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Abstract

A discussion and an improvement on the Neumann-Kelvin’s model are
suggested in this paper. This model is used in the simulation of progres-
sive wave phenomenon. But as mentioned by several authors [CHEN 01],
[YAN 00], [RIC 96], [LIH 78], this model is ill posed unless a capillary en-
ergy is introduced. The mathematical explanation is that a compactness
inversion occurs if the capillary forces are omitted. Theoretical argu-
ments and numerical simulations are used in the following which aim at
giving an explanation of what happens from a mechanical point of view.
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ondary: 76B15, 35L70, 35Q35
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1 Introduction

Let us consider a bounded connected and non empty open set in R
3 denoted

by Ω the boundary of which is ∂Ω. This set is a water pool with a bottom
Γ0, a free surface Γf and two sides Γ1i and Γ10 through which a water flow is
respectively entering and leaving the pool (see figure 1). The unit normal along
the boundary outwards Ω is ν. A submarine can be included in the pool and
its boundary is Γb. Another possibility is to have a pebble stone bottom. A
steady flow is entering Ω through Γ1i at the normal velocity U and getting out
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through Γ10. There are two kinds of boundary conditions on Γ1 depending if
one considers the steady flow or the transient one. Concerning the steady flow
the most realistic condition consists in fixing the normal velocity. But in the
transient analysis, one can consider that the acoustic pressure in the wake is
not perturbed. Nevertheless, the mathematical analysis is similar in each case.
A comparaison in the numerical tests shows that the changes of boundary
condition on the transient analysis are not meaningfull as far as the time delay
of the simulation is small enough in order to avoid any return of surface waves.
Another strategy is to use non-reflecting boundary conditions on Γ1. But this
last possibility is a little bit complex because there are several kinds of waves
on the surface and the water itself is assumed to be incompressible. Therefore,
this point is not discussed in this paper. Because the fluid is assumed to be
unviscid, it is assumed that the flow velocity can be modelled by a potential
function Φ. From the incompressibility, one can ensure that −∆Φ = 0 in Ω.
Let us denote by η the normal displacement of a geometrical point on the free
surface of the water Γf .
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Figure 1: Main geometrical notations
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We assume that the boundary conditions outside Γ1 are


























∂Φ

∂ν
= 0 on Γb ∪ Γ0,

∂Φ

∂ν
=

∂η

∂t
+ ∇sΦ.∇sη, on Γf ,

(1)

The boundary conditions on Γ1 are defined separately in the following for the
steady component and the transient one.

The stationary potential -say Φ0- is solution of the following set of equations:






















































−∆Φ0 = 0,

∂Φ0

∂ν
= U(e1, ν) on Γ1,

∂Φ0

∂ν
= 0 on Γb ∪ Γ0,

∂Φ0

∂ν
= 0 on Γf .

(2)

Because Φ0 is harmonic in Ω it is necessary that the Fredholm ’s condition
should be satisfied:

∫

∂Ω

∂Φ0

∂ν
= 0. (3)

In the present analysis, this relation is in fact a condition on the geometry of
the boundary Γ1 which traduces the incompressibility of the fluid. It can be
explicited as follows and it is easy to ensure that it is satisfied:

∫

Γ1

(e1, ν) = 0. (4)

In most classical analysis of progressive waves, the fonction Φ0 is estimated by
x1U which is the right solution for a parallelepipede. Let us notice that this
is not correct for instance as soon as a submarine or a pebble stone bottom
is considered inside Ω. These cases are those studied in the following. The
solution method used in this paper for computing Φ0 is a finite element one.
But this step could also solved by a boundary integral method
The Fredholm’s condition (3) is not necessary for the transient state, as far as
a Dirichlet boundary condition is prescribed on Γ1. One practical advantage is
that it avoids to add an additional constraint on η. But this could be mathe-
matically possible without new difficulties excepted in the notations. In order
to split the steady state and the transient state let us set:

Φ = Φ0 + ϕ, (5)
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where Φ0 is the solution of (2). Because Φ0 is proportional to the boat velocity,
one sets:

Φ0 = U Φ̃0, (6)

where Φ̃0 is the solution of (2) with U = 1. The transient term ϕ should be
solution of:



















































−∆ϕ = 0 in Ω,

ϕ = 0 on Γ1,

∂ϕ

∂ν
= 0 on Γ0 ∪ Γb,

∂ϕ

∂ν
=

∂η

∂t
+ U∇sΦ̃0.∇sη + ∇sϕ.∇sη on Γf .

(7)

The last boundary condition is a non-linear one because of the term ∇sϕ.∇sη
and it is omitted in the linear approximation. It will be discussed later on how
to take into account non-linear terms when an instability occurs in the linear
model and therefore the linearization wouldn’t be justified.

Several possibilities occur for the boundary condition satisfied by ϕ on Γ1.
The one used in (7) traduces a vanishing acoustic pressure. Another possibility
would be to prescribe that the total pressure (linearized expression) is zero
(assuming also that the steady velocity is normal to Γ1):

∂ϕ

∂t
+ U

∂ϕ

∂ν
= 0. (8)

Clearly there are many other possibilities in the definition of the boundary
condition that should be satisfied by ϕ on this part of the boundary ∂Ω.

