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Abstract

This paper focus on the role of the capillary in the modelling and
the analysis of progressive waves at the surface of the sea. It is proved
that the classical Neumann-Kelvin model is fully instable and should
be modified in order to be mechanically reliable. It is shown that the
easiest way to take the capillary into account is to use a formulation
where the normal displacement of the free surface appears as a main
unknown variable.
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1 Introduction

Since the work of Kelvin [KEL 87], many contributions have been published
for modelling progressive waves at the surface of the sea. In most of them, the
authors consider that the capillary is neglectible [STO 57], [DOU 95]. This is
a well founded hypothesis as far as one compares the forces in presence at the
surface of the sea. Unfortunately, as it has been pointed out by several authors
[CHEN 01] [IOS 96] [DIKH 99], the model is ill posed in a sense that is made
precise in the following. In this paper, an extension of classical models is pre-
sented which takes into account the surface energy of the sea. A mathematical
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analysis of it is given, and it is explained why it should be numerically more
stable than the usual one. The discussion is governed by the value of the sta-
tionary flow’s velocity. Comparaisons with the regular Neumann-Kelvin model
enable one to understand the limits of the classical progressive wave theory.
Before detailing the context of our work, let us precise that the literature on
water waves is very plentiful. Let us mention three works which seem to us
particularly interesting in our context: the work of B. Alvarez-Samaniego and
D. Lannes [ALLA 08], based on Zakharov ’s model, presents and justifies the
main asymptotic models such as shallow water equations, Boussinesq’s systems
(and some more) and its references. Let us note that their framework neglects
the capillary and the free surface of the water is unbounded (which enables
one to use Fourier transform). Capillary-gravity waves on the free surface of
a two dimensional inviscid fluid of infinite depth are studied in [IOS 96] and
[DIKH 99] (and their references) where they prove the existence of solitary
waves.
In this paper, one uses two functions in order to describe the wave phenomenon
occuring at the surface of a water pool which is moving forwards at a given
permanent velocity U . The fluid is assumed to be incompresssible and the
ordinary waves are due to the gravity and the capillary on the free surface.
The mathematical models that are analyzed in the following can be used in a
very general framework as soon as the fluid is assumed to be inviscid. Further-
more it is also necessary to assume that if the boundary is not connected, the
flow velocity has a zero circulation around each connected component of the
boundary of the pool. For instance, there can be a moving submarine under
the free surface of the water but its rotation should be zero. Then the two
functions which enable to describe the movement of the water are a velocity
potential function -say Φ- and the normal displacement -say η- of a geometrical
point of the free surface. Let us underline that this is not the displacement of
the water particle at this point. In our case, the kinematical continuity on the
free surface which will be considered as a separated media from the interior
of the sea, has to be written for a material point. The coupling between the
two media (the surface of the sea and the interior of the sea) requires as usual
two sets of relations: one for the kinematical continuity and the other for the
equilibrium of the stresses. But let us notice that the two waves (gravity waves
and capillary waves) are essentially surface waves. The model that is discussed
is based on the Neumann-Kelvin formulation [STO 57] [MOA 81] [DOU 95]
[KEL 87] [STOE 92] [CAM 02]. It is different because the capillary is taken
into account. Furthermore, in the Neumann-Kelvin model, one eliminates the
normal displacement η in order to obtain a model where the only unknown is
Φ. In the present analysis it is suggested that the formulation with respect to η
is more appropriate as far as numerical simulations are concerned. Our discus-
sion is based on mathematical arguments and more precisely on the spectral
theory of the involved operators. The dominating result is that the wave model
by Neumann- Kelvin is ill-posed and one can’t neglect the capillary effect on
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the free surface. A consequence is that a numerical simulation of the classical
model is meaningless unless an artificial numerical cut-off of the high frequen-
cies is used. The capillary is the right physical method for defining this cut-off.
There are other artificial methods used by engineers for instance by considering
a larger mesh of the free surface or by averaging the solution on a larger area
than the one used for the solution method. The theoretical results given in
this paper can be extended to the hydrodynamic behavior of a ship for the
modelling of the whipping and the slamming phenomenae [DCF 08] [DCF 09]
[HAC 02] [HOL 04] [GAZZ 05][GAZ 07].
Our plan is the following: in section 2, the interior fluid model is presented and
the added mass operator is defined. Its mathematical properties are discussed
in section 3. This operator is a corner stone in order to analyze the model
of the free surface which is given in section 4, where the steady state is also
studied. In section 5, the mathematical analysis of the full linearized coupled
model is done when it is expressed in terms of the normal displacement of the
free surface. It is proved that the model used in this paper is more stable than
the one suggested by Neumann and Kelvin. Let us split our analysis into two
main cases according to a small or a large value of the velocity of the flow. In
section 6, the formulation based on the velocity potential is discussed for the
Neumann-Kelvin’s model. In section 8, few remarks on the non linear case are
given and the section 9 concerns the numerical schemes.

Finally, let us mention that the main geometrical notations are explicited on
figure 1 and that constant c may change from one line to another.

2 The interior fluid model

The pool containing the water occupies in R
d (d = 2 or 3) a non empty, open,

bounded and connected set denoted by Ω, the boundary of which is denoted by
Γ = ∂Ω. Three parts of this boundary are distinguished and they are assumed
to be with non empty interiors: one denoted by Γ0 corresponds to the bottom of
the pool and the boundary of a submarine (see figure 1); a second one -say Γf -
is the free surface and the last one Γ1, contains the intake and the exit through
which the water is entering and exhausting from the pool. It is assumed that
Γ = Γ0 ∪ Γ1 ∪ Γf and that Γf is open. Let us denote by ν the unit outwards
normal to the boundary Γ.

In all the paper, the following boundary conditions are used :

• On Γ1, the normal velocity of the steady flow is prescribed equal to U(e1, ν)
where ( , ) denotes the scalar product of two vectors in R

d. The transcient
pressure is assumed to vanish on Γ1. This leads to an homogeneous Dirichlet
boundary condition for the transcient component of the velocity potential.
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Figure 1: Main notations

• On Γf , one assumes that the normal velocity of the steady flow is zero.
Let us remark that this is not the only possibility. Indeed, another one, may
be more realistic, would be to assume that the free surface Γf is a stream
surface for the steady flow (or a stream line in 2D). Let us suppose that the
free surface Γf is initially located in the space x3 = 0, whereas the coordinates
(x1, x2) are varying in the plane containing Γf (see figure 1).

The velocity potential which describes the steady flow is denoted by Φ0. It is
solution of the following system :







−∆Φ0 = 0 in Ω,

∂Φ0

∂ν
= 0 on Γ0,

∂Φ0

∂ν
= U(e1, ν) on Γ1,

∂Φ0

∂ν
= 0 on Γf ,

∫

Γf

Φ0 = 0.

(1)

It is known that there is a unique solution in the space H1(Ω) to (1) as soon
as the following Fredholm’s condition (see for instance [NEC 67]) is satisfied:

∫

Γ1

(e1, ν) = 0. (2)
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It is assumed to be valid. Let us remark that the hypothesis (2) is not re-
strictive and is satisfied in each physical case because it is a consequence of
the incompressibility of the fluid. If Ω is a parallelepiped, the condition (2) is
true and one can easily prove that Φ0(x) = U(x1 + c) with some constant c. It
satisfies ∆sΦ0 = 0 on Γf where ∆s is the inplane Laplace operator on Γf . In
other cases, one can write Φ0 = U(x1 + Φ1) where:







−∆Φ1 = 0 in Ω,

∂Φ1

∂ν
= −(e1, ν) on Γ0,

∂Φ1

∂ν
= 0 on Γ1 ∪ Γf

∫

Γf

Φ1 = −
∫

Γf

x1.

Let us assume that Φ1|Γf
∈ C3(Γf ) and thus Φ0|Γf

∈ C3(Γf ). This hypothesis
is fullfilled if Γ̄0 ∩ Γ̄f = ∅ and if the boundary of Ω is smooth enough (see
[GRI 86] or [KON 06]).

As usual, the last relation on Γf enables to fix the constant, Φ0 depends on as
far as a Neumann’s boundary condition is prescribed on all the boundary of Ω.
Let us write Φ0 = U Φ̃0 where Φ̃0 is solution of (1) with U = 1.

Let us now consider the dynamic behaviour of the water. The total velocity
potential Φ is written as the summ of two contributions: one is the steady state
defined previously and the other one is the dynamic state:

Φ = Φ0 + ϕ = U Φ̃0 + ϕ. (3)

The unit normal to the deformed boundary Γf is denoted by ν′. It is different
from ν when there is a rotation of this free surface, which is clearly the case
for waves and the coupling between the rotation of ν and the velocity of a
geometrical point of the free surface leads to gyroscopic forces as it is shown in
the following.
The boundary condition on the deformed free surface is

∂Φ

∂ν′
=
∂η

∂t
(ν, ν′),

where
∂η

∂t
(ν, ν′) is the velocity on the (deformed) free surface in the direction

ν′ The displacement of the free surface is neglected but not its rotation. In
fact, the gradient of η appears in the first order term and therefore, it is kept.
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Finally, the dynamic velocity potential ϕ satisfies the following set of equations:






−∆ϕ = 0 in Ω,

∂ϕ

∂ν
= 0 on Γ0, ϕ = 0 on Γ1,

∂Φ

∂ν′
=
∂η

∂t
(ν, ν′) on Γf ( which is the velocity on Γf in the direction ν′).

(4)
The last relation is a non-linear one. It is one of the main difficulty in progres-
sive wave modelling. Let us make it more explicit. From a classical computa-
tion, one has at the first order in η:

ν′ = ν −∇sη

where ∇s is the inplane gradient operator on Γf . This boundary condition can

be written as follows up to the second order (let us keep in mind that
∂Φ0

∂ν
= 0

and (∇sη, ν) = 0 on Γf ):

∂ϕ

∂ν
−∇sη.∇sΦ0 −∇sη.∇sϕ =

∂η

∂t
.

