¢, such that for every z jndnd for j=2and j= 3,
E(My(n) 4Py —1=2) > GaE(Nj(n)| 4P —1=2).
We prove Propositiors 4.2 ahd}4.3 in Secfipn 5.
From these two results, fgr= 2 andj = 3,
E(My(n)) > c?aP(4Py— 1 € I) E(Mj(n)).
Assume that is so large thacza]P’(4Po— 1€ i) = n. Then, for everyn in Fc(”) and for
j=2andj =3,
E(M1(n) > nE(Mj(n)).

This implies thafP (A% RUE Fé”)) = 1, which yields the theorem.

5. PROOFS OFPROPOSITIONS4.2 AND [4.3

5.1. Proof of Proposition [4.2. The proof is decomposed into two intermediate results,
stated as lemmata below and using estimates on auxiliadorarvariables introduced
below.
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Notation 5.1. For every n>1and t> 0, letl'y(n) = [0,1/n] x [t,t+1/n].
For every t> 0, let i = g g2 g% = g™ and U denote the random variable
3

U =[] (R/a)

For everyn and for j=2and j= 3, let W (n) denote the random variable
Wj(n) = Pgo(“) pl(Aj —Bo/3)(n) F>2(A1JrAk*2A0/3)(“)7 with {j,k} = {2,3}.
One sees that
Up = POPEPIH /i, Qult) = P(S € Tu(n)),
and, forj =2 andj =3,
Wj = (Po/Py)"0(Py/Pp) 2073,
Lemma 5.2. (1) For everyn in Fc(”) andfor j=2and j=3,Wj(n) < 1.
(2) Foreverynin F" and for j=2and j=3,W(n) > (q1)° on the even{T € It (n)}.

(3) There exists a finite constantsuch that ' > e * uniformly on the integer &= 1 and
onthe even{T € I't(n)}.

Proof of Lemm&5]2(1) For everyT, Py > P > P.. OnF{", Ay < 0 and forj = 2 and
j=3,4j —Ao/3<0hence

(Ro/P)™ <1, (Ro/Pp)t 23 < 1.
This proves the claim.
(2) One has < 1 everywhere ané, > g; andP, > g; on the even{¥ € I't(n)}. On
F", Ay < 0 and forj =2 andj = 3, Aj — Ap/3 < 0 hencew, > q;Aj72A°/3. Finally, on
B Aj +20/3 < —c. This proves the claim.

(3) For everyX in I't(n), one hasl; > 0 andTe > t, henceP, > g1 andP > g = q.
Likewise,Ti < 1/nandTe < t+1/nhence

Po > po(1/n,t+1/n) > go—5e *(1—e /") /4,
This yields that, for everm > 1 and even® in I't(n),

U > (1-5e*/(qon))" — exp(—5e * /do) > 0,
which implies the desired lower bound. O
Lemma 5.3. For everyn in Fc(n> and for j=2and j= 3,

E(Mj(n) 4P — 1€ It) > 'Qn(t) exp(—O(v/n)),
and

E(Mj(n) | 4R — 1 ¢ k) < pexp(—n(f/32).
Proof of Lemm3SincePo = po(%), for everyXT in ['¢(n), whennis large, £ — 1 is in
the intervall;. Consequently,
E(Mjn)[4PL—1€ ) > Qn(t)E(Mj(n)|T eT¢(n)).
Onthe even{T €T¢(n)},
Mj(n) = K'UW, ()Y > e ™ (gy) V™,
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from parts (2) and (3) of Lemn@.z, which proves the first pathe lemma.

Turning to the second part, lekd denote the Kullback-Leibler distance between discrete
probability measures. WherPg— 1 is not inly,

dk(0,P) > (1/2)]la—Plf> (1/2)(do— Po)* > /32
Note that
Mj(n) = W (n) V" exp(—ndk. (. P)),
hence the estimate oxd(q,P), and part (1) of Lemm@.Z, imply the second part of the
lemma. O

Turning finally to the proof of Propositioh 4.2, we note ti@i(t) = e°™ because the
distribution of¥ is tempered. Furthermore, Lem@ 5.3 shows that, wiigtarge enough,

E(Nj(n)[4Ro—1€ ) > E(Mj(n) |[4R—1¢ It),
and this concludes the proof of Propositfor] 4.2.