Furthermore it is certainly more realistic to use different boundary condi-
tions at the flow-intake and the exit even if the mathematical analysis is similar.
But their influence is restricted as far as the time delay for the computation
doesn’t allow the waves to reach the boundary of the open set Γf .

1.1 The equilibrium of the free surface

Let us denote by p the pressure in the fluid. From Bernoulli theorem (see
for instance G. Duvaut [DUV 90] or L. Landau-E. Lipschitz [LAL 71]), one
obtains on the free surface of the water -say Γf (x3 = 0)- by considering only
the linearized expression in η and ϕ of the pressure (p0 is the pressure in the
air over the free surface):

p = p0 − ̺
∂ϕ

∂t
− ̺

2
|∇ϕ|2 − ̺U∇sΦ̃0.∇sϕ − ̺

U2

2
|∇sΦ̃0|2 − ̺gη + σ∆sη. (9)
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In this expression σ is the capillary constant, g is the gravity and ̺ is the mass
density of the fluid. The notation ∆s is the Laplace operator restricted to the
free surface.

Remark 1. One could consider a more complete expression for the cap-
illary forces (the energy of which is proportional to the variation of surface)
which is given by:

divs(
∇sη

√

1 + |∇sη|2
).

But on the one hand the first additional non-linear term is a third order one,
and on the other hand, this would lead us to use the space BV which allows dis-
continuities and which is much more complicated in the approximation method
(see G. Aubert and P. Kornprobst [Aub 02]).

One can linearize the formula (9) by cancelling the term |∇ϕ|2 or by lin-
earizing it around a value ϕ0 for instance corresponding to a stationary (time
independent) flow different from the one induced by Φ0. A digging effect of the

free surface due to the term −̺
U2

2
|∇sΦ̃0|2 can also appear in this stationary

flow and it is denoted by η0. This so-called digging component is solution of:











η0 ∈ H1
0 (Γf ),

−σ∆sη0 + ̺gη0 + ̺U2∇sΦ̃0.∇sG(∇sΦ̃0.∇sη0) = −̺U2

2
|∇sΦ̃0|2,

(10)

where G(f) = ϕ|Γf
is the restriction on Γf of the solution ϕ of the model (7)

where the boundary condition on Γf is replaced by
∂ϕ

∂ν
= f . This operator

G plays an important role in the following. For example, if Φ̃0 = x1 and if
one restricts the preceding model to a one dimensional case, one obtains the
following model for the digging effect:





 −σ∆sη0 + ̺gη0 + ̺U2

∂G(
∂η0

∂x1

)

∂x1

= −̺U2

2
.

(11)

In general, the expression of the digging effect depends on the steady flow which
is described by Φ0. For instance it could be much more meaningful for shallow
water and with different boundary condition on Γ1. For sake of simplicity in the
writing, let us consider here that both η0 and ϕ0 can be neglected. Therefore
the linearized pressure is given by:

p = p0 − ̺
∂ϕ

∂t
− ̺U∇sΦ̃0.∇sϕ − ̺

U2

2
|∇sΦ̃0|2 − ̺gη + σ∆sη. (12)
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Let us adopt for instance homogeneous Dirichlet boundary conditions for η on
∂Γf . The equilibrium of the free surface is therefore explicited by (p0 which
acts on both side of Γf is eliminated):

−σ∆sη + ̺gη + ̺
∂ϕ

∂t
+ ̺U∇sΦ̃0.∇sϕ + ̺

U2

2
|∇sΦ̃0|2 = 0. (13)

2 Formulation of the model in η

Let us introduce the functional space in which η is looked for:

V = H1
0 (Γf ). (14)

By multiplying equation (13) by an arbitrary element of the space V , one
obtains:

∀v ∈ V,

σ

∫

Γf

∇sη.∇sv + ̺g

∫

Γf

ηv + ̺

∫

Γf

∂ϕ

∂t
v + ̺U

∫

Γf

∇sΦ̃0.∇sϕv

= −̺U2

2

∫

Γf

|∇sΦ̃0|2v.

(15)

Initial conditions should be added to this model. Let us set:

η(0) = η0 and η̇(0) = η1 on Γf . (16)

One convenient possibility in the analysis of this model is to eliminate the
function ϕ from equation (7). In fact, as far as the non-linear term ∇sϕ.∇sη is
omitted in (7), ϕ depends linearly on η and for eliminating ϕ, one can introduce
the following operator denoted by G which is the so-called added mass operator.
Let g be an arbitrary function defined on the boundary Γf . The element G(g)
is the restriction to Γf of the solution to the following model:



















































−∆Φ = 0 in Ω,

∂Φ

∂ν
= 0 on Γ0 ∪ Γb,

Φ = 0 on Γ1,

∂Φ

∂ν
= g on Γf .

(17)

It is proved in [DCF 09] that G−1 is an isomorphisme between the spaces
H̃1/2(Γf ) and its dual. Definitions and details on these fractional spaces can
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be found in R. Adams [ADA 75] or J.L. Lions and E. Magenes [LM 68]. In our
case, the elements of H̃1/2(Γf ) are defined as the restriction to Γf of functions
lying in H1(Ω) and which are zero on Γ1. Let us just point out for our purpose
that the natural embedding from H̃1/2(Γf ) into L2(Γf ) is compact as the one

from L2(Γf ) into [H̃1/2(Γf )]′ which is the dual space of H̃1/2(Γf ). The norm

on H̃1/2(Γf ) is denoted by ||| |||1/2 and the one of its dual space is ||| |||−1/2.
The former is defined by:

|||g|||1/2 = inf
v = g on Γf

v = 0 on Γf

||v||1,Ω.