The linearized version of this relation around η = 0 and ϕ = 0 is:

∂ϕ

∂ν
=
∂η

∂t
+ ∇sη.∇sΦ0. (5)

If one considers an initial deformation of the free surface described by a function
η0, one would obtain:

∂ϕ

∂ν
=
∂η

∂t
+ ∇sη.∇sΦ0 + ∇sη0.∇sϕ. (6)

This is the case for instance if one considers the digging effect which is discussed
later on.
Several possibilities could occur for the boundary condition satisfied by ϕ on
Γ1. The one used in (4) traduces a vanishing acoustic pressure. Another
possibility would be to prescribe the total pressure (linearized expression) to
zero (assuming also that the steady velocity is normal to Γ1):

∂ϕ

∂t
+ U

∂ϕ

∂ν
= 0. (7)

Clearly there are many other possibilities in the definition of the boundary
condition that should be satisfied by ϕ on this part of the boundary ∂Ω. Fur-
thermore it is certainly validate to use different boundary conditions at the
flow-intake and at the exit.
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In many cases, the solution Φ0, in the neighbourhood of the free surface, is
very close to Ux1 + c. Hence, the steady velocity on Γf is almost uniform and
close to Ue1. This enables one to write approximately:

∂Φ

∂ν′
= ∇Φ.ν′ ≃ (Ue1 + ∇ϕ, ν′) =

∂ϕ

∂ν
− U

∂η

∂x1

, (8)

or else:
∂ϕ

∂ν
≃ ∂η

∂t
+ U

∂η

∂x1

, (9)

which is the formula used in most publications on progressive wave theory (see
J.J. Stoker [STO 57]). But for the general cases, the right linearized boundary
condition is:

∂ϕ

∂ν
=
∂η

∂t
+ U∇sΦ̃0.∇sη. (10)

This is the one that is considered in this paper. The difference between these
two expressions occurs for instance if a submarine is close to the free surface
or if the depth of the sea is small and if the bottom is not flat (shore effect).
It is worth noting that one needs an additional regularity on the term ∇sΦ̃0

in order to be able to make sense to the previous boundary condition. The
point is that Φ̃0 is a smooth function excepted occasionally near corners of the
boundary ∂Ω. For instance one can assume that as far as the angles between
Γ1 and Γf are near from π/2 then Φ̃0 ∈ C1(Ω) and therefore the restriction

on Γf of the gradient of Φ̃0 is continuous. But, as mentionned, we assume

more regularity on Φ̃0. Details concerning the regularity of the solution to
elliptic partial differential equations can be found in [KON 06] or [GRI 86].
This regularity property is used in the following. Let us underline that if a
surface ship is considered, the singularities which can appear at the junction
between the free surface of the water and the hull of the boat can induce
singularities which can change the analysis that is suggested in this paper. This
is widely discussed in [DCF 09]. Let us give a formal variational formulation
of the previous model. Let us set:

W0 = {ψ ∈ H1(Ω), ψ = 0 on Γ1}. (11)

At any time, the function ϕ = ϕ(t, x) should be solution of:







ϕ ∈W0,

∀ψ ∈W0,

∫

Ω

∇ϕ.∇ψ =

∫

Γf

∂η

∂t
ψ + U∇Φ̃0.∇sηψ.

(12)

Hence, ϕ appears as a linear function of η. More precisely, there are two

contributions: one is a linear function of
∂η

∂t
and the other one is a linear
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function of U∇sΦ̃0.∇sη. This operator, which maps the right hand side of
(12) into ϕ is named the added mass operator and is denoted by G. It plays a
crucial role in our analysis and this is why the next section gives a description
and few properties of G which are useful in all what follows. Having in mind
these properties related to G, we will then be able to introduce the model of
equilibrium related to the free surface.

3 Definition and properties of G

Let us first state some mathematicals notations and let us introduce functionnal
spaces that will be used in the following.

3.1 The spaces H̃1/2(Γf ) and its dual

Standard notations are used for Sobolev spaces and theirs norms; || . ||s,X
denotes the norm in Hs(X) where X is an open set of R

d (d ≥ 1). For instance
for s = 0 one has: H0(X) = L2(X). Let us consider the functional space W0

defined at (11) equipped with the norm:

||ψ||W0
= ||∇ψ||0,Ω.

Let us define the following closed subspace of H1/2(Γf ):

H̃1/2(Γf ) = {v ∈ L2(Γf ), ∃ψ ∈W0, v = ψ|Γf
}. (13)

The space H̃1/2(Γf ) is equipped with its natural norm which induces on it, an
Hilbert’s structure :

|||v|||1/2 = inf
ψ∈W0,v=ψ|Γf

||ψ||W0
= min
ψ∈W0,v=ψ|Γf

||ψ||W0
. (14)

Obviously, D(Γf ) ⊂ H̃1/2(Γf ), H̃
1/2(Γf ) is continuously embedded inH1/2(Γf )

and we have
∀v ∈ H̃1/2(Γf ), ||v||1/2,Γf

≤ |||v|||1/2 (15)

Remark 1. The space H̃1/2(Γf ) can be H1/2(Γf ) or H
1/2
00 (Γf ) (see [LM 68])

in particular cases depending on the geometry of the open set Ω and the con-
ditions prescribed on Γ1 in the space W0. For instance it is H1/2(Γf ) if Γ1 is

disconnected from Γf and: H
1/2
00 (Γf ) if Γ1 is connected to Γf and Γ̄0 ∩ Γ̄f = ∅

(as on figure 1).

The dual space of H̃1/2(Γf ) is denoted by H̃−1/2(Γf ), its norm is denoted by

||| . |||−1/2. and the duality bracket between H̃1/2(Γf ) and its dual is denoted
by 〈〈 , 〉〉.
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For regular functions η ∈ L2(Γf ) and v ∈ H̃1/2(Γf ), one has

〈〈η, v〉〉 =

∫

Γf

ηv =< η, v >−1/2,1/2

where < , >−1/2,1/2 denotes the duality between H−1/2(Γf ) and H1/2(Γf ).

The space H−1/2(Γf ) is continuously embedded into H̃−1/2(Γf ) and

∀η ∈ H̃−1/2(Γf ), |||η|||−1/2 ≤ ||η||−1/2,Γf
(16)

Let us now turn to the study of the added mass operator G.

3.2 Analysis of the operator G.

The definition of the linear operator G is :

g ∈ H̃−1/2(Γf ) → G(g) = Φ|Γf
∈ H̃1/2(Γf ) , (17)

where Φ = Φ(g) ∈W0 is the unique solution of :

∀ψ ∈W0,

∫

Ω

∇Φ.∇ψ = 〈〈g, ψ|Γf
〉〉. (18)

On the one hand Φ is uniquely as a function of W0 and on the other hand the
trace on Γf of a function in W0 is in the space H̃1/2(Γf ). Therefore G is well
defined. Furthermore, this operator satisfies the following properties.

Theorem 2. Let G be the operator defined at (17). G is a self-adjoint positive
operator from H̃−1/2(Γf ) onto H̃1/2(Γf ) and there exist two constants c1 > 0
and c0 > 0 such that:

∀g ∈ H̃−1/2(Γf ), c1|||g|||−1/2 ≤ |||G(g)|||1/2 ≤ c0|||g|||−1/2,

|||G(g)|||2
1/2 ≤ 〈〈g,G(g)〉〉.

Hence, the operator G is an isomorphism between H̃−1/2(Γf ) and H̃1/2(Γf ).

Proof. For (g, h) ∈ H̃−1/2(Γf )
2, let us set ψ = Φ(h) in (18). One obtains

∫

Ω

∇Φ(g).∇Φ(h) = 〈〈g,G(h)〉〉 = 〈〈h,G(g)〉〉 (19)

which proves that G is self adjoint. Furthermore, (19) implies that

||Φ(g)||21,Ω ≤ |||g|||−1/2 |||G(g)|||1/2,
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and from the definition of the norm in H̃1/2(Γf ),

|||G(g)|||21/2 ≤ ||Φ(g)||21,Ω ≤ |||g|||−1/2|||G(g)|||1/2
which proves the right hand side of the first inequality of theorem 2. The op-
erator G maps continuously H̃−1/2(Γf ) into H̃1/2(Γf ) and it is clearly one to
one because G(g) = 0 implies that Φ solution of (18) satisfies ∇Φ = 0 in Ω and

also Φ = 0 on Γ1. Thus Φ = 0 and therefore g =
∂Φ

∂ν
= 0.

The onto character of G is a consequence of its closed range. Let us prove it.
Let g ∈ H̃−1/2(Γf ) and let ψ0 ∈ H̃1/2(Γf ) be such that

|||g|||−1/2 =
〈〈g, ψ0〉〉
|||ψ0|||1/2

.

Let ψ ∈ W0 whose trace on Γf is ψ0 and such that ||ψ||W0
= |||ψ0|||1/2. One

has (with (19))

|||g|||−1/2 ≤ ||Φ(g)||W0
||ψ||W0

|||ψ0|||1/2
≤ ||Φ(g)||W0

. (20)

Let us now consider a continuous extension operator from H1/2(Γ) into X =
{u ∈ H1(Ω), ∆u ∈ L2(Ω)} -say R- with (see J.L. Lions et E. Magenes [LM 68]):

−∆R(v) ∈ L2(Ω) in Ω,
∂R(v)

∂ν
= 0 on Γ, R(v) = v on Γ.

Let v ∈ H̃1/2(Γf ). From the definition of this space there exists w ∈ W0 such
that w|Γf

= v and |||v|||1/2 = ||w||W0
. Let v1 = w|Γ. There exists c > 0 such

that for any v ∈ H̃1/2(Γf ), one gets:

||v1||1/2,Γ ≤ c|||v|||1/2. (21)

Applying this result with v = Φ(g)|Γf
= G(g), one obtains Φ(g) = R(v1) + Φ1

where ∆Φ1 = −∆R(v1) in Ω, Φ1 = 0 on Γf ∪ Γ1 and
∂Φ1

∂ν
= 0 on Γ0.

