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PRIORS FOR THE BAYESIAN STAR PARADOX

MIKAEL FALCONNET

ABSTRACT. We show that the Bayesian star paradox, first proved matiieatiaby Steel
and Matsen for a specific class of prior distribution, ocdénra wider context.

INTRODUCTION

In phylogenetics, a particular resolved tree can be highppsrted even when the data is
generated by an unresolved star tree. This unfortunatetspthe Bayesian approach to
phylogeny reconstruction is called thar paradox Recent studies highlight that the para-
dox can occur in the simplest setting, namely, for an unwesbfooted tree on three taxa
and two states, see Yang and Rannﬂla [7] and Lewis eﬂal. [Example. Kolaczkowski
and Thornton presented iﬂ [2] some simulations and sugdjéisét artifactual high pos-
teriors for a particular resolved tree might disappear feryMong sequences. Previous
simulations in Yang and Rannala’s paper were plagued by rioai@roblems, which left
unknown the nature of the limiting distribution on postepoobabilities. For an introduc-
tion to the Bayesian approach to phylogeny reconstruceerchapter 5 of Yangﬂ[S].

The statistical question which supports the star paradesiether the Bayesian posterior
distribution of the resolutions of a star tree becomes umifavhen the length of the se-
guence tends to infinity, that is, in the case of three taxatkdr the posterior distribution
of each resolution converges tg3 In a recent paper, Steel and Matsﬂn [3] disprove this,
thus ruining Kolaczkowski and Thornton’s hope, for a spedaifass of branch length priors
which they caltame More precisely, Steel and Matsen show that, for every tamoe and
every fixede > 0, the posterior probability of any of the three possiblesrstays above
1— ¢ with non vanishing probability when the length of the seqeegoes to infinity. This
result had been taken account by Yang[ln [6] and reinforcethegretical results on the
posterior probabilities by Susko iﬂ [4].

Our main result is that Steel and Matsen’s conclusion haddsafwider class of priors,
possibly not continuous, which we cadimpered Recall that Steel and Matsen consider
smooth priors, whose densities satisfy some regularitgitioms.

The paper is organized as follows. In sect[t])n 1, we deschibéBayesian framework of
the star paradox. In sectic[h 2, we define the class of tempgerers for branch lengths
and we state our main result. In sect@n 3, we prove that ebaeng prior, in Steel and
Matsen’s sense, is tempered, in the sense of this papercﬁurs@, we provide examples
of tempered, but not tame, prior distributions. Sectiﬂnsm‘ﬁ@ are devoted to the proofs
of intermediate results. Finally, in sectiﬂn 7, we state praye an extension of a technical
lemma due to Steel and Matsen, which allows us to extend ribsit.
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2000Mathematics Subject ClassificatioRrimary: 60J28; 92D15. Secondary: 62C10.
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2 MIKAEL FALCONNET
1. BAYESIAN FRAMEWORK FOR ROOTED TREES ON THREE TAXA

Consider three taxa, encoded by thetset{1, 2, 3}, with two possible states. Phylogenies
on T are supported by one of the four following trees: the star Rgon three taxa and,
for every taxon € 1, the treeR; such that is the outlier, hence

Ri=(1,(2,3), R=(2,(1,3), Rs=(3,(1,2)).

The phylogeny based dR, is specified by the common length of its three branches, de-
noted byt. For each € 1, the phylogeny based dR is specified by a couple of branch
lengths(te, t; ), wherete denotes the external branch length ante internal branch length,
see figurd]L.

For instance, in the phylogeny basedrRin the divergence of taxa 2 and 3 occurtgdnits
of time ago and the divergence of taxon 1 from taxa 2 and 3 oedgjr+ te units of time
ago.

FIGURE 1. The four rooted trees for three species.

Four site patterns can occur onsy denotes the pattern such that a given site coincides in
the three taxa and, for every 1, 5 denotes the pattern such that a given site coincide in
the two other taxa and is different in taxorin other words, if one writes the site patterns
in taxa 1, 2 and 3 in this order axdandy for any two different characters,

S=XXX S =YXX S=Xxyx and s3=XXy

Let T denote the set of site patterns. As explained above, in theifgpcase of three
taxa and two states evolving in a Jukes-Cantor model, oneltaaserr = 7 U {0}, in
effect using € mas a shorthand for the collection of site patterns encodesl Assume
that the counting of site patteiris nj. Thenn = ng+ ni+ Ny + nz is the total length of
the sequences and, in the independent Jukes-Cantor madstieed in this paper, the
quadruplgng, n1, Nz, n3) is a sufficient statistics of the sequence data. Wengge denote
any quadrupléng, ni, ny, n3) of nonnegative integers such thag| =ng+n1+ny+nz =
n>1.