From the linearity of G one can write (let us recall that the non-linear term
∇sϕ.∇sη is omitted):

ϕ|Γf
= G(

∂η

∂t
) + UG(∇sη.∇sΦ̃0). (18)

By introducing this expression into the equation (13) which traduces the equi-
librium of the free surface, one obtains formally (an integration by parts has
been used and boundary terms have disappeared because v = 0 on ∂Γf ):



































∀t ∈ [0, T ], η(t) ∈ H1
0 (Γf ),

∀v ∈ H1
0 (Γf ), ms(

∂2η

∂t2
, v) + 2Uc(

∂η

∂t
, v) + a(η, v) = 0,

η(0) = η0,
∂η

∂t
(0) = η1 on Γf .

(19)

with the notations:






















































































∀η, v smooth enough :

ms(η, v) = ̺

∫

Γf

G(η)v,

c(η, v) =
̺

2

∫

Γf

[

G(∇sΦ̃0.∇sη)v −∇sΦ̃0.∇sv G(η) − ∆sΦ̃0G(η)v
]

,

a(η, v) =

∫

Γf

[

σ∇sη.∇sv + ̺gηv
]

−̺U2

∫

Γf

[

G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sv + ∆sΦ̃0G(∇sΦ̃0.∇sη)v
]

.

(20)

In many examples the effect of the term ∆sΦ̃0 is numerically neglectible as far
as they are no surface ship. This point is observed in the numerical tests, even
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if it is not zero. First of all let us check few useful properties of the bilinear
forms ms, c and a. Let us notice that they are well defined if η and v are
functions lying in the space H1

0 (Γf ). It is also worth noting that the classical
symmetry property holds for G:

∀η, v ∈ L2(Γf ),

∫

Ω

∇Φ(η).∇Φ(v) =

∫

Γf

G(η)Φ(v) =

∫

Γf

G(v)Φ(η), (21)

which implies the symmetry of the bilinear form ms. This is also true for the
three first terms in the definition of a. One can also claim that the bilinear
form c restricted to its two first terms is anti-symmetrical. This is due to fact
that it represents a gyroscopic coupling. In fact, ∇sη is a rotation of the unit
normal ν to the free surface Γf . But the main properties are the coerciveness
properties which are summarized here-after. In order to make sense to the
expressions which appear in the definitions of the bilinear forms one assumes
that Φ̃0 ∈ C3(Γf ), (see P. Grisvard [GRI 86] or M. Borsuk and V. Kondratiev
[KON 06] for the justification) because one has in this case:























































|
∫

Γf

∆sΦ̃0G(η)v| ≤ c|||η|||−1/2,Γf
|||v|||−1/2,Γf

,

and:

|
∫

Γf

−∆sΦ̃0G(∇sΦ̃0.∇sη)v| ≤ c|||v|||1/2,Γf
||∇sΦ̃0.∇sη||−1/2,Γf

≤ c′||η||1/2,Γf
|||v|||1/2,Γf

(22)

Let us mention a result [DCF 09] which enables to justify the model used.

Theorem 1. Let us assume that min(̺g, σ) > 0. Then, there exists
constants ci > 0 and a scalar λ1 > 0 such that:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀η, v ∈ H1
0 (Γf ) :

a(v, v) ≥ c0||v||21,Γf
− c5U

2||v||2
1/2,Γf

≥ c6(λ1 − U2)||v||21,Γf
,

ms(v, v) ≥ c1|||v|||2−1/2,Γf
,

|ms(η, v)| ≤ c2|||η|||−1/2,Γf
|||v|||−1/2,Γf

, |a(η, v)| ≤ c3||η||1,Γf
||v||1,Γf

,

|c(η, v)| ≤ c4||η||1/2,Γf
||v||1/2,Γf

.

The main application concerns the existence and uniqueness of a solution
to the coupled model (19) for any velocity U and for ad hoc initial conditions
η0 and η1.
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Remark 2. A natural question is to obtain the best constant λ1 which
appears in the previous theorem. This is discussed in the following. It leads to
the first critical velocity which would be equal to

√
λ1.

Remark 3. One can consider several kind of boundary conditions on ∂Γf

concerning η. For instance, one can set:

∂η

∂ν
+ αη = 0 sur ∂Γf , (23)

which is a Robin’s boundary condition. If α = 0 there is a perfect gliding of the
water, if α = ∞ there is an adhesion of the water which is the case considered
here. But the influence on the results is not important as far as the time is
small enough in order to avoid rebounds of waves on the boundary ∂Γf . One
can also consider a condition as:

∂η

∂t
+ γ

∂η

∂ν
+ δη = 0, (24)

and so on. The most suitable boundary condition for η is certainly a trans-
parency one in order to avoid reflection. But it would also be useful to use such
a condition for ϕ on Γ1.