One also has

||Φ(g)||1,Ω ≤ ||R(v1)||1,Ω + ||Φ1||1,Ω ≤ ||v1||1/2,Γ + ||∆R(v1)||0,Ω
thus (20) and (21) lead to the existence of a constant c > 0 such that (constant
c might change from a line to another) for any g ∈ H̃−1/2(Γf ),

|||g|||−1/2 ≤ c||v1||1/2,Γ ≤ c||v̄||1/2,Γf∪Γ1
≤ c|||v|||1/2.

Recalling that v = G(g), one has proved thatG has a closed range in H̃1/2(Γf ).Thanks
to the fact that it is a self adjoint operator, one deduces that it is an isomor-
phism from H̃−1/2(Γf ) onto H̃1/2(Γf ).
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Finally, let us prove the second relation in theorem 2. We have

c1|||g|||2−1/2 ≤ |||G(g)|||21/2 ≤ c||Φ(g)||2W0
= 〈〈g,G(g)〉〉

hence G is positive the proof of theorem 2 is complete. ✷

Let us now notice few properties of the operator Ls defined on H1/2(Γf ) by

Ls(v) = ∇sΦ̃0.∇sv. (22)

Since Φ̃0 ∈ C1(Γ̄f ), one has Ls(v) ∈ H−1/2(Γf ) and there exists c > 0, de-

pending on Φ̃0 such that

||Ls(v)||−1/2,Γf
≤ c||v||1/2,Γf

. (23)

As a consequence, one deduces :

Corollary 3. There exists c > 0 such that the following estimates hold : for
every u, v ∈ H1/2(Γf ),

|〈〈Ls(v), G ◦ Ls(u)〉〉| ≤ c||v||1/2,Γf
||u||1/2,Γf

and for every u, v ∈ H̃1/2(Γf ),

|〈〈Ls(v), G ◦ Ls(u)〉〉| ≤ c|||v|||1/2|||u|||1/2

Proof. Since ∇sΦ̃0.∇sv ∈ H−1/2(Γf ), one has ∇sΦ̃0.∇sv ∈ H̃−1/2(Γf ) and the

term G(∇sΦ̃0.∇sv) makes sense. Applying Theorem 2, (16) and (15), it leads
to

∀u, v ∈ H1/2(Γf ),

|〈〈Ls(v), G ◦ Ls(u)〉〉| ≤ c0|||Ls(v)|||−1/2 |||Ls(u)|||−1/2,

≤ c||Ls(v)||−1/2,Γf
||Ls(u)||−1/2,Γf

≤ c||v||1/2,Γf
||u||1/2,Γf

(24)

which ends the corollary’s proof since the embbeding from H̃1/2(Γf ) inH1/2(Γf )
is continuous and thus the second part follows. ✷

Notice that the kernel of Ls plays an important role in the following.

The set of equations (4) and (10) is the dynamic fluid model. One can express
ϕ in terms of η and its derivatives as follows, but η is also an unknown. In the
case of boundary conditions on Γf stated in (10), we have

ϕ|Γf
= G(

∂η

∂t
) + UG(Ls(η))

11



whereas with boundary conditions (6), one has

ϕ|Γf
= G(

∂η

∂t
) + UG(Ls(η)) + UG(∇sη0.∇sϕ).

In this paper, we only consider boundary condition (10) on the free surface.
The case of (6) would require a different definition of operator G. This will be
studied in forthcoming papers.

An equation is still lacking: it is the one which traduces the equilibrium of the
free surface under the combine effects of the gravity, the water pressure and the
capillary forces. By eliminating ϕ as a function of η in this equilibrium equation,
one obtains the surface model which is an up-dated version of Neuman-Kelvin’s
model. This is explicited in the next section.

4 The equilibrium of the free surface

4.1 The model

Let us denote by p the pressure in the fluid. From Bernoulli theorem (see
for instance G. Duvaut [DUV 90] or L. Landau-E. Lipschitz [LAL 71]), one
obtains on the free surface of the water -say Γf (x3 = 0)- by considering only
the linearized expression in η and ϕ of the pressure (p0 is the pressure in the
air over the free surface):

p = p0 − ̺
∂ϕ

∂t
− ̺

2
|∇ϕ|2 − ̺U∇sΦ̃0.∇sϕ− ̺

U2

2
|∇sΦ̃0|2 − ̺gη + σ∆sη. (25)

In this expression σ > 0 is the capillary constant, ̺ > 0 is the mass density of
the fluid and g is the gravity (let us recall that the notation ∆s is the Laplace
operator restricted to the free surface). One can linearize this formula by
cancelling the term |∇ϕ|2. But one can also introduce a stationary solution η0
named the digging effect. It corresponds a stationary solution for the velocity
potential in the fluid denoted by ϕ0. Finally it is possible to linearize the non

linear term
̺

2
|∇ϕ|2 around this new stationary terms. The linearized pressure

at 0 is given by:

p = p0 − ̺
∂ϕ

∂t
− ̺U∇sΦ̃0.∇sϕ− ̺

U2

2
|∇sΦ̃0|2 − ̺gη + σ∆sη (26)

Let us adopt for instance homogeneous Dirichlet boundary conditions for η on
∂Γf (but many other possibilities exist). The equilibrium of the free surface is
therefore governed by (p0 which acts on both side of Γf is eliminated):

−σ∆sη + ̺gη + ̺
∂ϕ

∂t
+ ̺U∇sΦ̃0.∇sϕ = −̺U

2

2
|∇sΦ̃0|2 on Γf . (27)

12



with :

ϕ = G(
∂η

∂t
) + UG(Ls(η)) on Γf . (28)

The term −̺
2
U2|∇sΦ̃0|2 is a Venturi effect which induces the digging effect. It

means that even for a stationary case, one hasn’t exactly η = 0. The solution
of the previous model where the transcient terms have been cancelled is η0.
Considering that both G and Ls are linear, system (27) and (28) is linear and
one has η = η0 + η̃ (and ϕ = ϕ0 + ϕ̃) where η̃ is the solution of (27)-(28) with
a null right hand side.
In the next subsection, an analysis of the steady state of system (27)-(28) is
given and several concepts which will be useful in the following are introduced.
Without loss of generality, the digging effect is omitted concerning the dynamic
behavior of the surface.

4.2 On the digging effect

The digging component η0 is solution of:







η0 ∈ H1
0 (Γf ),

−σ∆sη0 + ̺gη0 + ̺U2∇sΦ̃0.∇sG(∇sΦ̃0.∇sη0) = −̺U
2

2
|∇sΦ̃0|2,

(29)

where UG(∇sφ̃0.∇sη0) is the solution ϕ of the model (4)-(10) but where the

term
∂η

∂t
is cancelled. For example, if Φ̃0 = x1 which is a classical case, and if

one restricts the preceding model to the one dimensional case (see section 7),
one obtains the following model for the digging effect:







η0 ∈ H1
0 (Γf ),

−σ∆sη0 + ̺gη0 + ̺U2

∂G(
∂η0
∂x1

)

∂x1

= −̺U
2

2
.

(30)

The expression of the digging effect η0 depends on the steady flow which is
described by Φ̃0. For instance it could be much more meaningful for shallow
water and with different boundary condition on Γ1. But the analysis given
here-after still works.

In order to explain the difficulties which will be encountered in the tanscient
analysis, let us discuss the model (29) assuming the properties of G stated in

13



theorem 2 and in section 3. It can be written in a variational form as follows:






find η0 ∈ H1
0 (Γf ) such that ∀v ∈ H1

0 (Γf ) :

∫

Γf

σ∇sη0.∇sv + ̺gη0v − ̺U2G(∇sΦ̃0.∇sη0)∇sΦ̃0.∇sv

−̺U2

∫

Γf

∆sΦ̃0G(∇sΦ̃0.∇sη0)v = −̺U
2

2

∫

Γf

|∇sΦ̃0|2v.

(31)

We first prove the

Theorem 4. There exists a critical velocity -say Uc > 0- such that for every
0 ≤ U < Uc, the bilinear form:

(η, v) ∈ H1
0 (Γf ) → σ

∫

Γf

∇sη.∇sv + ̺g

∫

Γf

ηv

−̺U2

∫

Γf

G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sv − ̺U2

∫

Γf

∆sΦ̃0G(∇sΦ0.∇sη)v,

is H1
0 (Γf ) elliptic. The operator:

v ∈ H1
0 (Γf ) → −σ∆sv + ̺gv + ̺U2∇sΦ0.∇sG(∇sΦ0.∇sv),

satisfies the maximum principle (for 0 ≤ U < Uc) and one has η0 ≤ 0. The
precise characterization of Uc is given in section 5.3.

Proof. From the properties satisfied by the operator G, one has (see theorem
2):

c0|||∇sΦ̃0.∇sη|||−1/2 ≤ |||G(∇sΦ̃0.∇sη)|||1/2 ≤ c1|||∇sΦ̃0.∇sη|||−1/2.

On the one hand, with (16) and (23), (let us recall that Φ̃0 ∈ C3(Γ̄f )) one gets:

|||∇sΦ̃0.∇sη|||−1/2 ≤ ||∇sΦ̃0.∇sη||−1/2,Γf
≤ c2||η||1/2,Γf

,

and on the other hand:

|
∫

Γf

∆sΦ̃0G(∇sΦ̃0.∇sη)v| ≤ c3||η||1/2,Γf
||v||1/2,Γf

.

Hence, from the natural continuous inclusion of the spaceH1
0 (Γf ) intoH1/2(Γf )

14



one can claim that there exists a constant c such that for any δ ∈]0, 1[:







∀v ∈ H1
0 (Γf ),

∫

Γf

[σ|∇sv|2 + ̺gv2 − ̺U2G(∇sΦ̃0.∇sv)∇sΦ̃0.∇sv]

−̺U2

∫

Γf

∆sΦ̃0G(∇sΦ̃0.∇sv)v

≥ (δ inf(σ, ̺g) − c̺U2)||v||2
1/2,Γf

+ (1 − δ) inf(σ, ̺g)||v||21,Γf
.

(32)

The inequality (32) ensures that for U small enough, the bilinear form which
appears in the variational equation (31) is elliptic on the space H1

0 (Γf ) and (31)
has a unique solution. It is worth noting that even if the bilinear form which
appears in (31) is not symmetrical, the Lax-Milgram’s theorem still applies. ✷

Let us extend the existence result to any velocity U with a Fredholm’s alter-
native. Let us first assume that the term ∆sΦ̃0 can be neglected which is the
case in most applications (see remark 9 below for general cases).