5.2. Proof of Proposition[4.3. Our proof of Propositiofi 4]3 is based on Lemmg 5.5 and
Propositior] 5J6 below.

Notation 5.4. For every u in[0,1], let (u) = (1+2u)(1—u)? LetU and V denote the
random variables defined as

U=FP—PR)/(1-R), V=)
Lemma 5.5. For everyn in FC(”) and for j=2and j=3,

E(Mi(0)[R) _ , » E(VS(1L-V)|Ry)
EMm[R) ~ " EVSIR)

where s= (n—ng)/3.

Proof of Lemmé 5|5Recall that, for everg > 1, F"Vis
FV = {n: |n| =n, —2c < Ap(n) < ¢, —2¢ < Ag(n) < ¢, —¢ < Ao(n) < O}
Using theA variables, one can rewrifés, N, andll3 as
Mi(n) = PR(PPE)S(P/P)™V 1 =12 3 s= (n—ng)/3.

Assume that is in F{". Then,A1(n) > 2¢, Aj(n) < Ofor j=2andj =3, andP, > P».
Hence
Mi(n) > PP(PPDS (P /P)*", Mj(n) < PP(PIP)S.
Furthermore,
PIPZ = (1/27)V(1—Rp)3, P /P=(1+2U)/(1-U),

hence forj =2 andj = 3,

B[Ry _ B (V3(A+20)/@-U)7"|R)

E(Mj(n)|R) = E(VS|R) '

Direct computations (or Lemma 3.2 in Steel and Matﬂan [3nsthat, for everyin [0,1)
and everym > 3,

(142u)/(1—u)™ > nP(1—Z(u),
hence
(142U)/(1—U)*" > 4cn(1-V).
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The conclusion of Lemmfa §.5 follows. O

Proposition 5.6. Assume that the distribution @fis tempered. Then there exigtanda,
both positive and independent of ¢, such that for everyds on the evenfdRy — 1 € |1},

4SE(VS(1—V)|Py) = aE(VS|Ry).

Proof of Propositior] 5]6 We recall that) andV denote random variables defined as
U=(P-P)/(1-P), V=), Z(u)=(1+2u)(1-u)

To use PropositioE.Z, one must compute a Taylor expansioa 4~ or, equivalently, at
u= 0", of the conditional probability

PV 2 V|R) =P <u|Ry),
whereu = Z*l(v). Besides, fow close to 1,
=77 Y(v) =w/V3+WP/9+5w3/54/3+ 0w, withw=+1—v.
SinceU = (Pl -P)/(1—Py),
PU<u|4Py—1=2)=P(S(3—-9) < 25|SS =2),
where we used the notations
S=ee, g=1+2e 2s=u(3-2).
Using Definition[2.3, one has
G(zs) =P(S(3-5) < 2s[&S =2).

Since the distribution of is tempered, there exists some bounded functipagfined on
l;, a positive numbea, n+ 1 real numbers

O=g<a<--<&_1<2< &,
and two positive numbers andsy such that for every & s< 59 and everyzin Iy,

g KSH‘FSH.