2.1 About the static instabilities

The existence (and uniqueness) theorem of a solution in η is true for any U . But
the stability requires the hypothesis: U <

√
λ1 where λ1 is a constant which

appears in the coerciveness on the space H1
0 (Γf ) of a(., .) (see theorem 1). Let

us discuss the best value for the constant λ1 in the particular case where the
term ∆sΦ̃0 is zero (neglected). In this case, the bilinear form a is symmetrical
and c is antisymmetrical. Two cases have to be considered depending if there
is a capillary term or not (σ > 0 and σ = 0).

Let us introduce the eigenvalue model:























































find (λ, w) ∈ R
+ × H1

0 (Γf ) such that:

∀v ∈ H1
0 (Γf ) :

λ̺

∫

Γf

G(∇sΦ̃0.∇sw)∇sΦ̃0.∇sv = σ

∫

Γf

∇sw.∇sv + ̺g

∫

Γf

wv,

̺

∫

Γf

G(∇sΦ̃0.∇sw)∇sΦ̃0.∇sw = ̺

∫

Ω

|∇Φ(∇sΦ̃0.∇sw)|2 = 1.

(25)

The non-trivial solutions of:

v ∈ H1
0 (Γf ), ∇sΦ̃0.∇sη = 0,

9



play a particular role in the stability analysis. For instance in one dimension,
one can prove (see [DCF 09] that the only solution is zero. But this result
is true in many cases excepted may be for very particular geometries of the
surface Γf . From general spectral theory of linear operators one can deduce
the following theorem:

Theorem 2. Let us assume for sake of simplicity that the set:

K0 = {v ∈ H1
0 (Γf ), ∇sΦ̃0.∇sv = 0},

is reduced to {0}. Two cases are considered in which the results are inverted.
1 • If σ > 0, there exists a countable set of elements denoted by (λn, wn) in
R

+∗×H1
0 (Γf ) solution of (25). Each term of the sequence (ordered by increas-

ing values) λn has a finite multiplicity (∞ is the only accumulation point). The

family { wn√
λn

} is an Hilbert basis of the space H1
0 (Γf ). The smallest eigenvalue

denoted by λ1 will be the best constant in theorem 1.

2 • If σ = 0. Let us restrict our analysis to the one dimensional case. The
result is opposite to the one of the first case. There exists a countable set of
solutions (λn, wn) ∈ R

+∗×L2(Γf ) and the terms of the sequence λn are ordered
by decreasing values (the largest value is denoted by λ1). The multiplicity of
each term is finite and 0 is the only accumulation point. The family {wn} is
an Hilbert basis of the space L2(Γf ).

Proof. Let us begin with σ > 0. The result is a direct consequence of the
spectral theory for linear operator as it is presented P.A. Raviart and J.M.
Thomas [RATO 83]. In fact the bilinear form:

(η, v) → σ

∫

Γf

∇sη.∇sv + ̺g

∫

Γf

ηv,

is symmetrical, continuous and coercive on the space H1
0 (Γf ). Furthermore the

bilinear and symmetrical form:

(η, v) →
∫

Γf

G(∇sΦ0.∇sη)∇sΦ0.∇sη,

is continuous on the space H1/2(Γf ). From the properties of G−1 which is an

isomorphism [DCF 09] between the spaces H̃1/2(Γf ) and its dual, one obtains:















∃c > 0, such that ∀η ∈ H̃1/2(Γf ),

∫

Γf

G(∇sΦ0.∇sη)∇sΦ0.∇sη ≥ c|||∇sΦ0.∇sη|||2−1/2,Γf
.
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The continuous mapping:

j : v ∈ H1
0 (Γf ), → j(v) = |||∇sΦ0.∇sv|||−1/2,Γf

, (26)

is a norm on the space H1
0 (Γf ) (hypothesis). But even if it is a norm, it is

not always equivalent to the one of the space H̃1/2(Γf ). The completed space

of H1
0 (Γf ) equiped with the norm (26), is at least included into [H̃1/2(Γf )]′

and contains H̃1/2(Γf ). The natural embedding from H1
0 (Γf ) into H̃1/2(Γf )

being compact, it is also compact from H1
0 (Γf ) into this completed space. The

assumptions of the spectral theory formulated in [RATO 83] are satisfied and
the result is proved if σ > 0.

Let us consider the second case: σ = 0 which is much more tricky. Now
the bilinear and symmetrical form:

(η, v) → ̺g

∫

Γj

ηv,

is only equivalent to the square of the norm in the space L2(Γf ). It has been
assumed that j defined at (26) is a norm on the space H1

0 (Γf ). The embedding

from H̃1/2(Γf ) into L2(Γf ) being compact, the variational eigenvalue problem
is inverted. This completes the proof of theorem 2 by applying the spectral
theory adapted to the variational formulation [RATO 83]. ✷

Remark 4. In the first case where σ > 0 one can characterize the constant
λ1 which appears in theorem 1 as the smallest eigenvalue of the model (25).
Therefore there are no confusion in the notation. Let us underline that λ1

which is the smallest eigenvalue solution of (25) satisfies:

∀v ∈ H1
0 (Γf ),

λ1̺

∫

Γf

G(∇sΦ0.∇sv)∇sΦ0.∇sv ≤ σ

∫

Γf

|∇sv|2 + ̺g

∫

Γf

v2.
(27)

Hence:














∀δ ∈ [0, 1], ∀v ∈ H1
0 (Γf ), as(v, v) ≥ inf(σ, ̺g)(1 − δ)||v||21,Γf

+̺(δλ1 − U2)

∫

Γf

G(∇sΦ0.∇sv)∇sΦ0.∇sv.
(28)

Thus λ1 is the best constant in theorem 1 and it enables to characterize the
critical velocity Uc corresponding to the instability of the linear wave model in
which the term ∆sΦ̃0 is neglected, by:

Uc =
√

λ1. (29)
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If U ≥ Uc the coerciveness of the stiffness bilinear form on the spaceH1
0 (Γf )

is lost. But it is still true for the complementary of the finite dimensional
space spanned by the eigenvectors corresponding to the eigenvalues λn such
that U ≥

√
λn.

Let us now assume that σ = 0. The coerciveness of as is no more true on
the space H1

0 (Γf ) but only on L2(Γf ) which is not contained in H
1/2

00 (Γf ). In
fact, the contrary can be true and this would be a so-called mathematical in-
version of the compactness.
For any velocity U > 0, there exists an infinite number of instable eigenmodes.
They are more and more local (the wave length is smaller and smaller). There-
fore, in a numerical approximation, the more the mesh is refined, the larger is
the number of instabilities. This remark which has already been formulated in
a different numerical framework by Xiao-bo Chen [CHEN 02], condemns the
Neuman-Kelvin’s model without capillary. In fact, the variational model (19)
is fully instable for U > 0 excepted for a finite dimensional space spanned by a
finite number of eigenmodes (see theorem 2) the eigenvalues of which -say λn

solution of (25) with σ = 0- would satisfy:

λn ≥ U2. (30)

One can draw a strange conclusion: if U is small enough and if the mesh size
in a numerical approximation is large enough, the Neumann-Kelvin is stable.
This is really disturbing because the true model is not. One has a numerical
filtering of the instabilities due to mesh size which would be too large.

The conclusion of this section is that the Neumann-Kelvin model is non phys-
ical (instable) as far as the capillary is not taken into account (excepted if
U = 0). This result is obviously in contradiction with the usual argument that
the capillary is very small and can be neglected compared to the gravity effect.

Remark 5. The dimension of the instable space corresponds exactly to
the number of eigenvalues λn solution of (25) and such that:

λn ≤ U2.

3 Numerical discussion in one dimension

Our goal is mainly to give a numerical illustration of the theoretical results
obtained for the progressive wave model. The accuracy of the tests must be
sufficient in order to be able to claim that our conclusions are valid. This
justifies that all the tests are restricted to one dimensional models. There are
four steps. The first one is to compute the steady flow in order to check the
influence of the depth of a submarine with respect to the free surface of the

12



water or the influence of a random distribution of pebble stones on the bottom
of the pool. In a second step the eigenvalue problem which characterizes the
static instabilities is discussed numerically. The influence of the mesh size, of
the position of the submarine and of the capillary coefficient are examined. In a
third step few theoretical results concerning the evolution of the spectral density
are compared with the numerical results. Finally the fourth step concerns a
simulation of the progressive waves on the free surface of the water.

3.1 Computation of the steady flow Φ0

The solution method used is a finite element method. Conformal first degree
polynomials have been used with a triangular mesh for Ω. The results are quite
standard but the goal is to show that the velocity on the free surface is different
from U because of the effect of the submarine or the pebble stone bottom.
Something similar occurs for a shallow water model with irregular bottom.
The coarser meshes used are represented on figure 2. The point is important
because the fact that Φ0 is different from x1 + c destroys the possibility to use
an integral formulation as it is done in most of the published papers (see for
instance Chalikov [CHA 07] Chen [CHEN 01] or Doutreleau [DOU 95]). The

Figure 2: The coarser meshes used for the submarine (left graph) and for the
pebble stone bottom (right graph).

isovalues of Φ0 have been plotted for two distinct situations (a submarine and
a pebble stone bottom) on figure 3 . It appears that ∇sΦ0 is not constant. The
variations of ∇sΦ0 and ∆sΦ0 have been plotted on figure 4.

3.2 Convergence of the critical eigenvalues

The stability of the progressive wave model depends on the positiveness of the
eigenvalues of the model defined at (25). Hence a numerical study is carried
out in order to check the accuracy of the method which enables to compute the
critical velocities Uc defined as the square root of these eigenvalues. The lowest
defines the first critical velocity of the steady flow. One important feature of
this mechanical phenomenon is that the spectral density is quite large and thus

13



Figure 3: The isovalues of Φ0 are plotted for the submarine on the left and the
one for the pebble stone bottom on the right.

Figure 4: On the left are the results for the submarine and on the right for the
pebble stone bottom.
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the convergence is poor (see classical numerical analysis books [RATO 83]).
The figure 5 shows the convergence of the eigenvalues versus mesh refinements
for three different ratio between the sides of the rectangle. The computation
cases correspond to a rectangular pool (without submarine). The analytical
solution is known (see for instance J. Lighthill [LIH 78]).