Theorem 5. Let us assume that ∆sΦ̃0 = 0 on Γf . There exists a countable
sequence {λp} with

0 < λ1 ≤ λ2 ≤ λ3 ≤ ...... ≤ λp ≤ λp+1 ≤ . . .

and there exists finite dimensional subspaces Sp such that
1 If λp < U2 < λp+1.
Then the model (31) has a unique solution.

2 If U2 = λp then
• If:

∀v ∈ Sp,

∫

Γf

|∇sΦ̃0|2v = 0

there is a solution to (31) which is defined up to an arbitrary element of Sp.

• If :

∃v ∈ Sp such that:

∫

Γf

|∇sΦ̃0|2v 6= 0,

there is no solution to (31).

Proof. Let us make few preliminary remarks which will also be helpful in the
the following. The bilinear form:

u, v ∈ H1
0 (Γf ) → a(u, v) =

∫

Γf

σ∇su.∇sv + ̺guv,

15



is symmetrical continuous and coercive on the space H1
0 (Γf ). From theorem 2

and its corollary, the bilinear form:

u, v ∈ H1
0 (Γf ) → b(u, v) = ̺

∫

Γf

G(∇sΦ̃0.∇su)∇sΦ̃0.∇sv,

is symmetrical positive and continous on the space H1
0 (Γf ) and defines a semi-

norm equivalent to ||∇sΦ̃0.∇sv||−1/2,Γf
on this space. But it is not always a

norm excepted if v ∈ H1
0 (Γf ), ∇sΦ̃0.∇sv = 0 implies that v = 0. Therefore

one sets:
K0 = {v ∈ H1

0 (Γf ), ∀q ∈ H1
0 (Γf ), b(v, q) = 0} (33)

which is the same than the kernel of b. It is a closed subspace of H1
0 (Γf ) and

a partial description of it is given in remark 7. The mapping:

v ∈ H1
0 (Γf ) →

√

b(v, v), (34)

is a norm on the quotient space H1
0 (Γf )/K0 which is isomorphic to the or-

thogonal of K0 in H1
0 (Γf ). The completed space with respect to this norm is

denoted by H#. It is also an Hilbert space.
From (24), H# contains the space H1/2(Γf ) and thus H̃1/2(Γf ). Hence the
embedding from H1

0 (Γf )/K0 into H# is compact. Finally, the spectral theorem
(see for instance [RATO 83]) can be applied to the following variational model:







find λ ∈ R
+∗, w ∈ H1

0 (Γf )/K0 such that:

∀v ∈ H1
0 (Γf )/K0, a(w, v) = λb(w, v),

with (one can use the norm on the space H1
0 (Γf )/K0):

infv0∈K0
b(w + v0, w + v0) = 1.

(35)

The result of the spectral theorem is stated in the following:

Lemma 6. There is a countable family of solutions (λn, wn) ∈ R
+∗ ×

H1
0 (Γf )/K0 such that the multiplicity of each eigenvalue λn is finite, the only

accumulation point is ∞, the family of the eigenvectors {wn} is an Hilbert’s

basis in the space H# and { wn√
λn

} is an Hilbert’s basis in the space H1
0 (Γf )/K0.

Finally, the sequence λn is ordered such that:

0 < λ1 ≤ λ2 ≤ λ3 ≤ ...... ≤ λp ≤ λp+1 ≤ . . .

and tends to infinity.

Theorem 5 is a direct consequence of Lemma 6 and of the Fredholm’s alterna-
tive.
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Remark 7. The description of K0 is clearly related to a unique continuation
property. In particular, it is necessary to have information on the nature of the
zero set of ∇sΦ̃0 where Φ̃0 is solution of (1).
Let γ ⊂ Γf be the set

γ = {x ∈ Γf , ∇sΦ̃0(x) = 0}.

It is a classical unique continuation result that γ has empty interior.
Let us prove that in the two dimensional case, K0 = {0}.
We have : v ∈ K0 implies that ∇sv is null on the supplementary of γ. Since
∂Φ̃0

∂ν
= 0 on Γf , γ is the set where the gradient of Φ̃0 is null. Since Φ̃0 is a real

and harmonic function, γ has no accumulation point in Γf . There then exists
a nonempty and open interval where v is constant. Let us consider a maximal
interval I with this property and let us suppose that b = sup I 6∈ ∂Γf . Since Φ̃0

is regular, in both case ∇sΦ̃0(b) = 0 (and then b is an isolated point in γ) or
∇sΦ̃0(b) 6= 0, there exists α > 0 such that ]b, b + α[∩γ = ∅. This implies that
v is constant on ]b, b+ α[ and since v is continuous, v = v(b) and [b, b+ α[⊂ I
which contracdicts the maximal character of I. One easily get that v is constant
on Γf and since v ∈ H1

0 (Γf ), v is null.
In three dimensionnal case, let us notice that there are several examples where
K0 = {0}. The first case which is mostly important corresponds to Φ̃0 = x1 +c
(parallelepiped case). In this case one has:

v ∈ K0 ⇔ ∂v

∂x1

= 0,

which implies that v only depends on the coordinates x2 transverse to x1 in the
plan containing Γf . But the only function in H1

0 (Γf ) which is constant with
respect to the coordinate x1 and null on ∂Γf is v = 0 and thus K0 = {0} .

More generally, as far as one can ensure that if for instance
∂Φ̃0

∂x1

6= 0 (excepted

at isolated point) the result is still true. But this would be different if there
was a surface boat on Γf that we do not consider in this paper.

Remark 8. Let us consider the case where:

∃v ∈ Sp such that:

∫

Γf

|∇sΦ̃0|2 v 6= 0.

When λp < U2 < λp+1 there is a unique solution to (31). When U2 → λp
the solution tends to infinity (in norm). One has a stiff problem which can be
be interpreted physically by a an explosion of the progressive wave solution of
(31).
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Remark 9. In the case where ∆sΦ̃0 6= 0 on Γf , one must consider a bilinear
form b which is no more symetrical and therefore the spectral theory is much
more complicated and not so well known. One can say that if U2 is not an eigen
value then the system is still well posed. If other cases, the right hand side
should be conjugate with respect to the eigenvectors of the tranposed operators
in order to ensure existence of solutions.

Remark 10. If the digging effect leads to a term η0 which can’t be neglected,
it is necessary to modify the definition of G as follows. Instead of (18), let us
introduce Φ ∈W0 solution of (G is the restriction of Φ on Γf ) :

∀ψ ∈W0,

∫

Ω

∇Φ.∇ψ −
∫

Γf

∇sη0.∇sΦ ψ =

∫

Γf

gψ. (36)

This is a non-symmetrical variational model. The only point which is not
straightforwards is that the bilinear form implied in the preceding model is
elliptic. In fact one has:

∫

Ω

|∇Φ|2 −
∫

Γf

∇sη0.∇sΦ Φ = ||Φ||21,Ω − 1

2

∫

∂Γf

∂η0
∂ν

Φ2 +

∫

Γf

∆sη0Φ
2. (37)

But Φ = 0 on ∂Γf because Φ = 0 on Γ1. The bilinear form implied in (36) is
therefore strictly coercive on W0 as soon as ∆sη0 ≥ 0 or is small enough.

5 Formulation of the model in η without digging
effect

5.1 The model

In this section, let us consider dynamical part of system (27) and (28) neglecting
η0 but having in mind that it should be added to the solution η that is discussed
hereafter in a numerical simulation. Let us consider the functional space in
which η is looked for:

V = H1
0 (Γf ). (38)

By multiplying equation (27) by an arbitrary element of the space V , one
obtains:

∀v ∈ V, σ

∫

Γf

∇sη.∇sv+̺g

∫

Γf

ηv+̺

∫

Γf

∂ϕ

∂t
v+̺U

∫

Γf

∇sΦ̃0.∇sϕv = 0. (39)

Using the map G which has been introduced in section 3, one can eliminate
the velocity potential ϕ. When U = 0 it leads to an inertia term on the free
surface of the water. But when U 6= 0 it gives new terms including gyroscopic
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and hydrodynamic negative stiffness contributions. Let us explains how. Let
us recall that the potential ϕ is solution of:







ϕ ∈W0,

∀ψ ∈W0,

∫

Ω

∇ϕ.∇ψ =

∫

Γf

∂η

∂t
ψ + U∇sΦ̃0.∇sη ψ,

(40)

which can be written (28) as

ϕ|Γf
= G(

∂η

∂t
) + UG(∇sη.∇sΦ̃0). (41)

By introducing this expression into the equation (39) which traduces the equi-
librium of the free surface, one obtains formally:







∀t ∈ [0, T ], η = η(t) ∈ H1
0 (Γf ),

∀v ∈ H1
0 (Γf ), ms(

∂2η

∂t2
, v) + 2Uc(

∂η

∂t
, v) + a(η, v) = 0,

(42)

with the notations for η and v smooth enough :







ms(η, v) = ̺

∫

Γf

G(η)v,

c(η, v) =
̺

2

∫

Γf

[G(∇sΦ̃0.∇sη)v −∇sΦ̃0.∇sv G(η) − ∆sΦ̃0G(η)v],

a(η, v) =

∫

Γf

[σ∇sη.∇sv + ̺gηv]

−̺U2

∫

Γf

[G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sv + ∆sΦ̃0G(∇sΦ̃0.∇sη)v].

(43)

Of course, one must add given initial data (η0, η1) to equation (42).
Let us present some properties of the bilinear forms involved by (42) which will
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be usefull in what follows. Let us set a = as + ar and c = cs + cr with







cs(η, v) =
̺

2

∫

Γf

[G(∇sΦ̃0.∇sη)v −∇sΦ̃0.∇sv G(η)]

cr(η, v) = −̺
2

∫

Γf

∆sΦ̃0G(η)v,

as(η, v) =

∫

Γf

[σ∇sη.∇sv + ̺gηv] − ̺U2

∫

Γf

G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sv

ar(η, v) = −̺U2

∫

Γf

∆sΦ̃0G(∇sΦ̃0.∇sη)v.

