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Consider a de�ned density on a set of very large dimension. It is quite di�cult to �nd an esti-
mate of this density from a data set. However, it is possible through a projection pursuit methodology
to solve this problem. In his seminal article, Huber (see "Projection pursuit", Annals of Statistics,
1985) demonstrates the interest of his method in a very simple given case. He considers the factor-
ization of density through a Gaussian component and some residual density. Huber's work is based
on maximizing relative entropy. Our proposal leads to a new algorithm. Furthermore, we consider
the case when the density to be factorized is estimated from an i.i.d. sample. In this case, we will
propose a test for the factorization of the estimated density.
Keywords: projection pursuit; minimum relative entropy; maximum relative entropy; elliptic dis-
tribution; rate of convergence.
MSC: 62H40 62F03 62F10 62F30.

1 Outline of the article
The objective of Projection Pursuit is to generate one or several projections providing as much
information as possible about the structure of the data set regardless of its size:

Once a structure has been isolated, the corresponding data are eliminated from the data set.
Through a recursive approach, this process is iterated to �nd another structure in the remaining
data, until no futher structure can be evidenced in the data left at the end.

Friedman [Frie8487] and Huber [HUB85] count among the �rst authors to have introduced this
type of approaches for evidencing structures. They each describe, with many examples, how to
evidence such a structure and consequently how to estimate the density of such data through two
di�erent methodologies each. For a very long time, the two methodologies exposed by each of the
above authors were thought to be equivalent but Mu Zhu [ZMU04] showed it was in fact not the
case when the number of iterations in the algorithms exceeds the dimension of the space containing
the data. In the present article, we will therefore only focus on Huber's study while taking into
account Mu Zhu remarks.

At present, let us brie�y introduce Huber's methodologies. We will then expose our approach
and objective.

1.1 Huber's analytic approach
Let f be a density on Rd. We de�ne an instrumental density g with same mean and variance as f .
Huber's methodology requires to start with performing the K(f, g) = 0 test. Should this test turn
out to be positive, then f = g and the algorithm stops. If the test were not to be veri�ed, the �rst
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step of Huber's algorithm amounts to de�ning a vector a1 and a density f (1) by

a1 = arg inf
a∈Rd∗

K(f
ga
fa
, g) and f (1) = f

ga1

fa1

, (1)

where Rd∗ is the set of non null vectors of Rd, where fa (resp. ga) stands for the density of a>X
(resp. a>Y ) when f (resp. g) is the densiy of X (resp. Y ). More exactly, this results from the
maximisation of a 7→ K(fa, ga) since K(f, g) = K(fa, ga)+K(f ga

fa
, g) and it is assumed that K(f, g)

is �nite. In a second step, Huber replaces f with f (1) and goes through the �rst step again.
By iterating this process, Huber thus obtains a sequence (a1, a2, ...) of vectors of Rd∗ and a sequence
of densities f (i).

Remark 1. Huber stops his algorithm when the relative entropy equals zero or when his algorithm
reaches the dth iteration, he then obtains an approximation of f from g :
When there exists an integer j such that K(f (j), g) = 0 with j ≤ d, he obtains f (j) = g, i.e.
f = gΠj

i=1
f
(i−1)
ai

gai
since by induction f (j) = fΠj

i=1
gai

f
(i−1)
ai

. Similarly, when, for all j, Huber gets

K(f (j), g) > 0 with j ≤ d, he assumes g = f (d) in order to derive f = gΠd
i=1

f
(i−1)
ai

gai
.

He can also stop his algorithm when the relative entropy equals zero without the condition j ≤ d

is met. Therefore, since by induction we have f (j) = fΠj
i=1

gai

f
(i−1)
ai

with f (0) = f , we obtain g =

fΠj
i=1

gai

f
(i−1)
ai

. Consequently, we derive a representation of f as f = gΠj
i=1

f
(i−1)
ai

gai
.

Finally, he obtains K(f (0), g) ≥ K(f (1), g) ≥ ..... ≥ 0 with f (0) = f .