G(z,s) — l:jl:l(z)s”’”'

Combining this with the relations2= u(3 — z) and the expansion af= { ~(v) along the
powers ofw, one sees that there exists some bounded funcfjamsl;, a positive number
k" and 0< v < 1 such that for everyg < v< 1 and everyg < I,

< Kl(lf V)C(/2+£n/2'

n-1
PV >V|4R-1=2)- 3 | (2)(1—v)@/2+6/2

Since the functiond; are bounded and positive dn Propositi02 implies that there
exists a positive numbet such that for everyg in I; and everys > 6, the conclusion of
Propositior 5J6 holds. O

Assuming this, the proof of Propositi@.S is as followst $& anda be asin Lemm@S

and Propositiofy 5.6. Sinae—ng = (1 — go)n—Agy/n > (1— go)n for everyn in F", one

knows thats= (n—np)/3 > 8 whenn is large enough. Furthermoreg n/3. Finally, for

everyn in ch) with nlarge enough, on the evefdPy — 1 € |1} and forj = 2 andj =
E(M1(n)|Po) > 3c?a E(M;(n) | Ry).

This concludes the proof of Proposit|4.3.
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APPENDIXA. PROOF OFPROPOSITIONS.5,[2.7,AND 2.8

Notation A.1. Introduce the random variables
(5:S)=¢6(Te,Ti),  whereg(te,ti) = (67, 1+2e™%),
that is,
S=e  g=1+2e"
Hence G(z,-) is defined by
G(z,95) =P(3% <25+ 2|SS =2),
A.1. Proof of Proposition .5. The distribution of S, §) has a smooth joint probability
density, sayw, defined onthe set@ x<1<y<3by
_ wogt(xy)
For tame priors, the probabilit9,(t) introduced in conditi0|E|2 of Definitio@.S is of order
1/n?, hence this condition holds.
The definition ofG(z s) as a conditional expectation can be rewritten as
G(z,9 =P (3% <25+ SS|SS = 2.
Hence, for every measurable bounded functign
E(H(SS);3% <25+ &S) =E(H(SS)G(&S:,9)) ,
that is,
/ / H (xy)1{3x < 2s+ Xy} w(X, y)dxdy = / / H (xy)G(xy, s) (X, y)dxdy.
The change of variable= xyyields
//H(z)l{Sx < 25+ z}w(X,z/X) dzdx /X = //H(Z)G(Z, S)w (X, z/X) dzdx/x.
This must hold for every measurable bounded functiginence one can choose
G(z,s) =H(z)/H(z ),
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with
H(zs) = /1{3x< 2s+ z}w (X, z/X) dx/X.
Since 0< S < 1< S < 3 almost surely, the integral definirtg)(z,s) may be further re-
stricted to the range € x < 1 andz/3 < x < z Finally, for everys > 0 andz € [0, 3],
G(zs) =H(zs)/H(z1),

where

m(s,2)

H(zs) = / w(x,z/X)dx/x, with m(s z) = min{1,z (2s+2)/3}.

m(0,2)
Hence,m(0,z) = z/3 and, for small positive values sf m(s,z) = m(0,z) + 2s/3. When
0<z< 1, m(s,z) — m(o,z) = zwhens — o and this limit is reached fos = z. When
1<z2<3,m(s,z) - m(w,z) = 1 whens — o and this limit is reached fas= (3—2)/2.
In both casesn(e,z) = m(1,z) henceH (z ) = H(z1).

Becausaw and¢ ! are smooth, the Taylor-Lagrange formula shows that, foryese: 0
and every fixed,

S
H(z,s) =H(z0) +H'(z,0)s+H"(z, oé +HO(z 0)§ +/ (x—5)°HW(z, s)%,
0
where all the derivatives are partial derivatives with exfo the second argumesnt

Simple computations yielti (z,0) = 0 and the values of the three derivativé§z,0),
H”(z,0) andH®(z 0) as combinations ofv and of partial derivatives ab, evaluated at
the point(9,0), where 3¢*® =z

Furthermore, the hypothesis anensures that () (z,-) is bounded, in the following sense:
there exist positive numbess andkg such that for evergin [0,5] and everyzin I,

H® (z,5) < 24Ko.
Hence X = (Te, T;) fulfills the first condition to be tempered, with
k=3, o=1 &=1 &=2 &=3, K=Ky,

and, for every X i < 2, .
Fi(2) =H"Y(z,0)/H(z,).
Finally, sincew is smooth, the functiong are bounded oh.