(44)
One has a = as and c = cs when the term ∆sΦ̃0 can be neglectible which is
the case in many examples.
The first step is to check few useful properties of the bilinear forms ms, c
and a. Let us notice that they are well defined if η and v are functions lying
in the space H1

0 (Γf ). The bilinear form ms and as are symmetrical and the
bilinear form cs is anti-symmetrical. This is due to the fact that it represents
a gyroscopic coupling, in fact, ∇sη is a rotation of the unit normal ν. The
main properties are the coerciveness properties which are summarized here-
after. Nevertheless the additional terms which would appear in the expression
of c and a can be easily handled as soon as one assumes that Φ̃0 ∈ C2(Γf ),
(see P. Grisvard [GRI 86] or M. Borsuk and V. Kondratiev [KON 06] for the
justification) because one has in this case:







|cr(η, v)| ≤ c|||η|||−1/2,Γf
|||v|||−1/2,Γf

,

and:

|ar(η, v)| ≤ c|||v|||1/2,Γf
||∇sΦ̃0.∇sη||−1/2,Γf

≤ c′||η||1/2 |||v|||1/2,Γf

(45)

Theorem 11. Let us assume that min(̺g, σ) > 0. There exists constants
ci > 0 such that for every η and v in H1

0 (Γf ), one has

(i) Concerning a and as:

∣
∣
∣
∣
∣
∣
∣
∣

|as(η, v)| + |a(η, v)| ≤ c3||η||1,Γf
||v||1,Γf

a(v, v) ≥ c0||v||21,Γf
− c6U

2||v||2
1/2,Γf
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(ii) Concerning ms :

c1|||v|||2−1/2 ≤ ms(v, v) ≤ c2||v||2−1/2,Γf
≤ c2|||v|||2−1/2.

(iii) Concerning c and cs :

∣
∣
∣
∣
∣
∣
∣
∣

|cs(η, v)| + |c(η, v)| ≤ c7||η||1/2,Γf
||v||1/2,Γf

cs(v, v) = 0, ∀v ∈ H1
0 (Γf ).

Proof. Notice first that H1
0 (Γf ) ⊂ H̃1/2(Γf ) thus Theorem 9 makes sense. The-

orem 2 proves that the bilinear form ms induces a scalar product on H̃−1/2(Γf )
which is equivalent to the usual one. Furthermore, the continuity of ms with
respect to the H−1/2(Γf ) norm is a consequence of (16) and thus assertion (ii)
is proved.
Concerning as, let us notice that:

∀η ∈ H1
0 (Γf ),

as(η, η) = σ

∫

Γf

|∇sη|2 + ̺g

∫

Γf

η2 − ̺U2

∫

Γf

G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sη

≥ min(σ, ̺g)||η||21,Γf
− ̺U2

∫

Γf

G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sη.

But, from the definition of the operator G and using again theorem 2 and its
corollary : ∫

Γf

G(∇sΦ̃0.∇sη)∇sΦ̃0.∇sη ≤ c′0||η||21/2,Γf

and assertion (i) is proved.
Assertion (ii) is clear with (i) and the second part of (45). Finally, (iii) is an
easy consequence of (23). The theorem 11 is now proved. ✷

Remark 12. A natural question is to obtain the best constants which appears
in the previous theorem. This is discussed in a section 5.3 in the case where
∆sΦ̃0 = 0. .

5.2 Well-posedness of (42) (σ > 0) for small velocity

Let us prove the following result:
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Theorem 13. There exists Uc > 0 such that for every 0 ≤ U < Uc and
every (η0, η1) ∈ V × H̃−1/2(Γf ), there exists a unique solution to (42) in

C0([0, T ];V ) × C1([0, T ]; H̃−1/2(Γf )) with η(0) = η0 and η̇(0) = η1.

Proof. Let us consider a basis -say {wn}- of the space H1
0 (Γf ) and let us denote

by V N the finite dimensional subspace of H1
0 (Γf ) spanned by the N first basis

vectors wn. Furthermore ηN0 and ηN1 are approximations of η0 = η(0) and

η1 =
∂η

∂t
(0) in the space V N . They are such that :







lim
N→∞

||ηN0 − η0||1,Γf
= 0,

lim
N→∞

|||ηN1 − η1|||−1/2,Γf
= 0.

(46)

Let us now consider the approximate models (for any N):







find ηN ∈ V N such that:

∀v ∈ V N , ms(
∂2ηN

∂t2
, v) + 2Uc(

∂ηN

∂t
, v) + a(ηN , v) = 0,

ηN (0) = ηN0 ,
∂ηN

∂t
(0) = ηN1 .

(47)

This is a finite dimensional linear differential equation with initial conditions
and constant coefficients. Therefore there is a unique solution to (46). Fur-
thermore the time dependence is as smooth as one wishes because one has:

ηN =
∑

k=1,N

αNk (t)wk,

and the time derivatives only imply the coefficients αNk .

Let us set Uc =

√
c0
c6

where the constants c0 and c6 are introduced in theorem

11. Let us assume that U < Uc. The bilinear form a is coercive on the
space H1

0 (Γf ) (non symmetrical) and one obtains an a priori estimate for the
approximate solution by setting v = η̇N in the variational equation (47). From
the symmetry of the bilinear forms ms and as, the anti-symmetry of cs, one

obtain with E(t) =
1

2
[ms(

∂η

∂t
,
∂η

∂t
) + as(η, η)](t),

if ∆sΦ̃0 = 0, E(t) = E(0) (48)

and in others cases,

E(t) ≤ c[E(0) +

∫ t

0

(cr(η,
∂η

∂t
) + ar(η,

∂η

∂t
))]. (49)
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Thanks to (45), Theorem 11 and Gronwall’s Lemma, the previous estimate
enables one to extract from ηN , a subsequence denoted by ηN

′

which converges
to η∗ in the following topology:







ηN
′

⇀ η ∗ in L∞(]0, T [;H1
0 (Γf )) weak*,

∂ηN
′

∂t
⇀

∂η∗
∂t

in L∞(]0, T [; H̃−1/2(Γf )) weak *.

(50)

In order to take the limit for N ′ → ∞, one uses the equivalent variational
formulation which makes sense to the second order time derivative of η∗:







∀Ψ =
∑

k=1,N0

βk(t)wk, with βk(t) ∈ D([0, T [), N0 ≤ N,

−ms(
∂ηN

∂t
,
∂Ψ

∂t
) − 2Uc(ηN ,

∂Ψ

∂t
) + a(ηN ,Ψ)

= −{ms(η
N
1 ,Ψ) + 2Uc(ηN0 ,Ψ)}.

(51)

But the result is true for any N0 ≤ N and the approximate initial conditions
converge to the one of the continuous model; hence one can claim that η∗ is
a solution to the weak (variational) model (42). The last point concerns the
uniqueness. The proof is slightly different from the usual one as far as there is a
gyroscopic term. First of all let us point out that the result is straightforwards

for smooth enough solutions. If ms(
∂2η

∂t2
,
∂η

∂t
) and as(η,

∂η

∂t
) can be defined,

the result is derived from the energy conservation property. In fact one can
introduce the difference between two solutions which satisfy the same initial
conditions and therefore the energy -which is constant with respect to the time
variable- is always zero. Let us now consider the general case for which the
regularity condition of the weak solution is not necessarily satisfied. Let us set
(following an idea given in J.L Lions [JLL 69]):

h =

∫ t

0

η (52)

One can check that:






h ∈ L∞(]0, T [;H1
0 (Γf ) ∩W 1,∞(]0, T [;H1/2(Γf )),

∀v ∈ H1
0 (Γf ),

ms(
∂2h

∂t2
, v) + 2Uc(

∂h

∂t
, v) + a(h, v) = ms(η1, v) + 2Uc(η0, v).

(53)

But h has also to satisfy the initial conditions:

h(0) = 0 et
∂h

∂t
= η0. (54)
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This enables one to ensure the uniqueness of h because the regularity assump-
tion is now satisfied. The uniqueness of η is a consequence of the one of h.

It has been proved that for small velocity U < Uc, the system is well-posed. ✷

The value of Uc given by Theorem (11) is not optimal and we precise it in the
next section.

5.3 About the static instabilities

Let us discuss the best value for the constant Uc in the particular case where
the term ∆sΦ̃0 is neglected. One has in this case a = as. Two possibilities
have to be considered depending if there is a capillary term or not (σ > 0 and
σ = 0).
Let us introduce the eigenvalue model which has already been used in the
analysis of the digging effect (31):







find (λ,w) ∈ R
+ ×H1

0 (Γf ) such that:

∀v ∈ H1
0 (Γf ),

λ̺

∫

Γf

G(∇sΦ̃0.∇sw)∇sφ̃0.∇sv = σ

∫

Γf

∇sw.∇sv + ̺g

∫

Γf

wv.

(55)

It is a non-classical formulation because the bilinear form:

(η, v) ∈ H1
0 (Γf ),→ ̺

∫

Γf

G(∇sΦ̃0.∇sw)∇sφ̃0.∇sv, (56)

is not always definite. One has from corollary 2:






∃c > 0, s.t. ∀η ∈ H1
0 (Γf ) :

∫

Γf

G(∇sΦ0.∇sη)∇sΦ0.∇sη ≥ c|||∇sΦ̃0.∇sη|||2−1/2.
(57)

The kernel of the bilinear form (56) has been defined at (33) as the subspace
of H1

0 (Γf ) such that:

K0 = {v ∈ H1
0 (Γf ), ∇sΦ̃0.∇sv = 0 on Γf}. (58)

It is a closed subspace of H1
0 (Γf ) and few properties of it are given in the

remark 7 where it has been proved that in 2D and in many cases in 3D, one
has K0 = {0}.
In what follows and in order to simplify, let us assume that K0 = {0} which
is the most realistic case. Notice that our results can be easily adapted to the
case where K0 6= {0} using the quotient space H1

0 (Γf )/K0 as in subsection 4.2.
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Since K0 = {0}, the mapping:

η ∈ H̃1/2(Γf ) → |||η|||# = |||∇sΦ̃0.∇sη|||−1/2,Γf
, (59)

is a norm on the space H̃1/2(Γf ) and with Theorem 2 :







∃c, c′ > 0, s.t. ∀η ∈ H̃1/2(Γf ) :

c|||η|||2# ≤
∫

Γf

G(∇sΦ0.∇sη)∇sΦ0.∇sη ≤ c′|||η|||2#.
(60)

LetH#(Γf ) be the completed space of H̃1/2(Γf ) equiped with the norm ||| . |||#.
Using (16) and (23) then (15), we get the existence of a constant c > 0 such
that for every v ∈ H̃1/2(Γf ),

|||v|||# ≤ c||Ls(v)||−1/2,Γf
≤ c||v||1/2,Γf

≤ c|||v|||1/2,Γf
,

thus H̃1/2(Γf ) ⊂ H#(Γf ).