At present, let us illustrate this through the following example:

Example 1 (From Huber's article). Let (X1, ..., Xd) be a random vector with density function f .
We want to approximate f with a product of Gaussian densities. Let g be a Gaussian density on
Rd with same mean and variance as f . In the sequel, for all a ∈ Rd∗, we will call fa the density of
a>X and f1, f2,...,fd the marginals of f . Thus, let us consider the two following hypotheses:

• Let us assume that the X1, ..., Xd are independent, i.e. f(x) = Πd
j=1fj(xj), and

• K(f1, g1) ≥ K(f2, g2) ≥ ... ≥ K(fd, gd) ≥ 0.

We assume the relative entropy between the marginals of identical ranking are well-ordered. Conse-
quently, gd and fd are the closest densities and g1 and f1 the least similar densities.
Thus, on page 458 of [HUB85], Huber �rst shows that, for all b in Rd∗, K(fb, gb) ≤ K(f1, g1). He
sets f (1)(x) = f(x) g1(x1)

f1(x1)
, he therefore gets a1 = (1, 0, ..., 0), f (1)(x) = Πd

j=1f
(1)
j (xj) - where f (1)

1 = g1

and f (1)
j = fj for j = 2, ..., d - and K(f, g) = K(f1, g1) +K(f (1), g) through relationship (1).

In the second step, Huber shows that, for all b in Rd∗, K([f (1)]b, gb) ≤ K(f2, g2). Hence, he gets
a2 = (0, 1, 0, 0, .., 0), f (2)(x) = Πd

j=1f
(2)
j (xj) - where f (2)

1 = g1, f
(2)
2 = g2 and f (2)

j = fj for j = 3, ..., d-
as well as K(f (1), g) = K(f

(1)
2 , g2) + K(f (2), g), i.e. K(f, g) = K(f1, g1) + K(f2, g2) + K(f (2), g),

since f (1)
2 = f2. And so on. Huber shows that, for all b in Rd∗, K([f (d−1)]b, gb) ≤ K(fd, gd).

Therefore, he obtains :
• ad = (0, 0, 0, 0, .., 1),
• f (d)(x) = Πd

j=1f
(d)
j (xj), where f (d)

d = gd and f (d)
j = gj for j = 1, ..., d− 1, i.e. f (d) = g, and

• K(f (d−1), g) = K(f
(d−1)
d , gd) + K(f (d), g) = K(fd, gd) since f (d) = g implies K(f (d), g) = 0 and

since f (d−1)
d = fd, i.e. K(f, g) = K(f1, g1) +K(f2, g2) + ...+K(fd, gd).

We therefore obtain f = gΠd
j=1

fj

gj
, which is the representation of f we have been looking for.
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1.2 Huber's synthetic approach
Keeping the notations of the above section, we start with performing the K(f, g) = 0 test; should
this test turn out to be positive, then f = g and the algorithm stops, otherwise, the �rst step of his
algorithm would consist in de�ning a vector a1 and a density g(1) by

a1 = arg inf
a∈Rd∗

K(f, g
fa
ga

) and g(1) = g
fa1
ga1

. (2)

More exactly, this optimisation results from the maximisation of a 7→ K(fa, ga) since
K(f, g) = K(fa, ga) + K(f, g fa

ga
) and it is assumed that K(f, g) is �nite. In a second step, Huber

replaces g with g(1) and goes through the �rst step again. By iterating this process, Huber thus
obtains a sequence (a1, a2, ...) of vectors of Rd∗ and a sequence of densities g(i).

Remark 2. First, in a similar manner to the analytic approach, this methodology enables us to
approximate and even to represent f from g:
To obtain an approximation of f , Huber either stops his algorithm when the relative entropy equals
zero, i.e. K(f, g(j)) = 0 implies g(j) = f with j ≤ d, or when his algorithm reaches the dth iteration,
i.e. he approximates f with g(d).
To obtain a representation of f , Huber stops his algorithm when the relative entropy equals zero,
since K(f, g(j)) = 0 implies g(j) = f . Therefore, since by induction we have g(j) = gΠj

i=1
fai

g
(i−1)
ai

with

g(0) = g, we then obtain f = gΠj
i=1

fai

g
(i−1)
ai

.