We assume that the sequences evolve according to a conghtinoeiMarkov process with
equal substitution rates 1 between the two characters.

For everyi € g and every couple of branch lengttist;), let pi(te, t;) denote the probability
that site patterrs; occurs on tredR; with branch lengthste, ;). Standard computations
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provided by Yang and Rannala show that
Apo(te,tj) = 1+ e Yo 2g 4 tte)
4p;(te,tj) = 1+ & ¥ — pg4llitte),
Apy(te,ti) = 4ps(te,ti) = 1—e .
Let T = (Te, Tj) denote a couple of positive random variables representiagotanch

lengths(te, ti). LetN = (No, N1, N2, N3) denote a random variable representing the counts
of sites patternas = (np, N1, N2, N3).

2. THE STAR TREE PARADOX

Assuming that every taxon in evolved from a common ancestor, the aim of phylogeny
reconstruction is to compute the most likely tige To do so, in the Bayesian approach,
one places prior distributions on the tré@sand on their branch lengtfs= (Te, T)).

LetP(N = ng|R;, ¥) denote the probability th&t = n; assuming that the data is generated
along the tredR; conditionally on the branch lengtis= (Te, Ti). One may consideRr;
only since, for everyg, the symmetries of the setting yield the relations

P(N = ng|Rp, ¥) = P(N = (no,n2,n3,n1)|Ry, %),
and
P(N = no—|%,5) = P(N = (no, n3, nl,n2)|R1,‘£).

Notation 2.1. For every i€ 1, let; = 1\ {i}. For every i€ o, let R denote the random
variable

R=pi(%)=pi(Te, Ti).
For every ic T and every B, let;(ns) denote the random variable

Mi(ng) = PRPIRYT™  with  {i,j,k} =T.

We recall that?, = P; and we note that, ifng| = ng+ N1 + N2+ nz = n with n > 1, for
everyi € T,

Mi(ng) = PYPPIRy 0™,
Fix ng and assume thahgs| = ng+ Ny + Nz +nz = n with n > 1. For everyi € 1, the
posterior probability oR; conditionally onN = n; is

n! 1
P(R|N = =
(RIN =no) no!ni!natng! P(N = ng)

E(Mi(ng)).

Thus, for evenyj andj € 1,
P(RIN=ns) _ E(Mi(ny))

P(RjIN=ng) E(Mj(ns))’

For everye > 0 and eveny € 1, let .4{* denote the set af, such that, for both indices
j € Tsuchthatj #1i,

E(Mi(ng)) = (2/€)E(N;(ng)).
For everyi € T andng € .4/,
P(RIN=ng) >1-¢,
which means that the posterior probability of tlReamong the three possible trees is
highly supported.
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Recall that, under hypothed®s and for a tame prior distribution ofi= (Te, T; ), Steel and
Matsen prove that, for eveiye 7, P(N € .4¢) does not go to 0 when the sequence length
n goes to infinity, and consequently that the posterior préipalP(R;|N) can be close to

1 even when the sequence lengtis large.

We prove the same result for tempered prior distributionS ef (Te, Ti), which we now
define.

Notation 2.2. (1) For every = [0,1] and z€ [0, 3], let
Gs(2) =P (e *e(1—e %) <slee(1+2e7%T) = 2).

(2) For every positive t and everyd g, let g denote the probability that site pattern s
occurs on tree R hence

490 =4pp(0,t) =1+3e ¥, 4 =4 =4gz=1—-e*

(3) Let4: denote a positive real number such that 4gp— ¢ and4qp+ ¢ < 4, for instance
6 =3e*(1—e*). Let| and | denote the intervals

| 2[0,3], It:[4qo—1—£t,4qo—1+€t] C]0,3[.
(4) For every positive t and integer n, let
Q) =P(Ti<1/nt<Te<t+1/n).

Definition 2.3 (Tempered priors) The distribution ofT = (T, T;) is tempered if the fol-
lowing two conditions hold.

(1) Foreveryt, there existg<]0,1], an interval | around4qy — 1, bounded functions
(H)}(;()l, positive numbers andk, and real numbersg )X, such that

O=¢g<& < <& 1<2< &,
and such that for everys [0,5] and every z I,

< KT,

Gs(2) — l_(ZjFl (274

(2) For every positive t, ntlogQn(t) — 0 when n— oo,

We now state our main result, which is the extension of Sted|Matsen'’s result to our
more general setting.