A.2. Proof of Proposition 2.7. Recall that, using the random variabs= e 4" and
S = 1+ 2e T, the functionG is characterized by the fact that, for every measurable
bounded functiom,

E(H(SS)  S(3-9) <29 =E(H(&S)G(&S,9)).-
Here,S: andS are independent, the distribution&fis uniform on[0, 1] and the distribu-
tion of § is discrete with

P(S =yn) =rn/r.

Thus,

1 1
Zrn./O H (Xyn) 1{x(3—yn) < 2s}dx = ;rn/o H (Xyn) G(XYh, S) dX.

The changes of variable= y,x in each integral yield

3 ;—: | / H@)L{z< (32 (25+ 2} dz= 5 % / H(2)1{z< yn} G(z.§) dz.
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This must hold for every measurable bounded functigmence
G(zs) =H(z9)/H(z®), H(zs) =} (rn/yn) {z< yn}1{32< (25+2)yn}-

n
Sincern/yn=n"?—(n+1)"°forn>1,H(zs) =n(zs) ° where
n(z,s) =inf{n>1|z< yn, 32< (254 2)yn}.
Sinceyn, — 3 whenn — «, n(z s) is finite for everyz < 3 ands > 0.

For everyz > 0, whens is large enough, namely> (3—2)/2, the condition that 8<
(2s+ z)yn becomes useless and

n(z,s) =inf{n>1|z< yn},

hencen(z s) andH(zs) are independent & If z> 1, this implies thah(z,s) andH (z,s)
are independent &f> 1. If z< 1 ands > 1, the conditions that < y, and Z < (25+ 2)yn
both hold for everyn > 1 hencen(z,s) = 1 andH(zs) = 1. In both casesiH (z,«) =
H(z1).

We are interested in small positive valuessofFor everyz < 3, whens is small enough,
namelys < (3—2)/2, the conditiore < y, becomes useless and

n(zs) =inf{n> 1|3z < (2s+ 2)yn},
When furthermore < z n > n(z,s) is equivalent to the condition
3
1+2u
Finally, for everys < min{z (3—2)/2}, n(z,s) is the unique integer such that

n(zs)— 1< h(s/2" Y2 < n(z,9).

1
n~2< h(s/z), with h(u):fZIn (1 ), O<u<l

This reads as
h(u)®3[1+h(wY3 P < H(z1)G(zs) <hw)? u=s/z
One sees that the functidris analytic and thalt(u) = (3u/4) + o(u) whenu — 0, hence,
h(u)®2 = (3u/4)®3(1+ agu + axu? + agu® + o(u?)),
whenu — 0, for given coefficientsy, a, andag. Likewise, since 1a> 3, h(u)¥/2 = o(u®)
whenu — 0. This implies that
(14hW¥2) = 1+ 00,
hence
H(z,1)G(z,5) = (3u/4)®3(1+ agu+ apu® + agu® + o(u)).
This yields the first part of Definitio@.& with
k=3, a=b/a, (&,&,&)=(1273),
and
Fo(2) = (3/42)”3/H(z1), Fi(2) =a1Fo(2)/z Fi(2) = aFo(2)/ 2.

The remaining step is to get rid of the dependencies awarour upper bounds. For
instance, the reasoning above provides as an error termtgplawif

ua+3/H (Z, 1) _ Sa+3/(za+3H (Z, 1))7

instead of a constant multiple sf 3. But infl; > 0, hence the Az%*2 contribution is
uniformly bounded.
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Asregard$ (z 1), we first note that (z, 1) = 1if z< 1. If z> 1, elementary computations
show thatH (z 1) > cif and only if n(z,1) < ¢~ /P if and only if exq —c¥/®) > (z—1)/2,
which is implied by the fact that 4 ¢® > (z— 1)/2, which is equivalent to the upper
boundc¥® < (3—2)/2. Since suh < 3, this can be achieved uniformly ovein I; and
1/H(z 1) is uniformly bounded as well.