Second, he gets K(f, g(0)) ≥ K(f, g(1)) ≥ ..... ≥ 0 with g(0) = g.

Finally, in [ZMU04], Mu Zhu shows that, even if the above two algorithms are exclusively based on
the maximisation of the relative entropy K(fa, ga), beyond d iterations, the data processing of these
methodologies evidences signi�cant di�erences, i.e. that past d iterations, the two methodologies
are no longer equivalent. We will therefore only consider Huber's synthetic approach since g is
known and since we want to �nd a representation of f .

1.3 Proposal
We start with performing the K(f, g) = 0 test; should this test turn out to be positive, then f = g

and the algorithm stops, otherwise, the �rst step of our algorithm would consist in de�ning a vector
a1 and a density g(1) by

a1 = arg inf
a∈Rd∗

K(g
fa
ga
, f) and g(1) = g

fa1

ga1
. (3)

In the second step, we will replace g with g(1), and we will repeat the �rst step. And so on, by
iterating this process, we will end up obtaining a sequence (a1, a2, ...) of vectors in Rd∗ and a sequence
of densities g(i). We will prove that a1 simultaneously optimises (1), (2) and (3). We will also prove
that the underlying structures of f evidenced through this method are identical to the ones obtained
through Huber's methods.

Remark 3. As in Huber's algorithms, we perform an approximation and a representation of f :
To obtain an approximation of f , we stop the algorithm when the relative entropy equals zero, i.e.
we approximate f with g(j), or when the algorithm reaches the dth iteration, i.e. we approximate f
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with g(d).
To obtain a representation of f , we stop the algorithm when the relative entropy equals zero. There-
fore, since by induction we have g(j) = gΠj

i=1
fai

g
(i−1)
ai

with g(0) = g, we then obtain f = gΠj
i=1

fai

g
(i−1)
ai

.

Finally, we have K(g(0), f) ≥ K(g(1), f) ≥ ..... ≥ 0 with g(0) = g.

Let us study the following example:

Example 2. Let f be a density de�ned on R3 by f(x1, x2, x3) = n(x1, x2)h(x3), with n being a
bi-dimensional Gaussian density, and h being a non Gaussian density. Let us also consider g, a
Gaussian density with same mean and variance as f .
The function a 7→ K(g fa

ga
, f) reaches zero for e3 = (0, 0, 1)′.

Indeed, since g(x1, x2/x3) = n(x1, x2), we have K(g f3
g3
, f) = K(n.f3, f) = K(f, f) = 0 as f3 = h.

We therefore obtain that g(x1, x2/x3) = f(x1, x2/x3).

To recapitulate our method, if K(g, f) = 0, we derive f from the relationship f = g; should a
sequence (ai)i=1,...j, j < d, of vectors in Rd∗ de�ning g(j) and such that K(g(j), f) = 0 exist, then
f(./a>i x, 1 ≤ i ≤ j) = g(./a>i x, 1 ≤ i ≤ j), i.e. f coincides with g on the complement of the vector
subspace generated by the family {ai}i=1,...,j - see also section 2.1.2 for more detailed explanations.

In this paper, after having clari�ed the choice of g, we will consider the statistical solution to
the representation problem, assuming that f is unknown and X1, X2,... Xm are i.i.d. with density
f . We will provide asymptotic results pertaining to the family of optimizing vectors ak,m - that we
will de�ne more precisely below - as m goes to in�nity. Our results also prove that the empirical
representation scheme converges towards the theoretical one. As an application, section 3.4 permits
a new test of �t pertaining to the copula of an unknown density f and section 3.5 gives us an
estimate of a density deconvoluted with a Gaussian component. Finally, we will compare Huber's
optimisation methods with ours and we will present simulations.