Figure 5: Convergence of the spectrum of (25) versus the mesh size for the
rectangular pool without submarine (the analytical solution is known).

The figure 6 corresponds to a pebble stone bottom with three different ratio
between the sides of the domain Ω. In both cases the convergence is quite slow.
It is much slower than in a classical membrane model for instance and even in
a Steklov’s one [NEC 67]. The reason is double: first of all the compactness
is only based on the compact embedding of the Sobolev’s spaces H1(Γf ) into

H
1/2

00 (Γf ). Secondly, the operator is not local and couples all the point of the
free surface Γf through the operator G. For instance, if a lack of convergence
appears near a corner inside of Ω it slows down the convergence everywhere
and thus the eigenvalue model (25) is also degraded. The smallest eigenvalue
is the square of the critical flow velocity at which a dynamic instability can
occur.

3.2.1 Influence of the depth of the submarine

The computation shown in the following are performed with a refined mesh in
the previous analysis. The evolution of the ten smaller eigenvalues (square of
the critical velocities) have been plotted for several depths of the submarine
from the free surface on figure 7. The laplacian ∆sΦ̃0 is kept. The smallest
eigenvalue is smaller than in the analytical case used for the analysis of the
convergence in the previous subsection when the submarine is quite close to
the free surface and the inverse if it is quite deep. This is due to the Venturi
effect between the submarine and the free surface for small depth and between
the submarine and the bottom for large depth. The results obtained for σ = 0
are also drawn on figure 7. One can see that the eigenvalues are much smaller.
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Figure 6: Convergence of the spectrum of (25) versus the mesh size for the
pebble stone bottom (the analytical solution is unknown).

In a theoretical analysis of the eigen value model (25), it has been proved that
for σ = 0 the sequence of the eigenvalues is upper bounded and the lower
bound is zero (for the continuous model and are close to zero for a given finite
element mesh). The lower graph on figure 7 shows that if the submarine is deep
enough, the eigenvalues are very close from one to the other. And according
to the theoretical analysis, this cluster of values tends to zero when the mesh
size tends also to zero (for any depth of the submarine). At the opposite for
σ > 0 the sequence of eigenvalues tends to the infinity and is lower bounded
by a strictly positive number. Thus one can see that even if the capillary force
are small their global energy is not. Hence it is not possible to cancel them in
a realistic model for progressive waves.

Figure 7: Influence of the depth of a submarine on the critical velocities (square)
σ = 7, 5 10−2 for top curve and σ = 0 for bottom curve.
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3.2.2 Influence of the depth of the pool with pebble stone bottom

The critical velocities depend on the shape of the pebble stone bottom but also
on the depth of the pool. Similarly to the case of the submarine, the evolution
of the spectrum has been computed and compared. The results are plotted on
figure 8 depending if the capillary phenomenon is taken into account or not.
Furthermore, the computation with and without the laplacian term have been
compared but no meaningful influence of this term has been observed.

Figure 8: Influence of the depth of a pebble stone bottom pool on the critical
velocities (square) σ = 7.510−2 for top curve, σ = 0 for bottom curve.

3.3 About the numerical scheme used for progressive wave

Two time step schemes are discussed in this subsection but one has to be careful
about the stability property. The test examples correspond to a submarine
which is quite close to the free surface of the water. It is represented on the
figures of section 3.4 (see figures 9 and 10).

3.3.1 A first scheme for a flow velocity such that U < Uc.

Let us use the progressive wave model as follows where V h is the approximation
space for the displacement η (the laplacian ∆sΦ̃0 is neglected for the theoretical
discussion):



























find ηn+1 ∈ V h such that ∀v ∈ V h,

ms(η
n+1 − 2ηn + ηn−1, v) + 2U∆tcs(η

n+1 − ηn, v)

+
∆t2

2
as(η

n+1 + ηn, v) = F (v).

(31)
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Setting v = ηn+1 − ηn in this relation, one obtains (the gyroscopic term disap-
pears because Cs is antisymmetrical):

ms(
ηn+1 − ηn

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n+1, ηn+1)

= ms(
ηn − ηn−1

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n, ηn).

(32)

Finally, from the Schwarz’s inequality (which is optimal) one deduces that:

1

2
ms(

ηn+1 − ηn

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n+1, ηn+1)

≤ 1

2
ms(

ηn − ηn−1

∆t
,
ηn − ηn−1

∆t
) +

1

2
as(η

n, ηn).

(33)

This inequality ensures the stability of the scheme as soon as U < Uc because
the terms above represent the energy of the system. But if U ≥ Uc the bilinear
form as is no more positive. Let use an Hilbert basis of the space H1

0 (Γf )
solution of the eigenvalue problem:























find w, λ ∈ H1
0 (Γf ) × R such that:

∀v ∈ H1
0 (Γf ), λms(w, v) = as(w, v),

ms(w, w) = 1.

(34)

The family of solutions {wn} is an Hilbert basis of the space [H̃1/2(Γf )]′ which
is ordered such that:

λ1 ≤ λ2 ≤ . . . ≤ λn ≤ λn+1 ≤ . . .