Theorem 2.4. Consider sequences of length n generated by a star tfemB taxa with
strictly positive edge length t. Let N be the resulting daammarized by site pattern
counts. Consider any prior on the three resolved tréRsR»,R3) and a tempered prior
distribution on their branch length® = (Te, Ty).

Then, for every E 1, for every positivee, there exists a positivé such that, when n is
large enough,

P((P(RIN) >1—¢) > 4.

The rest of this section is devoted to the sketch of the protfieorem[2}4. We use the
definitions below. Note that the sEg(") is not the set introduced by Steel and Matsen.
For a technical reason in the proof of propositjor) 2.6 sthtdw, we had to modify their
definition. Note however that propositi02.6 dnd 2.7 bedowadaptations of ideas in
Steel and Matsen’s paper.
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Notation 2.5. For every i ino, let Ay denote the function defined as follows. For every
nonnegative integers;n= (g, N1, Np, N3) such thatng| = ng+n1+np+nz=nwithn> 1,

No — QoN
Do(ng) = 2 fr‘j" ,
and, for every E T,
n—1/3(n—n
Ai(ng) = #

For every c> 1, introduce
R = {no; Ing| = N, —2¢ < Ax(ng) < —€, —2¢ < A3(Ng) < —C, —¢ < Ao(No) < O}
For every ic T and every positive, let A'n denote the event
A, = {Vj e 1, E(Mi(N)[N) > nE(Mj(N)[N)} .

SinceA; + A, + Az =0, everyn, in F\" is such that 2< Ay (ny) < 4c. We note thas."
is not symmetric about and gives a preference to 1. That is why we only deal wﬁ;h'n

the following proof. To deal with\l, it suffices to changEc(m.

Proof of theoren 2}4From the reasoning in sectigh 2, it suffices to prove that ¥erye
positiven, there exists a positivé such that, when is large enough,

1

P(A;) = 0.
Suppose that one generates 1 sites on the star trd&, with given branch length and
let N be the counts of site patterns defined in secﬂon 1, hislgeeN; + N2+ N3 =n.

Whenn is large enough, central limit estimates show that the gritibaof the event
{N € Fc(n)} is uniformly bounded from below, say ldy> 0. Hence,

P(A) > 58 (Ab [N e R)
We wish to prove that there exists a positivendependent of such that fon large enough
and for everyng € ch), and for everyj € 11,

E(M1(ng)) = aE(Nj(ng)).
This follows from the two propositions below, adapted froteeb and Matsen’s paper.
Proposition 2.6. Fix t and assume thatne ch). Then, when nis large enough, for every
jemn,

E(Mj(ng)|4P—1€l) > E(MNj(ng)|[4Po—1¢ Iy).

Proposition 2.7. Fix t and assume thatge ch). Then, there exists a positivg inde-
pendent of ¢, such that for everg4, and for every i 13,
E(M1(ng) |4Po — 1=2) > caE(Nj(ng) | 4P — 1= 2).
From these two propositions, for everg 11,
E(M1(ng)) = aP(4Py— 1€ I) E(Mj(ng)).

Assume that is so large thacbza]P’(4Po— lel) > n. Then, forevernn, € ch), for every
j e,
E(M1(ng)) = nE(Mj(ng)).
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This implies that
P(AINeR™) =1
which yields the theorem. O

3. THE TAME CASE

We show in this section that tame priors are tempered.

Proposition 3.1. Assume tha® = (Te, Ti) has a smooth joint probability density which
is bounded and everywhere non zero. Then the distributiGh-efTe, T ) is tempered.

In particular, every tame prior fulfills the hypothesis obposition, hence every tame
prior is tempered, as claimed in the introduction.
Notation 3.2. Introduce the random variables
(&78) = C(TeaTi)v C(te,ti) = (e*‘ue’ 1+ 2874“)7
that is,
S=ee, g=14+2e"n
HenceGs(2) is also
Gs(2) =P(3% < 25+2|SS =2,
and the distribution ofS;, §) has a smooth joint probability density, defined on 0< x <
1<y<3hy

~ wo ¢ H(xy)
@xy) = 16x(y—1)

Proof of propositiol.For tame priors, the probabilit9,(t) introduced in condition (2)
of definition[2.B is of order An?. Thus condition (2) of definitioh 2.3 holds.
The definition ofGs(z) as a conditional expectation can be rewritten as
Gs(2) = P(3% < 25+ S5 |SS = 2).
Hence, for every measurable bounded functin
E(H(SS); 3% < 25+ SS) = E(H(SS)Gs(S9))
that is,
/ / H (xy)1{3x < 2s+ xy} m(x,y)dxdy = / / H (xy)Gs(xy)@(x, y)dxdy.