Finally, we asked for an expansion valid 81 s, for a fixedsy, and we proved an expan-
sion valid overs/z < up, for a fixedup. But one can choos® = upinfl;. This concludes
the proof that the conditions in the first part of Definitfod 2old.

We now prove that the second part of Definit@ 2.3 holds. &handT, are independent,
for every positive integen,

Q) =P(Ti<L/NP{t<Te<t+1/n).

One has
NP(t<Te<t+1/n)—4e™® when n— 4o,
and 1 3
- <P(TiL < —.

SinceQy(t) is bounded from below by a multiple of/ @'*+?/2, the second point of Defini-
tion 2.3 holds.

A.3. Proof of Proposition @ Recall once again that, using the random variaBles
e 4Te and§ = 1+ 2e 4T, the functionG is characterized by the fact that, for every mea-
surable bounded functids,

E(H(SS): S(3-9) <29 =E(H(SS)G(&S.9)).-
Case(i). Here,S andS are independent, the distribution &fis uniform on[0, 1] andS
is a continuous random variable with density
1
46(s — 1)
with respect to the Lebesgue measure. doedenote the joint probability density defined
as

1{1+2e % <5<3}

1

@(xy) =1H{0<x<1}1{1+26 ¥ <y< 3}m.

Thus,
/ / H (xy)1{3x < 2s+ xy}w(x,y)dxdy = / / H (xy)G(xy, s) (X, y)dxdy.

The change of variable= xy yields |

//H(z)l{Sx < 25+ z}w(X,z/X) dzdx /X = //H(Z)G(Z, S)w (X, z/X) dzdx/x.
This must hold for every measurable bounded functioone can choose

G(zs) =H(z9)/H(z ),

with

H(zs) = / 1{3x < 25+ 2} 1{0 < x < 1}1{1+ 2740 < z/x < 3}dx/(z— X).
Finally, for everys > 0 andzin [0, 3],

G(z,9) =H(z,9)/H(z, 1+ e %),
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where

ms2  dx . : ~40

H(zs) :/ —, withm(s,z) = min{1,z/(1+2e ™), (2s+2)/3}.

m0,z) Z—X
Hence,m(0,z) = z/3 and, for small positive values sf m(s,z) = m(0,z) + 2s/3. When
0<z< 1+2e, m(s,2) » m(w,2) =z/(1+ 2e %) whens — o and this limit is reached
fors= %gz When 1+ 26749 <2< 3, m(s,z) — m(0,z) = 1 whens — « and this
limit is reached fos = (3—2)/2. In both casesn(e,z) = m(1+e % z) henceH (z, ») =
H(z,1+e9).
1+e49 ,
142487

-

For every fixed 1 2e 4 < z< 3 and every 6 s < 37

H(zs) =log (zis) .

Hence, there exists a positiggsuch that for everyin Iy and everysin [0, 5],

H(zs) = log (z%s> =log (1 ;) .

Such a function has a Taylor expansion arogrd0 with uniformly bounded coefficient
overzin l. HenceX = (Te, T;) fulfills the first condition to be tempered.

Foreveryfixed < z< 1+ 2e %9 and every < s<

We now prove that the second part of Definit@ 2.3 holds. &handT, are independent,
for every positive integen,

Q) =P(Ti<L/NP{t<Te<t+1/n).
One has
NP(t<Te<t+1/n)—4e™® when n— 4o,
and
P(T,<1/n)= 9_1n’ when nis large enough
SinceQn(t) is bounded from below by a multiple of &2, the second point of definitidn 2.3
holds.