Remark 14. The space H#(Γf ) is larger than H̃1/2(Γf ). An interesting case
(see theorem 15) corresponds to the inclusion: H#(Γf ) ⊂ L2(Γf ). Let us first

consider the two dimensionnal case with Φ̃0 = x1 + c. One has:

∇sΦ̃0.∇sv =
∂v

∂x1

∈ H̃−1/2(Γf ) hence v ∈ H1/2(Γf ) ⊂ L2(Γf ).

ThereforeH#(Γf ) ⊂ L2(Γf ). In the three dimensionnal case,
∂v

∂x1

∈ H̃−1/2(Γf )

and there is no reason to hope the previous inclusion.

From general spectral theory of linear operators one can deduce the following
theorem:

Theorem 15. Let us assume that K0 = {0}. Two cases are considered in
which the results are inverted.
1 • If σ > 0, there exists a countable set of elements denoted by (λn, wn) in
R

+∗×H1
0 (Γf ) solution of (55). Each term of the sequence (ordered by increas-

ing values) λn has a finite multiplicity and +∞ is the only accumulation point.
The family {wn} is an Hilbert basis of the space H#(Γf ). Furthermore, the

family { wn√
λn

} is an Hilbert basis of the space H1
0 (Γf ). The smallest eigenvalue

denoted by λ1 will be the best constant in theorem 11.

2 • If σ = 0 the result is different. Let us assume that H#(Γf ) ⊂ L2(Γf )
and that the inclusion is compact. There exists a countable set of solutions
(λn, wn) ∈ R

+∗ × H#(Γf ) and the terms of the sequence λn are ordered by
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decreasing values (the largest value is denoted by λ1). The multiplicity of each
term is finite and 0 is the only accumulation point. The family {wn} is an

Hilbert basis of the space L2(Γf ) while the family { wn√
λn

} is an Hilbert basis

of the space H#(Γf ).

Proof. Let us begin with σ > 0. The result is a direct consequence of the
spectral theory for linear operator as it is presented P.A. Raviart and J.M.
Thomas [RATO 83]. In fact the bilinear form :

(η, v) → σ

∫

Γf

∇sη.∇sv + ̺g

∫

Γf

ηv,

is symmetrical, continuous and coercive on the space H1
0 (Γf ). Furthermore the

bilinear and symmetrical form:

(η, v) →
∫

Γf

G(∇sΦ0.∇sη)∇sΦ0.∇sη,

is continuous and elliptic on the space H#(Γf ). The assumptions of the spec-
tral theory formulated in [RATO 83] are satisfied and the result is proved.

Let us consider the second case: σ = 0. Now the bilinear and symmetrical
form:

(η, v) → ̺g

∫

Γj

ηv,

is only equivalent to the square of the norm in the space L2(Γf ). The vari-
ational eigenvalue problem is inverted. The compact embedding is from the
space H#(Γf ) into L2(Γf ). This completes the proof of theorem 15. ✷

Remark 16. In the first case where σ > 0, one can characterize the constant
λ1 which appears in theorem 11 as the smallest eigenvalue of the model (55).
Therefore there are no confusion in the notation. Let us underline that λ1

which is the smallest eigenvalue solution of (55) satisfies for every v ∈ H1
0 (Γf ) :

λ1̺

∫

Γf

G(∇sΦ0.∇sv)∇sΦ0.∇sv ≤ σ

∫

Γf

|∇sv|2 + ̺g

∫

Γf

v2. (61)

Hence:






∀δ ∈ [0, 1], ∀v ∈ H1
0 (Γf ), as(v, v) ≥ inf(σ, ̺g)(1 − δ)||v||21,Γf

+̺(δλ1 − U2)

∫

Γf

G(∇sΦ0.∇sv)∇sΦ0.∇sv.
(62)
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Thus λ1 is the best constant in theorem 11 and it enables to characterize the
critical velocity Uc corresponding to the instability of the linear wave model in
which the term ∆sΦ̃0 is neglected, by:

Uc =
√

λ1. (63)

If U ≥ Uc the coerciveness of the stiffness bilinear form on the space H1
0 (Γf ) is

lost. But it is still true for the complementary of the first eigenvectors in this
space.

Remark 17. Let us assume that σ = 0, the coerciveness of as is no more
true on the space H1

0 (Γf ) but only on the space L2(Γf ) which is not contained
in H#(Γf ) in most cases. In fact, the contrary is very often true which is a
so-called mathematical inversion of the compactness.

Furthermore, for any velocity U > 0, there exists an infinite number of in-
stable eigenmodes. They are more and more local (the wave length is smaller
and smaller). Therefore, in a numerical approximation, the more the mesh is re-
fined, the larger is the number of instabilities. This remark which has already
formulated in a different numerical framework by Xiao-bo Chen [CHEN 02],
condemns the Neuman-Kelvin without capillary. In fact, the variational model
(42) is fully instable excepted for a finite number of eigenmodes (see theorem
15) the eigenvalues of which -say λn solution of (55) with σ = 0- would satisfy:

λn ≥ U2. (64)

One can draw a strange conclusion: if U is small enough and if the mesh size
in a numerical approximation is large enough, the Neumann-Kelvin is stable.
This is really disturbing because the true model is not. One has a numerical
filtering of the instabilities due to mesh size which would be too large.

The conclusion of this section is that the Neumann-Kelvin model is non physical
(instable) as far as the capillary is not taken into account (excepted if U = 0).
This result is obviously in contradiction with the usual argument that the
capillary is very small and can be neglected compared to the gravity effect. A
simple analytical example is discussed in section 6.

5.4 Extension of the existence and uniqueness result when
U ≥ Uc =

√
λ1 and σ > 0

First of all, let us note that the assumption σ > 0 is essential in this section
where the well-posedness of the system for large velocity is studied. For sake of
simplicity, it is assumed that ∆sΦ̃0 = 0 is neglectible. For a given velocity U,
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there is only a finite number of instable eigenmodes for which the stiffness oper-
ator (the static one) is negative. All the norms on the finite dimensional space
spanned by these eigenmodes are equivalent. This enables one to overcome the
lack of postivity. But it would be false for σ = 0 for which the instable space is
not finite dimensional. Our goal in this section is to prove an existence result
for the instable wave model.

Theorem 18. For every (η0, η1) ∈ V × H̃−1/2(Γf ), there exists a unique

solution to (42) in C0([0, T ];V ) × C1([0, T ]; H̃−1/2(Γf )) with η(0) = η0 and
η̇(0) = η1.

Proof. Let κ be a strictly positive constant which is specified latter on depend-
ing on the largest eigenvalue λn solution of the model (55) and such that:

λn ≤ U2 < λn+1.

Let us set:
η = eκtz. (65)

A simple formal calculus enables one to characterize z as a formal solution of:







∀v ∈ H1
0 (Γf ) ∩ L2

0(Γf ),

ms(
∂2z

∂t2
, v) + 2Ucs(

∂z

∂t
, v) + as(z, v) + κ2ms(z, v)

= −2κms(
∂z

∂t
, v) − 2Uκcs(z, v).

(66)

In order to obtain an a priori estimate on the solution zN of the approximate

model (analogous to (47)) let us choose v =
∂zN

∂t
for the test function in the

variational formulation. This leads to:

1

2

d

dt
[ms(

∂zN

∂t
,
∂zN

∂t
) + as(z

N , zN ) +κ2ms(z
N , zN )] ≤

c|||∂z
N

∂t
|||2−1/2,Γf

+ 2Uκcs(z
N ,

∂zN

∂t
)

Let us now examine the term cs(z
N ,

∂zN

∂t
). It is the summ of two terms. The

first one is:

̺

∫

Γf

G(∇sΦ̃0.∇sz
N )
∂zN

∂t
,
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which is bounded as follows: (as usual with (15), (16) and Theorem 2)

̺|
∫

Γf

G(∇sΦ̃0.∇sz
N )
∂zN

∂t
| ≤ c0|||G(∇sΦ̃0.∇sz

N )|||1/2,Γf
|||∂z

N

∂t
|||−1/2,Γf

≤ c1|||∇sΦ̃0.∇sz
N |||−1/2,Γf

|||∂z
N

∂t
|||−1/2,Γf

≤ c1|||
∂zN

∂t
|||−1/2,Γf

||∇sΦ̃0.∇sz
N ||−1/2,Γf

≤ c1
2

[||zN ||21/2,Γf
+ |||∂z

N

∂t
|||2−1/2,Γf

].

The second term is:

−̺
∫

Γf

G(zN )∇sΦ̃0.∇s(
∂zN

∂t
).

It can written as follows:

− d

dt
[̺

∫

Γf

G(zN )∇sΦ̃0.∇sz
N ] + ̺

∫

Γf

G(
∂zN

∂t
)∇sΦ̃0.∇sz

N .

Let us summarize the previous results. One has:

d

dt
[ms(

∂zN

∂t
,
∂zN

∂t
) + as(z

N , zN ) + κ2ms(z
N , zN )+

+2Uκ̺

∫

Γf

G(zN )∇sΦ̃0.∇sz
N ] ≤ c2[||zN ||21,Γf

+ |||∂z
N

∂t
|||2−1/2,Γf

].