The change of variable= xy yields
// H(2)1{3x < 25+ 2} (, 2/X) dzclx/x = // H (2)Gs(2)w (x, 2/) dzdx/x.
This should hold for every measurable bounded fundtiphence one can choose
Gs(2) = Hz(s)/Hz(),
with _
Hz(s) = / 1{3x < 25+ z} w (X, z/X) dX/X.
Since 0< S < 1 < S < 3 almost surely, the integral definiridy(s) may be further re-
stricted to the range € x < 1 andz/3 < x < z Finally, for everys> 0 andz € [0, 3],

Gs(2) = H(8)/Hz(1),
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where

~m(s,z)

H.(s) = / @ (x,z/X)dx/x, with m(s z) = min{1,z (2s+2)/3}.

m(0,2)
Hence,m(0,z) = z/3 and, for small positive values &f m(s,z) = m(0,z) + 2s/3. When
0<z< 1, m(s,2) — m(,z) = zwhens — o and this limit is reached fos =z When
1< z<3,m(s,z) — m(»,z) = 1 whens — « and this limit is reached fs= (3—2)/2.
In both casesn(ew, z) = m(1,z) henceH,(«) = Hz(1).
Becausew and¢ ! are smooth, Taylor-Lagrange formula shows that, for egery0 and
every fixedz,

_ / Lo 1O oe+ L [Cix_sBH@
Hz(s) = Hz(0) + H;(0)s+ EHZ (0)s"+ gHZ (0)s°+ 24/, (x—9)°Hz " (s)dx.
Simple computations yield,(0) = 0 and the values d4,(0), H; (0) andH.® (0) as combi-
nations ofw and of partial derivatives ab, evaluated at the poiri®,0), where 3¢’ =z

Furthermore, the hypothesis e ensures thalt-iz(4> is bounded, in the following sense:
there exists positive numbesgandkg such that for everg € [0,5] and everyz € I;,

HY (s)’ < 24Ko.

Hence X = (Te, T;) fulfills the first condition to be tempered, with
k=3, a=1 &=1 &=2 &=3 K=Ky,
and, for every X i < 2,
R(2) = H"(0)/Hy(2).
Finally, sincew is smooth, the functiong are bounded oh. O

4. A DISCRETE EXAMPLE
We provide an example such that the condition of Steel andsdmafails but our result
applies.

Definition 4.1. Leta> 0 and b> 0. Let(t,), (yn) and(rn) denote sequences of positive
numbers, indexed by 1, and r a positive number, defined by the formulas

th=n"% ya=1+26 r=ya[n "=+, r=73 .

n>1

Proposition 4.2. Choose positive parameters a and b such 8zat b and3a < 1. Assume
that T is a discrete random variable such that, for everyni,

P(Ti =th) =rn/r.

Assume thatglis a continuous random variable, independentpfilith exponential law
of parameted, that is, with densitye~* on t > 0 with respect to the Lebesgue measure.

Then, the distribution of = (Te, Ti) is not tame but tempered, for the parameters
k=3, a=b/a, =1 =2 &=3,

and some explicit functiongH and k.
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Proof of propositioZRecaII that, using the random variabRs= e 4" andS = 1+
2e 4T, the functionGs is characterized by the fact that, for every measurable dedin
functionH,

E(H(SS) : S(3-5) <25) =E(H(SS)Gs(&S)) -
Here,S andS are independent, the distribution&fis uniform on|0, 1] and the distribu-
tion of § is discrete with

P(S =yn) =rn/r.
Thus,

1 1
> rn/O H(xyn) 1{X(3—yn) < 2s}dx = rn/o H (Xyn) Gs(Xyn) dx.
n n
The changes of variable= y,x in each integral yield
3 (tn/yn) [ H@ Lz < ya}1{32< 25+ 2yn} dz= 3 (rn/yn) [ H(@) 1z < yn} G2z
n n

This should hold for every measurable bounded fundidohence
Gs(2) = Hy(s)/Hz(),  Hy(s) = (rn/yn) 1{z< yn}1{3z2< (254 2)yn}.

n
Sincern/yn=n"°—(n+1)"°forn> 1, H,(s) = n(z,s)"® where
n(z,s) =inf{n>1|z< yn, 32< (25+ 2)yn}.
Sincey, — 3 whenn — oo, n(z,s) is finite for everyz < 3 ands > 0.