2 The algorithm
2.1 The model
As explained by Friedman [Frie8487], Diaconis [DIAFREE84] and Hwang [HLL94], the choice of g
depends on the family of distribution one wants to �nd in f . Until now, the choice has been only to
use the class of Gaussian distributions. This can be extended to the class of elliptic distributions.

2.1.1 Elliptic laws

The interest of this class that it is such that conditional densities with elliptic distributions are also
elliptic - see [CAMBANIS81], [LANDS03]. This very property allows us to use this class in our
algorithm - and in Huber's algorithms.

De�nition 1. X is said to abide by a multivariate elliptic distribution - noted X ∼ Ed(µ,Σ, ξd) -
if X presents the following density, for any x in Rd :

fX(x) = cd
|Σ|1/2 ξd

(
1
2
(x− µ)′Σ−1(x− µ)

)

• with Σ, being a d× d positive-de�nite matrix and with µ, being an d-column vector,
• with ξd, being referred as the "density generator",
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• with cd, being a normalisation constant, such that cd = Γ(d/2)

(2π)d/2

( ∫∞
0
xd/2−1ξd(x)dx

)−1

,
with

∫∞
0
xd/2−1ξd(x)dx <∞.

Property 1. 1/ For any X ∼ Ed(µ,Σ, ξd), for any A, being a m× d matrix with rank m ≤ d, and
for any b, being an m-dimensional vector, we have AX + b ∼ Em(Aµ+ b, AΣA′, ξm).
Therefore, any marginal density of multivarite elliptic distribution is elliptic, i.e.
X = (X1, X2, ..., Xd) ∼ Ed(µ,Σ, ξd) ⇒ Xi ∼ E1(µi, σ

2
i , ξ1), fXi

(x) = c1
σi
ξ1

(
1
2
(x−µi

σ
)2

)
, 1 ≤ i ≤ d.

2/ Corollary 5 of [CAMBANIS81] states that conditional densities with elliptic distributions are also
elliptic. Indeed, if X = (X1, X2)

′ ∼ Ed(µ,Σ, ξd), with X1 (resp. X2) being a size d1 < d (resp. d2 <

d), then X1/(X2 = a) ∼ Ed1(µ
′,Σ′, ξd1) with µ′ = µ1 + Σ12Σ

−1
22 (a− µ2) and Σ′ = Σ11 − Σ12Σ

−1
22 Σ21,

with µ = (µ1, µ2) and Σ = (Σij)1≤i,j≤2.

Remark 4. In [LANDS03], the authors show that the multivariate Gaussian distribution derives
from ξd(x) = e−x. They also show that if X = (X1, ..., Xd) has an elliptic density such that its
marginals verify E(Xi) <∞ and E(X2

i ) <∞ for 1 ≤ i ≤ d, then µ is the mean of X and Σ is the
covariance matrix of X. Consequently, from now on, we will assume that we are in this case.

De�nition 2. Let t be an elliptic density on Rk and let q be an elliptic density on Rk′. The elliptic
densities t and q are said to belong to the same family - or class - of elliptic densities, if their
generating densities are ξk and ξk′ respectively, which belong to a common given family of densities.

Example 3. Consider two Gaussian densities N (0, 1) and N ((0, 0), Id2). They are said to belong
to the same elliptic families as they both present x 7→ e−x as generating density.

2.1.2 Choice of g

Let us begin with studying the following case:
Let f be a density on Rd. Let us assume there exists d not null independent vectors aj, with
1 ≤ j ≤ d, of Rd, such that

f(x) = n(a>j+1x, ..., a
>
d x)h(a

>
1 x, ..., a

>
j x), (4)