(67)

But one has also for any α > 0:

2Uκ̺

∫

Γf

G(zN )∇sΦ̃0.∇sz
N ≤ 2Uκ̺||G(zN )||1/2,Γf

||∇sΦ̃0.∇sz
N ||−1/2,Γf

≤ ̺c3[ακ
2||zN ||2−1/2,Γf

+
U2

α
||zN ||21/2,Γf

],

which enables one to derive the estimates required for the a priori estimate on
zN for κ large enough. Let us explain how. From the previous inequality, one
has (the norm on H̃−1/2(Γf ) can be chosen equal to

√

ms(. .) or equivalently
to ||| |||−1/2,Γf

):

as(z
N , zN ) + κ2ms(z

N , zN ) + 2Uκ̺

∫

Γf

G(zN )∇sΦ̃0.∇sz
N

≥ κ2(1 − αc3̺)|||zN |||2−1/2,Γf
+ as(z

N , zN ) − ̺c3U
2

α
||zN ||21/2,Γf
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In order to lower bound the previous quantity, let us consider a splitting of
the space H1

0 (Γf ) into two subspaces as describe in the following lemma (let
us denote by (( , )) the natural scalar product on H1/2(Γf )).

Lemma 19. Let ζ > 0 and let Aξ(w, v) = as(w, v) − ζ((w, v)). There exists
a finite dimensionnal subspace Eζ and a real number δζ > 0 such that the
bilinear form δζms(w, v) +Aζ(w, v) is coercive on H1

0 (Γf ).

Proof of Lemma 19. Applying the spectral theorem to the eigenvalue problem

as(w̃, v) = µ̃((w̃, v)),

there exists an Hilbert basis of eigenvectors w̃k (k > 0) corresponding to a
non negative increasing sequence of eigenvalues µ̃k which tends to the infinity.
The bilinear form Aζ is a non negative one except on a finite dimensionnal
subspace of H1

0 (Γf ) denoted by Eζ . On that space Eζ , norms ms and || ||1/2,Γf

are equivalent. For some c0 > 0,

∀v ∈ Eζ , δζms(v, v) +Aζ(v, v) ≥ c0δζ((v, v)) +Aζ(v, v) ≥ as(v, v).

Therefore, there exists δζ > 0 such that δζms(v, v) + Aζ(v, v) is coercive on
H1

0 (Γf ) which proves Lemma 19. ✷

Let ζ > 0 be fixed. The classical spectral theorem can be applied to the
eigenvalue problem δζms(w, v) +Aζ(w, v) = µ ms(w, v) which is equivalent to:







find µ ∈ R, w ∈ H1
0 (Γf ) such that: ∀v ∈ H1

0 (Γf ),

µ ms(w, v) = as(w, v) − ζ((w, v)).
(68)

There exists a non decreasing sequence {µk} in R with only the infinity as ac-
cumulation point and an Hilbert basis {wk} in H̃−1/2(Γf ) equipped with norm√
ms of eigenvectors solution of (68) which are orthogonal for Aξ. Furthermore,

it has been proved in the previous lemma that the space spanned by the eigen-
vectors wk, k = 1, P corresponding to negative eigenvalues of the model (68) is

a finite dimensional one. It is denoted by VP . Let us choose ζ = ̺
c3U

2

α
. This

enables one to derive the following lower bound on the space VP :

∀v ∈ VP , κ
2(1 − αc3̺)ms(v, v) + as(v, v) −

̺c3U
2

α
||v||21/2,Γf

≥ [κ2(1 − αc3̺) + µ1]ms(v, v).

But on the finite dimensional space VP all the norms are equivalent. Thus
choosing

α <
1

c3ρ
and κ2 > − µ1

1 − αc3̺
> 0,
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one can conclude that there exists a positive constant c̃P such that:

∀v ∈ VP , κ
2(1 − αc3̺)ms(v, v) + as(v, v) −

̺c3U
2

α
||v||21/2,Γf

≥ c̃P ||v||21,Γf
.

(69)

On the orthogonal complementary space V ⊥
P of VP in H1

0 (Γf ) equipped with
the scalar product a0, the previous inequality is also satisfied and there exists
dP > 0 such that :

∀v ∈ V ⊥
P , κ

2(1 − αc3̺)ms(v, v) + as(v, v) −
̺c3U

2

α
||v||21/2,Γf

≥ dP ||v||21,Γf
.

(70)

Since the basis {wk} is orthogonal for the entire bilinear form κ2(1−αc3̺)ms(v, v)+

as(v, v) −
̺c3U

2

α
||v||21/2,Γf

, one easily gets with cP = min(c̃P , dP ) > 0,

∀v ∈ VP , κ
2(1 − αc3̺)ms(v, v) + as(v, v) −

̺c3U
2

α
||v||21/2,Γf

≥ cP ||v||21,Γf

(71)

and thus there exists cP > 0 and κ > 0 such that :

∀v ∈ VP , κ
2ms(v, v) + as(v, v) + 2ρU

∫

Γf

G(v)∇sΦ̃0.∇sv

≥ cP ||v||21,Γf

(72)

Finally, it has been proved that for any velocity U , there exists a constant
κ ≥ 0 and another one cP such that :

ms(
∂zN

∂t
,
∂zN

∂t
) + as(z

N , zN ) + κ2ms(z
N , zN )

+2Uκ̺

∫

Γf

G(zN )∇sΦ̃0.∇sz
N ]

≥ cP [|||żN |||2−1/2,ΓF
+ ||zN ||21,Γf

].

(73)

The a priori estimate on zN is then derived from the Gronwall’s lemma (see
for instance [JLL 69]) on the inequality (67). It is obtained in the space

L∞(]0, T [;H1
0 (Γf )) ∩W 1,∞(]0, T [; H̃−1/2(Γf )),
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and one can conclude to the existence and the uniqueness of a solution to the
instable model exactly as in the case where U <

√
λ1. The theorem 18 is

proved. ✷

Remark 20. One can consider several kind of boundary conditions on ∂Γf
concerning η. For instance, one can set:

∂η

∂ν
+ αη = 0 sur ∂Γf , (74)

which is a Robin’s boundary condition. If α = 0 there is a perfect gliding of the
water, if α = ∞ there is an adhesion of the water. But one can also consider a
condition as:

∂η

∂t
+ γ

∂η

∂ν
+ δη = 0, (75)

and so on.
The most suitable boundary condition for η is certainly a transparency one (L
Halpern [Hal 06]) in order to avoid reflection. But it would also be useful to
use such a condition for ϕ on Γ1. This will be discussed in a future work.

6 The model formulated with ϕ

The elimination of η is quite easy from the theoretical point of view, but much
more complicated in the practical applications as far as the capillary is kept. In
fact the goal is to transfom a Lagrangian formulation into an Euler one using
advective derivation:

Dt(.) =
∂

∂t
(.) + U∇sΦ̃0.∇s(.)

Thus, one has on Γf×]0, T [:







on the one hand:

∂ϕ

∂ν
= Dtη,

and on the other hand:

−σ∆sDtη + g̺Dtη =

−[̺
∂2ϕ

∂t2
+ 2̺U∇sΦ̃0.∇s

∂ϕ

∂t
+ ̺U2∇sΦ̃0.∇s(∇sΦ̃0.∇sϕ)].

(76)

Furthermore, ϕ satisfies the relations (4) in Ω and on Γ0 ∪ Γ1.
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Let us begin with the usual -but physically wrong- case where σ = 0 (no capil-
lary term). Let us consider ψ ∈ W0 and multiplying (4) by ψ, and integrating
by parts, one obtains (let us recall that ϕ = 0 on ∂Γf and therefore boundary
terms disappear in an integration by parts):

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

∀ψ ∈W0,

Z

Ω

∇ϕ.∇ψ +
1

g

Z

Γf

∂2ϕ

∂t2
ψ

+U

Z

Γf

∇sΦ̃0.∇s(
∂ϕ

∂t
)ψ − (∇sΦ̃0.∇sψ)

∂ϕ

∂t
− ∆sΦ̃0

∂ϕ

∂t
ψ

−U2

Z

Γf

(∇sΦ0.∇sϕ)(∇sΦ̃0.∇sψ) − U
2

Z

Γf

∆sΦ̃0(∇sΦ̃0.∇sϕ)ψ = 0.

(77)

This variational equation which corresponds to the local equation (4) is the
wellknown Neumann-Kelvin model [STO 57]. Let us point out again that its
numerical implementation is fully instable excepted for U = 0.
Let us now go to the case σ > 0. Let Z0 be the distribution space on Γf defined
by (it would be different for other boundary condition on ∂Γf ):

Z0 = H−1(Ω). (78)

Let us define by A the operator which maps Z0 onto H1
0 (Γf ) defined by:

A = [−σ
̺

∆s + gId]
−1. (79)

This is a regularizing operator which enables to define the up-graded (with
capillary) Neumann-Kelvin variational model by:

8

>

>

>

>

<

>

>

>

>

:

∀ψ ∈W0,

Z

Ω

∇ϕ.∇ψ +
1

g

Z

Γf

A[
∂2ϕ

∂t2
]ψ

+2U

Z

Γf

A[∇sΦ0.∇s(
∂ϕ

∂t
)]ψ + U

2

Z

Γf

A[(∇sΦ0.∇s(∇sΦ0.∇sϕ)]ψ = 0.

(80)

Remark 21. The mathematical analysis of Neumann-Kelvin model upgraded
with the capillary term is not necessary because it is equivalent to the one in
η. But the numerical approximation is easier for the model in η because the
order of the tangential derivatives are smaller.

7 A simple analytical example

Let us consider the open set Ω =]0, L[×]0, H[ which is represented on figure 2. It
is a rectangle the width of which is L and the height H. In order to simplify the
computation let us consider an homogeneous Neumann’s boundary condition
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U

Figure 2: Geometry used for the analytical example

for ϕ on Γ1. Let us choose for sake of simplicity Neumann’s boundary condition
on Γ1. The eigenvalue model (55) can be written:







−∆ϕ = 0 in Ω,

∂ϕ

∂ν
= 0 on Γ0 ∪ Γ1,

−σ∆sη + ̺gη + λ̺
∂ϕ

∂x1

= 0 and
∂ϕ

∂ν
=

∂η

∂x1

on Γf ,

η = 0 on ∂Γf .