For everyz> 0, whensis large enough, namesz> (3—2z)/2, the condition 3< (2s+2)y,
becomes useless and

n(z,s) =inf{n> 1|z< yn},
hencen(zs) andH,(s) are independent & If z> 1, this implies thah(z s) andH,(s) are
independento§ > 1. If z< 1 ands > 1, the conditionz < y, and & < (2s+ 2)y, both
hold for everyn > 1 hencen(z,s) = 1 andH,(s) = 1. In both casedil; () = H(1).

We are interested in small positive valuessofFor everyz < 3, whens is small enough,
namelys < (3—2)/2, the conditiorz < y, becomes useless and

n(z,s) =inf{n > 1|3z < (2s+ 2)yn},
When furthermore < z n > n(z,s) is equivalent to the condition

__su
1+2u

Finally, for everys < min{z (3—2)/2}, n(z,s) is the unique integer such that

n(z,s) —1<h(s/2"¥3 < n(z9).

n"2< h(s/z), with h(u):—%In (1 ), O<u<1l

This reads as
h(u)*2[1+h(W)Y3™ < H,(1) Gs(2) < h(U)®3, u=s/z
One sees that the functidris analytic and thal(u) = (3u/4) + o(u) whenu — 0, hence,
h(u)®/2 = (3u/4)”/3(1+ agu+ ap® + agu® + o(u®)),

whenu — 0, for given coefficientsy, a, andag. Likewise, since 1a> 3, h(u)}/2 = o(u®)
whenu — 0. This implies that

[1+hu)Y3 ™ =1+ 0(ud),
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hence
Hz(1) Gs(2) = (3u/4)*/3(1+ aqu+ agu?® + agu® + o(u%)).
This yields the first part of definitign 2.3, with
k = 37 a= b/aa (gla &, 83) = (11 21 3)1
and
Fo(2) = (3/42”3/H,(1), Fi(2) =aiFo(2)/z, Fu(2) = aFo(2)/Z.
The remaining step is to get rid of the dependencies awarour upper bounds. For
instance, the reasoning above provides as an error termtgplawif
U™ /Hy(1) = 8713 /(2713Hy (1)),

instead of a constant multiple sf 3. But infl; > 0, hence the ;Iz"’+3 contribution is
uniformly bounded.

As regard$H,(1), we first note thaH,(1) = 1 if z< 1. If z> 1, elementary computations
show thatH,(1) > c if and only if n(z, 1) < ¢ ¥/? if and only if exg—c¥?) > (z—1)/2,
which is implied by the fact that 4 ¢&® > (z— 1)/2, which is equivalent to the upper
boundc®? < (3—2)/2. Since suh < 3, this can be achieved uniformly ovee I; and
1/H;(1) is uniformly bounded as well.

Finally, we asked for an expansion valid 81 5, for a fixedsy, and we proved an expan-
sion valid overs/z < up, for a fixedup. But one can choos® = upinfl;. This concludes
the proof that the conditions in the first part of definit@ Bold.

We now prove that the second part of defini 2.3 holds. &handT, are independent,
for every positive integen,
Qn(t) =P(T<1/nPt<Te<t+1/n).
One has
NP(t<Te<t+1/n) —4e* when n— 4o,
and
1 3
— < P(T < < —.
r(nt/a4+1)b = BT <10 < o

SinceQy(t) is bounded from below by a multiple of @'+?/2, the second point of defini-
tion 2.3 holds. 0

5. PROOF OF PROPOSITIONR.

The proof is decomposed into two intermediate resultsedtas lemmata below and using
estimates on auxiliary random variables introduced below.

Notation 5.1. For every n>1andt> 0, letTy(n) = [0,1/n] x [t,t+1/n].
For every t> 0, let i = g2 g% = g™ and U denote the random variable

Ue =[] (R/a)%.

ieo
For every ry, for every je 1y, let Wj(ng) denote the random variable

\Nj (na) _ Pgo(ng)P](-Aj —0p/3)(Ng) F)Z(AquAk72Ao/3)(f'l(f)7 with {J , k} =1.