Case(ii). Here,S; andS are independent, the distribution&fis uniform on[0, 1] andS
is a continuous random variable with density

0 1. (s—1\1%" 4

with respect to the Lebesgue measure. One can choose
G(zs) =H(z3)/H(z ),

'msz) [—1 z—x\1%71 dx
H(Z’S)_-/mm,z) {ng( 2x )] z—X’

m(s,2) = min{1,z/(1+2e%),(2s+2)/3}.

where

with
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Hence,m(0,z) = z/3 and, for small positive values sf m(s,z) = m(0,z) + 2s/3. When
0<z< 1+2e4 m(s,2) — m(w,2) = z/(1+ 2e4) whens — « and this limit is reached
for s= 11:26;42. When 1+ 2e 4 <2< 3, m(s,2) — m(w,2) = 1 whens — « and this
limit is reached fois = (3—2)/2. In both casesn(e,z) = m(1+e4,2) henceH (z,») =
H(z1l+e™).

Hence, there exists a positiggsuch that for everyin Iy and everysin [0, 5],

H(zs) :./(;s (le) [Tllog (1—%)}(91&

Such a function has a Taylor expansion arosrd0 with uniformly bounded coefficient
overzin ly. For instance, whefi = 1/2,

4 5 9v/3
7=V e ager O

whereO(s'/?) is uniformly bounded ovezin I;. HenceX = (Te, T;) fulfills the first con-
dition to be tempered.

H(zs) =

We now prove that the second part of Definit@ 2.3 holds. &handT, are independent,
for every positive integen,

Q) =P(Ti<1/NP{t<Te<t+1/n).
One has
NP(t<Te<t+1/n)—4e™® when n— 4o,
and 1
P(T<1/m) =5, when nislarge enough
SinceQn(t) is bounded from below by a multiple of/&'*®, the second point of defini-
tion 2.3 holds.

Case(iii). Here,S and§ are independent, the distribution &f is uniform on|0, 1] and
S is a continuous random variable with density

1 1 s—1 4
JE— - — <s
4(S_l)log{ 4Iog< 5 >]1{1+2e <s <3}
with respect to the Lebesgue measure.

One can choose
G(zs) =H(zs)/H(z ),

'm(s,2) -1 z—x\] dx
H(zs) = ./m(o,z) log [Tlog (—Zx )} —r

m(s,2) = min{1,z/(1+2e%),(2s+2)/3}.

where

with

Hence, there exists a positiggsuch that for evergin I; and evensin [0, ],

H(z,s) = —./Ois(zflx)log [_Tllog (1— %312)} ax.

The Taylor expansion around zeroléz, s) reads as
zH(zs) = (1—log(3/(42))) s—slog(s) + o(slog(s)),
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hence? = (Te, T;) does not fulfill the first condition to be tempered.

Case(iv). Here,S andS are independent, the distribution & is uniform on|0, 1] and
S is a continuous random variable with density

16(3—1 1 Iog( > ) log [——Iog( 1)} 1{1+2e*<s<3}

with respect to the Lebesgue measure.

One can choose
G(z,s) =H(zs)/H(z,%),

o () (5
m(s,z) = min{1,z/(1+2e %),(2s+2)/3}.

Hence, there exists a positiggsuch that for evergin I; and evensin [0, ],

H(zs) = —/()SFl)Qlog (1 23+z) log [—Iog (1— 2312)] dx

The Taylor expansion around zeroléfz,s) reads as
2Z2H(z,5) = (3/2—3log(3) + 3log(2) + 6log(2)) &* — 3 log(s) + o(s? log(s)),

henceX = (Te, Ti) does not fulfill the first condition to be tempered.

where

with

APPENDIXB. PROOF OFPROPOSITIONB.Z

Notation B.1. Recall that™ denotes the Gamma function defined for every positive number
X by

00
r(x)= / e tdt.
Jo

For every real number t, l€ft] denote the integer part of t, that is, the largest integer not
greater thant, and left} denote the fractional part of t, hencet{t} +[t], [t] is an integer
and{t} belongs to the intervdD, 1).