(81)

One can solve it using a separation of the variables x1 et x2 (see figure 2).
Thus, one obtains a sequence of solutions depending on the integer n:







ηn(x1, x2) =

√

2

L
sin(

nπx1

L
),

ϕ(x1, x2) =

√

2

L
cos(

nπx1

L
) coth(

nπ(x2 +H)

L
),

λn = [gH +
n2π2σH

L2̺
]
tanh(

nπH

L
)

nπH

L

H large
︷︸︸︷≃ g

k
+
σk

̺
, k =

nπ

L
.

(82)
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Let us introduce the minimizer x0 =

√
g̺

σ

L

π
of the function f(x) =

gL

πx
+
σπx

̺L
.

Let us define the integer [x0] as the entire part of x0. One can easily prove that

Uc = min(
√

f([x0]),
√

f([x0] + 1)

=







√

f([x0]) if x0 ≤
√

[x0]2 + [x0]

√

f([x0] + 1) if x0 >
√

[x0]2 + [x0]

(83)

In the same context than J. Lighthill, we obtain a value close to (corresponding

to f(x0))

√

2g

k
=

√
2(
gσ

̺
)1/4, which is a value given by J. Lighthill [LIH 78] but

from a different formulation (using a Fourier’s transform in the x1 direction).
One can find the same expression which is discussed in the paper by D. Richard
and de P. G. Gennes [RIC 96]. Their framework is also the one of J. Lighthill.
For instance, for g = 9.81 m/s2, σ = 7, 5 10−2 N/m, ̺ = 1000 kg/m3, one
obtains: x0 = 361.67 and thus

Uc = f(362) = 0.233 m/s, (84)

which is a well known value by engineers. It is worth to comment it. If the flow
velocity is smaller than Uc, there are no instability on the surface. Engineers are
used to say that there is no wave on the surface in this case. But the formulation
given here enables to have a complete explanation of the phenomenon and can
be applied to any geometry. In particular, this enables to take into account the
shape of the bottom of the sea in shallow-water or the influence of a submarine
under the surface.
The evolution of the eigenvalues λn have been plotted for different values of σ

with respect to the wave lenght number k =
nπ

L
. In particular, one can observe

that for σ = 0 the sequence of eigenvalues tends to zero as n→ ∞. The point
is that this result is true for arbitrary geometry and not only the particlar one
used by Lighthill.
In case of Dirichlet boundary conditions on Γ1, computations are much more
complicated and not so explicit.

8 Remark on the non linear behaviour for the
solution given at section 7

Let us consider that the velocity U is larger than the critical value Uc of the
system (55). There exists a single eigenmode which is instable. It is denoted
by: (λ1, w1).
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Figure 3: First eigenvalue of (55) versus k for several values of σ

The model in ϕ is assumed to be still valid and it is up-graded by the addition of
the quadratic term contening the gradient of ϕ in the expression of the pressure.

Let us recall that this term is |∇ϕ|2 =
∂ϕ

∂ν

2

+ |∇sϕ|2. Another non-linear term

should be considered see (4) but is omitted for sake of simplicity. Thus, one
obtains the new wave model in the example of section 7:







−σ∆sη + ̺gη + ̺G(
∂2η

∂t2
) + ̺U [

∂G(
∂η

∂t
)

∂x1

+
∂G(

∂η

∂x1

)

∂t
]

+̺U2

∂G(
∂η

∂x1

)

∂x1

+
̺

2
[|
∂G(

∂η

∂t
+ U

∂η

∂x1

)

∂x1

|2 + |∂η
∂t

+ U
∂η

∂x1

|2] = 0,

(85)

where the operator G is the one defined at (17). The variational formulation
of this non-linear model is (the functional space VNL should defined in order
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to make sense to the non-linear terms):







find η(t) ∈ VNL such that:

∀v ∈ VNL ms(
∂2η

∂t2
, v) + 2Ucs(

∂η

∂t
, v) + as(η, v)

+
̺

2

∫

Γf

[|∂η
∂t

+ U
∂η

∂x1

|2 + |
∂G(

∂η

∂t
+ U

∂η

∂x1

)

∂x1

|2]v = 0.

(86)

Let us look for an approximate solution which has the simple expression:

η = ξ(t)w1.

Figure 4: Non-linear oscillations of the linear instability

Choosing the test function v in the one dimensional space spanned by w1,
one obtains a non-linear differential equation (cs is anti-symmetrical and thus
cs(w1, w1) = 0):

ξ̈ + (λ1 − U2)ξ +Aξ̇2 +Bξ̇ξ + Cξ2 = 0 où A > 0 et C > 0. (87)

In order to illustrate our discussion, the numerical solutions of this equation
(87) are plotted on figures 4 and 5. In the first case there is an oscillation of
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Figure 5: Instability of the non linear model

the linear instability and in the second one the non-linear solution is instable
(both are instable for the linearized model). But, one has to be careful con-
cerning the validity of such simulation because only one eigenmode is used and
furthermore the stable components which are coupled with the instable eigen-
mode is omitted. Furthermore a non-linear term contained in the kinematical
relation(4) has been omitted. A much more complete discussion on non-linear
waves including more realistic models is given in G. Ioss and P. Kirrmann [?].
A mechanical analysis of these non-linear waves in shallow water is explicited
in R. Timman, A.J. Hermans and G.C. Hisao [TIM 85].

9 Remark on the time step numerical scheme
for η

Let us just give few remarks (in the case where ∆sΦ̃0 = 0 on Γf ) for solving
the progressive wave model which can generate instabilities. First of all, let us
underline that the finite element method is certainly more appropriate as far
as the non-linear term should be taken into account in case of an instability
and the eigenvalues of several model should be computed. The difficulty is
to use a time-step scheme which remains stable until the physical instability
(at least). One criterion is to check the energy conservation for the numerical
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approximation. One trap to avoid is to transform the gyroscopic effect into
a negative damping which would generate an artificial instability. Therefore,
a centered scheme in time for this term is better. An up-wind sheme would
delayed the apparition of the critical velocity but increase the stability of the
scheme. It is obtained for instance by writting the approximate equation at
the middle between n∆t and (n + 1)∆t where ∆t is the time step. Let ηnbe
the approximation of η at time t = n∆t. A first possible scheme is:

ms(
ηn+1 − 2ηn + ηn−1

∆t2
, v) + 2Ucs(

ηn+1 − ηn

∆t
, v) + as(

ηn+1 + ηn

2
, v) = 0.

By choosing the test function v equal to ηn+1 − ηn and making use of Cauchy-
Schwarz’s inequality one deduces that:

1

2
ms(

ηn+1 − ηn

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n+1, ηn+1)

≤ 1

2
ms(

ηn − ηn−1

∆t
,
ηn − ηn−1

∆t
) +

1

2
as(η

n, ηn)

(88)

which proves that the scheme is stable as far as as (defined in (44)) is stricly
positive (the energy is decreasing which suggests that a numerical damping
is introduced). This is the case if U ≤

√
λ1. But if an instability occurs,

it is more appropriate to center the scheme around the time n∆t in order to
avoid an upward glidding of the critical velocity due to the artificial damping.
Therefore one can consider the following scheme which can be stable even if
the critical velocity is delayed:

ms(
ηn+1 − 2ηn + ηn−1

∆t2
, v) + 2Ucs(

ηn+1 − ηn−1

2∆t
, v) + as(

ηn+1 + ηn−1

2
, v) = 0.

By choosing for the test function v = ηn+1 − ηn−1 one obtains now an energy
conservation property which ensure that no artificial damping is introduced.
But the expression which ensure the stability is different from the energy. It is
the next one (which contains twice the kinetical energy):

ms(
ηn+1 − ηn

∆t
,
ηn+1 − ηn

∆t
) +

1

2
as(η

n+1, ηn+1)

= ms(
ηn − ηn−1

∆t
,
ηn − ηn−1

∆t
) +

1

2
as(η

n−1, ηn−1)

(89)

This result is a useful indicator which proves that the scheme doesn’t introduce
any artificial damping and therefore the instability can only occur when the
bilinear form as is no more strictly positive. This a strong argument for this
scheme even if the physical energy of the numerical sheme is not constant with
respect to the time variable.
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10 Conclusion

In this paper a modification of the Neumann-Kelvin’s wave model for the in-
stable progressive wave is discussed and analyzed. Let us underline the main
points:

1 The role of the capillary is explained in mathematical framework for the phys-
ical equations for progressive waves. It is proved that the classical Neumann-
Kelvin’s model is fully instable and should be modified in order to to be me-
chanically reliable.

2 It is shown that the best way to take into account the capillary is to use
a formulation where the normal displacement η of the free surface appears as
a main unknown variable. Thus one can eliminate the velocity potential ϕ
making use of the added mass operator. This operator plays a basic role in the
equilibrium energy between the gravity and the capillary. On simple examples
the first instability due to the velocity U occurs when the energy of the capil-
lary reach the same level as the one of the gravity (see the example treated in
section 7). This critical velocity is characterized by an eigenvalue problem.

3 As far as one has to consider a coupling of the sea with a ship, the for-
mulation in η is much more appropriate than the one in ϕ. For instance the
slamming between the shell of the ship and the surface of the water can be
formulated with respect to η. Furthermore the mathematical model of progres-
sive waves formulated in η -even if it is equivalent to the one in ϕ- has better
properties for the numerical implementation.

There are other physical mechanisms which should be added to the progressive
wave model. For instance the vortex have been eliminated in the potential
model, but the viscosity should play a role in the damping of wave and the
characterization of the critical velocity Uc. The compressibility of the water is
certainly acceptable inside the water, but much less for the surface waves. The
coupling with the atmosphere is a fundamental problem and it can change a
lot the behaviour of the progressive waves, mainly if temperature gradient are
meaningful.

Our goal was to focus on the validity (in fact the non-validity) of the Neumann-
Kelvin model) for which a modification is suggested in order to overcome clas-
sical difficulties mentioned in many scientific contributions.
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