with j < d, with n being an elliptic density on Rd−j−1 and with h being a density on Rj, which
does not belong to the same family as n. Let X = (X1, ..., Xd) be a vector presenting f as density.
De�ne g as an Elliptic distribution with same mean and variance as f .
For simplicity, let us assume that the family {aj}1≤j≤d is the canonical basis of Rd:
The very de�nition of f implies that (Xj+1, ..., Xd) is independent from (X1, ..., Xj). Hence, property
1 enables us to derive that the density of (Xj+1, ..., Xd) given (X1, ..., Xj) is n.
Let us assume that K(g(j), f) = 0, for some j ≤ d. We then get f(x)

fa1fa2 ...faj
= g(x)

g
(1−1)
a1

g
(2−1)
a2

...g
(j−1)
aj

, since,

by induction, we have g(j)(x) = g(x)
fa1

g
(1−1)
a1

fa2

g
(2−1)
a2

...
faj

g
(j−1)
aj

.
Consequently, the fact that conditional densities with elliptic distributions are also elliptic as well
as the above relationship enable us to state that

n(a>j+1x, ., a
>
d x) = f(./a>i x, 1 ≤ i ≤ j) = g(./a>i x, 1 ≤ i ≤ j).

In other words, f coincides with g on the complement of the vector subspace generated by the
family {ai}i=1,...,j.
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At present, if the family {aj}1≤j≤d is no longer the canonical basis of Rd, then this family is
again a basis of Rd. Hence, lemma 7 - page 23 - implies that

g(./a>1 x, ..., a
>
j x) = n(a>j+1x, ..., a

>
d x) = f(./a>1 x, ..., a

>
j x), (5)

which is equivalent to having K(g(j), f) = 0 - since by induction g(j) = g
fa1

g
(1−1)
a1

fa2

g
(2−1)
a2

...
faj

g
(j−1)
aj

.
The end of our algorithm implies that f coincides with g on the complement of the vector subspace
generated by the family {ai}i=1,...,j. Therefore, the nullity of the relative entropy provides us with
information on the density structure.
In summary, the following proposition clari�es the choice of g which depends on the family of
distribution one wants to �nd in f :

Proposition 1. With the above notations, K(g(j), f) = 0 is equivalent to

g(./a>1 x, ..., a
>
j x) = f(./a>1 x, ..., a

>
j x)

More generally, the above proposition leads us to de�ning the co-support of f as the vector
space generated from vectors a1, ..., aj.

De�nition 3. Let f be a density on Rd. We de�ne the co-vectors of f as the sequence of vectors
a1, ..., aj which solves the problem K(g(j), f) = 0 where g is an Elliptic distribution with same mean
and variance as f . We de�ne the co-support of f as the vector space generated from vectors a1, ..., aj.

2.2 Stochastic outline of the algorithm
Let X1, X2,..,Xm (resp. Y1, Y2,..,Ym) be a sequence of m independent random vectors with same
density f (resp. g). As customary in nonparametric Kullback-Lieber optimizations, all estimates of
f and fa (resp. g and ga) are being performed using a subsample X1, X2,..,Xn (resp. Y1, Y2,..,Yn)
extracted from X1, X2,..,Xm (resp. Y1, Y2,..,Ym) such that the estimates are bounded below by
some positive deterministic sequence θm - see Annex B. Let Pn be the empirical measure of the
subsample X1, X2,..,Xn. Let fn (resp. gn, fa,n, ga,n for any a in Rd∗) be the kernel estimate of f
(resp. g, fa, ga) which is built from X1, X2,..,Xn (resp. Y1, Y2,..,Yn).
As de�ned in section 1.3, we introduce the following sequences (ak)k≥1 and (g(k))k≥1:
• ak is a non null vector of Rd such that ak = argmina∈Rd∗ , K(g(k−1) fa

g
(k−1)
a

, f),
• g(k) is the density such that g(k) = g(k−1) fak

g
(k−1)
ak

with g(0) = g.
The stochastic setting up of the algorithm uses fn and gn instead of f and g.
Thus, at the �rst step, we build the vector ǎ1 which minimizes the relative entropy between fn and
gn

fa,n

ga,n
and which estimates a1 :