10 MIKAEL FALCONNET

One sees that
U =PPPIP™ /i, Qo) =P (T e Mi(n)),
and
W = (Po/Pz>A°<P1/P2>AJ ~bof3,

Lemma 5.2. (1) For every < FC , for every je 11, Wj(ng) < 1.

(2) Forevery g € F", for every je 11, Wj(ng) > (01)¢ on the even{T € I'¢(n)}.
(3) There exists af|n|te constansuch thaty' > e * uniformly onn> 1and{% € ¢(n)}.

Proof of lemmd 5]2(1) For everyZ, Py > P, > P.. OnF{", Ao < 0 and for evenyj € 1,
—0p/3< 0hence

(Ro/P)™ <1, (Ro/Pp)ti 20 < L.
This proves the claim.
(2) One has) < 1 everywhere ané; > q; andP, > g; on the evenl{f e l¢(n)}. On

Fc( ), Do < 0 and for everyj € 14, Aj —Ag/3 < 0 hencew; > q2 2o/3 . Finally, onFC ),
Aj+20g/3 < —c. This proves the claim.

(3) For everyT € I't(n), T > 0 andTe > t, henceP, > g; andP > g2 = q;. Likewise,
T <1/nandTe <t+1/nhencePy > po(1/n,t+1/n) > go — 5e *(1— e 4" /4. This
yields that, for everyn > 1 and¥ € '¢(n),

UM > (1-5e*/(qon))" — exp(—5e */qo) >0
which implies the desired lower bound. O

Lemma 5.3. For every nyy € Fc(m, for every je 11,

E(Mj(ng)[4Po—1e k) > IJthn(t)eio(ﬁ),
and
E(Nj(ng) | 4R — 1 ¢ k) < pe (€32,

Proof of lemmd 5]3SinceP, = po(%), for everyT € I't(n), whennis large, £ — 1 € I;.
Consequently,

E(Mj(no) [4PL—1€ k) = Qn()E(Mj(ng) | T € Tt (n)).
Onthe even{T € 't(n)},
Mj(no) = WUMW; (ng) V" > ple ™ (0y) V™,
from parts (2) and (3) of Iemn@.z, which proves the first pathe lemma.

Turning to the second part, legddenote the Kullback-Leibler distance between probabil-
ity measures. WhenR§ — 1 ¢ I;,

dk(Go:3: Po:3) = (1/2)[|do:3— Po:all > (1/2)(do — Po)? > ¢2/(32).
Note that
Mi ( o) = Uth (na)fe ndKL(Qoapoa)

hence the estimate oxd qo-3,Po:3), and part (1) of Iemm@.z, imply the second part of
the lemma. O
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Turning finally to the proof of propositioh 2.6, we note ti@{(t) = €™ because the
distribution of¥ is tempered. Furthermore, Iem@ 5.3 shows that, whisarge enough,

E(Nj(ng)|4Py— 1€ k) > E(Mj(ng) 4Py — 1 ¢ It).
This concludes the proof of propositi2.6.

6. PROOF OF PROPOSITIONR.]

Our proof of propositiof 2}7 is based on lemmd 6.2 and prdipogs.3 below.

Notation 6.1. For every u in[0,1], let {(u) = (14 2u)(1—u)?. LetU and V denote the
random variables defined as

U=P-PR)/(1-R), V={U).
Lemma 6.2. For every ryy € Fc(m, for every je 14,
S -
E(M1(0) [Ro) 42, E(V(L-V)[Ro)
E(M;j(ng) [ Po) E(VS|R)
Proposition 6.3. Assume that the distribution @fis tempered. There exislsanda, both
positive and independent of ¢, such that for evexy®, on the even{f4Py— 1 € I},

4SE(VS(1—V) |Py) = a E(VS|Ry).

s=(n—np)/3.

Assuming this, the proof of propositi@.? is as followst kg8 anda as in lemmg 6)2
and propositiorf 6]3. Since—no = (1— go)n — Agy/N = (1 go)n for everyng € K¢,
s=(n—np)/3 > B whenn is large enough. Furthermore< n/3. Finally, for every
Ng € ch) with nlarge enough, of4Py— 1 € |1}, for everyj € 11,

E(MN1(ng)|Po) = 3c2a E(M;(ng) | Po).

This concludes the proof of propositi2.7.

Proof of Iemm@ZRecall that, for everg > 1, Fc(n) is
F" = {ny : Ing| =N, —2¢ < Aa(Ng) < €, —2¢ < Ag(Ng) < €, —C < Ag(No) < O}
Using theA variables, one can rewriféq, N, andl3 as
Mi(ng) = PR(PLP)S (Py/Ry)o VM i =123 s= (n—ng)/3.