For fixed values of the coefficients y andg;, introduce, for every > 0,

1 n-1
ti:/o tV 1R (v)dv, whereF. (v Z}y (1— V)98 £y (1—v) o Ten,

Hence,
1 1
My — / WPV > V) dv = Mt + / PV > V) — Fe (V)] d,
0 0

and

n—1
M =tB(t,a +1) (Z yiA(&,t)P(&,t) £ ynA(sn,t)P(sn,t)> ,

i=

where

_ T({t}+a+1) s £
A(S’t)_r({t}+a+s+1)’ P(‘E’t)_ﬂl (1_a+e+{t}+£)’
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andB denotes the beta function

rX)ry)
r(x+y)’

B(x,y) =
From the control of the distribution &f,
n
Mi = b < M <M1y wherey = 5 [y
i=

Combining this with the general expressiorM given above, one gets

Mua _ (t+ DB+ a+ DX (t+1) +v'™
M Bt.a+x-(0-ny

where
n—1
Xe(t) = Z) YA(&,1)P(&, ) = oA(&n, )P (&, t).

Using the fact that
(t+1)B(t+1,a+1) t+1

tB(t,a +1) Ct+a+?1

and that
t+o)t+a—1)...(t+{a})
Moa+1) ’

tB(t,a +1)Qq(t) > 1, whereQq(t) = (

one sees that
Mt t+1 yot+Xi(t+1)+Qa(t+1)vp™
M t+a+1 o+ x_(t)— yQa(t)\

Furthermore,

Yo+ X+ (t+1)+ Qa(t + Dvp™ 1 X+ (t+1) = x—(t) +K(t)vg
Yo+ X—(t) — Qa (t)Vg Yo+ X-(0) = yQa(t)Vy
wherek (t) = vpQq (t + 1) + yQqu (t) is a polynomial function ir.

From Lemm2 below, there exists a positive nuntberich depend on the exponents
a andg;, 0<i < n, only, such that

X+t +1) —x_(O) <[2p+e&ylCt P, x_(t)>-Cp .
where
B=min{&, 1+&}, 1<B<2

Combining these estimates gn (t + 1) andx_(t), one sees that there exists finite contin-
uous functiong; andA of the exponentg, a, andg;, such that, for evert/> 6,

R > a/t—A/tP.

SinceB > 1, there existsh, such that At < atP for everyt > 6,. Choosing finally
6 = max 61, 6>) yields Propositiof 3] 2.

Lemma B.2. Let 3 = min{&,,1+ & }. There exists a positive number C, which depends
on the exponents ande; only, such that

X+(t+1) = x_(t) < [2m+&ylCt P, x_(t) > —Cpt—=n
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Proof of Lemm2For every real numbér> 1 and every K i <n,
efs(fht)*T(Ei Ry} < P(giat) < e*S(Ei by}

)

where
t+1 € [t+1 g2

SeV=2 arermie M TV 2 Grermaor

Thus, there exists two positive real numb€s andC;" such that for every real number
t>1,C <tfP(g,t) <CG', and one can choos = (o + & + 3)8.

LetC=maxC"; 1<i < n}. Using the two relations

&
P(&,t) —P(&,t+1) = P(g,t) —————
(glvt) (£|5t+ ) (gl,t)a+€i+t+27
and
&n
P(en,t) +P(en,t+1)=P(gpt) [2— ————
(o0 +Plent+ 1) = Plent) (2- o )
one sees that
n
&
t+1)— x_(t) = 2WWA(&n, 1) P(&n,t) — A&, OP(g,t) ———.
X+(t+1)—x-(t) Vn(n)(n)i;%(l)(l)a+£i+t+2

For every 1< i < n, the functionA\(g, -) is positive and bounded by 1. Hence,

n
&
vy )< )
X+(t+1)—x (t)\2Vnp(8nat)+i;|M|P(£I7t)a+£i+t+2
<C (Zynt’Sn + yent’(l“l)) ,

and the first inequality in the statement of the lemma holdse 3ame kind of estimates
yields

n—-1
X- (t) = — Z) |M|A(€i7t)P(€i;t) - Vn/\(enat)P(gnat)v
i=
hence the second inequality holds. This concludes the pfdegmma[B.p. O
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