Furthermore the basis is also conjugate versus the bilinear form as. Let us
denote by P the smallest integer such that λP > 0. Let us set:

ηn =
∑

n≥1

αn
j wj . (35)

Hence from (32) one deduces that:

∀j ≥ 1, ∀n ≥ 1,

|
αn+1

j − αn
j

∆t
|2 +

λj

2
|αn+1

j |2 = (
αn+1

j − αn
j

∆t
) (

αn
j − αn−1

j

∆t
) +

1

2
λj |αn

j |2.
(36)

This implies the stability for any component αn
j such that j ≥ P . But for

j < P one only has from an induction argument (where the constant c depends
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on initial conditions):

|
αn+1

j − αn
j

∆t
|2 − |λj ||αn+1

j |2 ≤ c. (37)

Because this estimate is optimal (Schwarz’s inequality) it proves that the so-
lution ηn

j is instable. One can check it by considering the particular sequences

which satisfies (37) and which tends to the infinity as soon as ∆t
√

|λj | < 2:

αn+1
j =

αn
j

1 − ∆t
√

|λj |
. (38)

But the numerical test performed on the progressive wave model are still more
convincing. The simulation have performed with and without the surface lapla-
cian but the result are quite identical (the results presented are obtained with
this term). Furthermore the influence of the capillary is analyzed and one
can see that the influence is fundamental, even for flow velocities U smaller
than the first critical value Uc. The results have been plotted on figure 9
for σ = 7, 5 10−2 Nm−2 (with capillary) and σ = 0 (without capillary),
̺ = 103 Kg. One can observe that as soon as the critical velocity (here
Uc = 0.161 m/s) is overtaken, the scheme is fully instable and much more than
the physical solution. This transfer of energy is due to the gyroscopic coupling
(because it is the only mean to do that) which extracts energy from the stable
eigenmodes and delivers it onto the instable eigenmodes. For this reason one
can claim that the scheme (33) should be avoided for the development of the
instability. This result which is true for the linear model is also true for the
non linear progressive wave model.

3.3.2 A more appropriate scheme of the instable wave model U ≥ Uc.

Let us now consider another time step scheme for the wave equation by setting
(let us again consider that the laplacian δsΦ̃0 is neglected for the theoretical
discussion) :



























find ηn+1 ∈ V h such that ∀v ∈ V h,

ms(η
n+1 − 2ηn + ηn−1, v) + U∆tcs(η

n+1 − ηn−1, v)

+
∆t2

2
as(η

n+1 + ηn−1, v) = F (v).

(39)
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Figure 9: Instable time-evolution of the energy for the linear model for the
scheme (31) and for several velocities (U > Uc and U < Uc). Top for σ = 0
and bottom for σ = 7, 5 10−2.
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Setting v = ηn+1 − ηn−1 in this relation, one obtains (the gyroscopic term
disappears because Cs is antisymmetrical):

ms(
ηn+1 − ηn

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n+1, ηn+1)

= ms(
ηn − ηn−1

∆t
,
ηn − ηn−1

∆t
) +

1

2
as(η

n−1, ηn−1).

(40)

In fact this quantity is an approximation of the energy E(n) of the mechanical
system (progressive waves) at time t = n∆t is obtained as far as ηn and ηn±1

are close, because:

E(n) =
1

2
ms(

ηn+1 − ηn

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n, ηn). (41)

The important point is that this expression is constant for the scheme (39).
Hence it keeps the energy or at least a quantity which is equivalent to it.
Therefore even for instable movement this scheme is better adapted. The
numerical tests are plotted on figure 10. The values of the physical constants are
the same as in the scheme (31). One can observe that the stabilities observed
are close to the true physical solution as far as a capillary energy is kept. The
justification is that only the instable eigenmodes generate instable approximate
solutions.

3.4 Visualization of the surface wake

Let us consider in this section two simulations of the progressive water waves
occuring at the free surface. The first case corresponds to a submarine moving
forwards from the right to the left at a given velocity and quite close to the
free surface (see figure 11). The second one concerns the influence of a rocky
bottom (see figure 12). The geometry of the bottom is the one shown on figure
2. It is a superposition of several sinusöıdes. It is an artificial approximation
of real pebble stone bottom. But it should be point out that a slight random
perturbation of the pebbles stones on the bottom can induce a large variation
on the shape of the instabilities as far as the wave lenghts are close to the one of
the instabilities represented by the eigenvectors solution of (25). But this would
be another study. One important point is that the instabilities on the surface of
the water are localized (at the beginning) above the submarine and everywhere
in the second case concerning the pebble stone bottom. Furthermore the pebble
stone distribution has been chosen such that the wave lenght is different from
the one of the eigenmodes of the pool in order to avoid artificial resonances. In
both cases the movement is initiated by the digging effect η0 due to the term
−̺

2
|∇sΦ0|2 at the right hand side of the wave equation (10).
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Figure 10: Instable time-evolution of the energy for the linear model for the
scheme (39) for several velocities (U > Uc and U < Uc): top without capillary,
bottom with σ = 7.510−2
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3.4.1 The case of the submarine

One can observe that the surface becomes instable at the vertical of the subma-
rine. Thus the instability is transfered everywhere on the surface. This is due
to the fact that a Venturi effect appears between the surface of the water and
the submarine. Therefore the velocity is locally larger and the surface is sucked
downwards in a first step. Then a wave appears in the wake. This phenomenon
is always true but it is much more amplified over the critical velocity. Because
the spectral density is high around the first eigenvalue which is the square of
the first critical velocity, the mechanism becomes more and more complex for
larger velocities which imply several eigenvectors.