Assume thath, € Fc(m. Then,A1(ng) > 2c, for everyj € 11, Aj(ng) < 0 andPy > P,
hence
M1(ne) = PR(PPD)S(P/P)*Y™,  Mj(ne) < P (PLPE)S.

Furthermore,

PPZ = (1/27)V(1—R)3, P /Po=(1+2U)/(1-U),
hence for every € 13,

2
E(M1(n0) [Ry) _ (Ve(@+20)/a-u)™" R
E(Mj(ng)[Po) ~ E(VS[Py)

Direct computations (or lemma 3.2 in Steel and Matﬂen [3sthat, for every in [0,1)
and everym > 3,

((142u)/(1—u)™ > m(1- ¢ (u)),
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hence
(142U)/(1=U))*V" > 4c?n(1-V).

The conclusion of lemmp 6.2 follows. 0

Proof of propositior@&We recall that) andV denote the random variables defined as
U= (P —P)/(1-Py), V=CU), {(u)=(1+2u)(1-u)?

To use propositioﬂ.Z, one must compute a Taylor expansioa-d~ or, equivalently, at
u= 0T, of the conditional probability

PV 2 V|R) =P <u|Ry),
whereu = {~1(v). Besides, fow close to 1,
u="1(v) =w/V3+wW?/9+ 50 /54v/3+ 0w, withw=+vI—v.
SinceU = (P —P,)/(1—Ry),
P(U <ul4h—1=2)=P(S(3-S) <25/S5=2),
where we recall that
S=ee g=1+2e 2s=u(3-2).
Keeping the notation given in definiti.3, one has
Gs(2) =P(S(3-5) < 25/S5 =2).

Since the distribution of is tempered, there existsbounded functiongﬁ){‘;ol onl, a
positive numbetr, n+ 1 real numbers

O=g<g< - <&_1<2< &,

and two positive numberns andsy such that for every & s< 5y and every € |,

n-1
Gs(2) — zoﬁ(z)s‘”ai < ke,
i=

Combining this with the relations2= u(3 — z) and the expansion af= { ~(v) along the
powers ofw, one sees that there exists bounded funct(cir)ﬁ;ol onl;, a positive number
k" and 0< v < 1 such that for everyp < v< 1 and everyg < I,

< K/(l— V)a/2+sn/2'

n—1
PV >v|4P—1=2) — zo fi(2)(1— v)o/2t4/2
i=

Since the functiond; are bounded and positive & propositior] 72 in sectiof} 7 implies
that there exists a positive numbigsuch that for everyg € Iy and everys > 6, the conclu-
sion of propositiof 6]3 holds. O



PRIORS FOR THE BAYESIAN STAR PARADOX 13
7. EXTENSION OF STEEL AND MATSEN'S LEMMA

The Bayesian star paradox due to Steel and Matsen relieseshaital result which we
slightly rephrase as follows. For every nonnegative teald every0, 1] valued random
variableV, introduce
M E(VY{(1-V))
_ t _q_ M1
M =E(VY), R=1 M E(VD)
Proposition 7.1 (Steel and Matsen's lemma)et0< n < 1 and B> 0. There exists a
finite K, which depends on and B only, such that the following holds. For evébyl]
valued random variable V with a smooth probability densitydtion f such that f1) >0
and|f’(v)| < Bf(1) for everyn < v< 1, and for every integer k K,

2kR, > 1.

Indeed the asymtotics & whenk is large depends on the distribution\bfaround 1. We
prove in the following proposition that the conclusion oé¢&8tand Matsen’s lemma above
holds for a wider class of random variables.

Proposition 7.2. LetV a random variable ofD, 1]. Suppose that there exists real numbers
0<Vvo <1 a>0,(&),and(y)l,, such that

O=gp<g< - -<&g1<1l<eg,
and, foreveryy<v<1,

n—-1

IP>(V>v)--ZjVI(1—V)°"+£i <h(1—v)Tten,
i=

Then there exists a finitg(yo:n), which depends continuously gg,, such that for every
t > 7(Yon),
2R > a.

Remark 1. We insist on the fact that(y,,) depends continuously gg.,. To wit, in the
proof of propositio@?u, we apply propositi@?.Z with bded functions of z. This means
that for every £ I;, one gets a numbarwhich depends on z through the bounded functions
such the control on the distribution of V holds. The continaf T ensures that there exists

a number independent of z such that propos 6.3 holds.

Remark 2. If one computes a Taylor expansion of the functier P(V > v) atv=1"
under the conditions of Steel and Matsen’s lemma, one cathaeeonditions of proposi-
tion [7.2 hold. It follows that propositioh 7.2 is an extemsaf Steel and Matsen’s lemma.

Proof of propositior] 7|2 For fixed values ofr, (y)I, and (&), introduce, for every
t>0,

1 n—-1
Mt:i::/ VI, (v)dv,  whereF. (v) = zoyl(l_v)GJrEij:yn(l—v)GJrEn.
0 =

Hence,

1 -1
MZ/UFWN>WW=Mﬁf/N4WN>W—&MNM
JO 0
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and
M =tB(t,a +1) Cz‘ly./\(si,t)P(ei,t) + yn/\(en,t)P(en,t)> )

where

F{t}+a+1) m“( £ )
A(gt) = P(e,t) = 1-—
(8.1 r{t}+a+e+1)’ (&1) Lll at+e+{t}+¢)’
andB denotes the beta function
rX)ry)
B = .
() r(x+y)

From the control of the distribution &f,
n
M —Wo <M <M +Vy  wherey = 20|V||
i=
Combining this with the general expressiorMf given above, one gets

Mi1 _ (t+ 1B+ 1,0+ 1)x;(t+1) +v5
My tB(t,a +1)x-(t) — o ’

where .
X=(t) = % WA(&,D)P (&) £ Yo\ (€n, 1) P(€n, ).

Using the fact that
t+1)B(t+1,a+1) t+1

tB(t,a +1) Ct+a+1

and that

(Blt.a+ )0u(t) > 1, whereQu(t) — LHAOHA=D) . (t+{a))

MNa+1) ’

one sees that
Mg t+1 wrxe(t+ 1)+ Qa(t + 1Vt

M t+a+1 ¥o+ X—(t) — yQa (t)V

Furthermore,
o+ Xe@+ D)+ Qult+ Vg™ | xa(t+1) =X () +K (VG
Yo+ X—(t) — Qa(t)Vy Yo+ X-(1) = yQa(t)vy
wherek (t) = voQq (t + 1) + yQq(t) is a polynomial function in.

From Iemm3 below, there exists a positive nun@eathich depend omr andey., only
such that

X+ (t+1) = x_(t) < 2+ &yICt P, x_(t) > -Cp 2.
where
B =min{en, 1+ &}, 1<B<2
Combining these estimates gn (t + 1) andx_(t), one sees that there exists finite contin-
uous functiong; andA of (yon, a, €0:n), such that, for every> 14,

R>a/t—A/tP.
Choosingt = max(11, 72) yields propositioz as soon as, for eveey 1, (recall that

B>1),
2At < ath. 0
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Lemma 7.3. Let 3 = min{&,,1+ &1 }. There exists a positive number C, which depends
ona andé&gyy only, such that

X+ (t+1) = x-(t) < 2 +&ylCt P, x_(t) = —Cypt 2L

Proof of lemmd 7]3For every real number> 1 and every K i <n,
g San-Tal) < P(g,t) < e SEl,

where
t+1 € t]+1 82

S(et) = gl ate+{ty+¢ and T(e,t) = gl (a+tet+{t}+0)2

Thus, there exists two positive real numb€fsandC;* such that for every real number
t>1,C <tfP(g,t) <G, and one can choos = (a + & + 3)8.

LetC=maxC"; 1<i < n}. Using the two relations

Y Dle —Plet)— &
P(glat) P(£|1t+1)_P(£|’t)a+£i+t+2’
and
_ &
P(€n,t) + P(&n,t +1) = P(&n,t) (2 a+£n+t+2)v

one sees that
n
&
t+1) — x_(t) = 2w\ (&n,t)P(&n,t) — A&, H)P(g,t) ————.
X+ 2) = X-(0) = 20AEnOP(En ) = 5 WA@LOP(E D)
For every 1< i < n, the functionA(g, ) is positive and bounded by 1. Hence,

n
&
—v (1) < O ) P
X+(t+1)—x (t)\ZVnP(en,t)+i:§ IMIP(e.,t)a+£i+t+2

<C (2vnt*5“ +yent 51)) :
and the first inequality in the statement of the lemma holdse §ame kind of estimates
yields
n-1
X-(t)=— 20 [ViIA(&,1)P(&i,t) — VoA (€n, 1) P(en, 1),
i=
hence the second inequality holds. This concludes the pfdema[7.B. 0
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