3.4.2 Visualization of the surface wave for the pebble stone bottom

Several velocities have been considered for the steady flow. The depth is fixed
and the four first graphs correspond to a velocity smaller than the critical value
obtained from the smallest eigenvalue of (25). The simulation is performed with
the linear model and the shape of the bottom is represented on the last graph
of these graphics. The two following correspond to instable velocities. One
can observe on figure 12 that the progressive waves depend strongly on the
value of this velocity compared to the first critical value. But because of the
high spectral density several instable eigenvectors are concerned for instance
if U ≥ 0.2m/s. This is justified from figure 6. Hence the instable movement
which is generalized on all the free surface is a very complex one.

3.4.3 The wake with a non-linear term

The two cases (submarine and pebble stone bottom) are discussed in this sub-
section. For U ≥

√
λ1 the linearized model of the surface is instable. Simula-

tions where the non-linear term:

̺

2

∫

Γf

[|∇sϕ|2 + |∂η

∂t
+ U∇sΦ̃0.∇sη|2],

has been added to the equation (19). In the numerical computation this term is
computed using backward time step difference in order to be explicit on the non
linear term. One could object that there are other non-linear terms which have
been omitted. Therefore the simulation given hereafter are only an indication
of what can happen.

The submarine (non-linear) The visualization of the wake observed is
plotted on figure 13 for the submarine. One can observe an amplification of
the solution compared to the linear one, even when the the linearized model is
stable.
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Figure 11: Wake above a submarine for different velocities of the steady flow:
0.1 m/s ≤ U ≤ 0.2 m/s
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Figure 12: Progressive waves for a small depth: 0.14 m/s ≤ U ≤ 0.24 m/s
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Figure 13: Non linear solution of the progressive wave model with a submarine
for U = 0.1m/s, 0.12m/s, 0.14m/s.

The pebble stone bottom (non-linear) One point in the non linear
case is that the instability seems to be more structured that in the linear case.
There can be a reason. The non linear term that has been introduced (which
is not complete) selects among the instabilities those which are non-linearly
stable and those which are instable.

Concerning the non-linear analysis, the results published up to now mainly
concern a simplified model in which there are no boundary condition and fur-
thermore there is no submarine or pebble stone bottom. The first mathematical
contribution is the paper by T. Brooke Benjamin and J. E. Feir [BEN 67] who
detected the possibility of an instability on a water surface flow under the ef-
fect of a periodic paddle excitation at a given frequency. Most of the references
(both theoretical and applied ones) [IOS 96], [DIKH 99], [CHA 07] concern a
finite dimensional approximation and mainly without capillary. Furthermore
the numerical tests are mostly restricted to case where one can use the integral
representation for the velocity potential of the solution, which is not adapted
to the geometry discussed here.
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Figure 14: Non linear solution of the progressive wave model for several ve-
locities U = 0.16m/s, 0.18m/s, 0.2m/s. The simulation concerns the pebble
stone model.

4 Conclusion

In this paper a modification of the Neumann-Kelvin’s wave model for the in-
stable progressive wave is discussed from the numerical point of view. Let us
underline the main points.

1 The role of the capillary is explained in mathematical framework for the phys-
ical equations for progressive waves. It is proved that the classical Neumann-
Kelvin’s model is fully instable and should be modified in order to be mechan-
ically reliable.

2 It is shown that the best way to take the capillary into account is to use
a formulation where the normal displacement η of the free surface appears as
a main unknown variable. In particular cases one can eliminate the velocity
potential ϕ making use of the added mass operator. This operator plays a basic
role in the balance energy between the gravity and the capillary. On simple
examples the first instability due to the velocity U occurs when the energy of
the capillary reach the same level as the one of the gravity (see the example
treated J. Lighthill [LIH 78]). But in more general cases, this critical velocity
is characterized by an eigenvalue problem. As far as one has to consider a
coupling of the sea with a ship, the formulation in η is more appropriate than
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the one in ϕ. For instance the slamming between the shell of the ship and
the surface of the water can be formulated with respect to η. Furthermore the
mathematical model of progressive waves formulated in η -even if it is equiva-
lent to the one in ϕ- has better properties for the numerical implementation.

There are other physical mechanisms which should be added to the progressive
wave model. For instance the vortex have been eliminated in the potential
model, but the viscosity should play a role on the damping of wave and the
characterization of the critical velocity Uc. The compressibility of the water is
certainly acceptable inside the water, but much less for the surface waves. The
coupling with the atmosphere is a fundamental problem and it can change a
lot the behaviour of the progressive waves, mainly if temperature gradient is
meaningful.

Our goal was only to focus on the validity (in fact the non validity) of the
Neumann-Kelvin’s model) for which a modification is suggested in order to
overcome classical difficulties mentioned in many scientific contributions.
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et applications, Tome 1, Dunod, Paris, (1968).

[MRO 92] J. P. Morand and R. Ohayon, Interactions fluides-structures, RMA
n023, Masson, Paris, 1992.
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