Proposition 11 page 19 and lemma 11 page 24 enables us to minimize the relative entropy between
fn and gn fa,n

ga,n
. De�ning ǎ1 as the argument of this minimization, proposition 4 page 8 shows us that

this vector tends to a1 in n. Finally, we de�ne the density ǧ(1) as ǧ(1) = gn
fǎ1,n

gǎ1,n
which estimates g(1)

through theorem 1.
At the second step, we build the vector ǎ2 which minimizes the relative entropy between fn and
ǧ(1) fa

ǧ
(1)
a

and which estimates a2. Since g(1)
a can generally not be determined analytically, let us de�ne

the following procedure:
• We generate Y (1)

1 , Y (1)
2 ,..,Y (1)

m with density g(1),
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• We truncate this sample as we had truncated Y1, Y2,..,Ym in Annex B,
• We generate the kernel estimate of the univariate density ǧ(1)

a .
Consequently, proposition 11 page 19 and lemma 11 page 24 enable us to minimize the relative
entropy between fn and ǧ(1) fa,n

ǧ
(1)
a,n

. De�ning ǎ2 as the argument of this minimization, proposition 4
page 8 shows us that this vector tends to a2 as n tends to in�nity. Finally, we de�ne the density
ǧ(2) as ǧ(2) = ǧ(1) fǎ2,n

ǧ
(1)
ǎ2,n

which estimates g(2) through theorem 1.
And so on, we will end up obtaining a sequence (ǎ1, ǎ2, ...) of vectors in Rd∗ estimating the co-vectors
of f and a sequence of densities (ǧ(k))k such that ǧ(k) estimates g(k) through theorem 1.

3 Results
3.1 Convergence results
3.1.1 Hypotheses on f

In this paragraph, we de�ne the set of hypotheses on f which we can possibly use in our work.
Discussion of several on these hypotheses can be found in Annex D.
In this section, to be more legible we replace g with g(k−1). Let

Θ = Rd∗, M(b, a, x) =
∫
ln( g(x)

f(x)
fb(b

>x)
gb(b>x)

)g(x)fa(a>x)
ga(a>x)dx− ( g(x)

f(x)
fb(b

>x)
gb(b>x)

− 1),
PnM(b, a) =

∫
M(b, a, x)dPn, PM(b, a) =

∫
M(b, a, x)f(x)dx,

where P being the probability measure of f .
Similarly as in chapter V of [VDW], we de�ne :
(H ′1) : For all ε > 0, there is η > 0, such that for all c ∈ Θ verifying ‖c− ak‖ ≥ ε,

we have PM(c, a) < PM(ak, a)− η, with a ∈ Θ.
(H ′2) : There is a neighborhood of ak, V , and a positive function H, such that, for all c ∈ V

we have |M(c, ak, x)| ≤ H(x) (P− a.s.) with PH <∞,
(H ′3) : There is a neighborhood V of ak, such that for all ε, there is a η such that

for all c ∈ V and a ∈ Θ, verifying ‖a− ak‖ ≥ ε, we have PM(c, ak) < PM(c, a)− η.
Putting Iak

= ∂2

∂a2K(g
fak

gak
, f), and x → ρ(b, a, x) = ln( g(x)fb(b

>x)
f(x)gb(b>x)

)g(x)fa(a>x)
ga(a>x) , we consider now three

new hypotheses:
(H ′4) : There is a neighborhood V ′

k of (ak, ak) such that, for all (b, a) of V ′
k ,

the gradient ∇(g(x)fa(a>x)
ga(a>x) ) and the Hessian H(g(x)fa(a>x)

ga(a>x) ) exist (λ_a.s.), and the �rst order
partial derivative g(x)fa(a>x)

ga(a>x) and the �rst and second order derivative of (b, a) 7→ ρ(b, a, x)

are dominated (λ_a.s.) by integrable functions.
(H ′5) : The function (b, a) 7→M(b, a, x) is C3 in a neighborhood V ′

k of (ak, ak) for all x; and all the
partial derivatives of order 3 of (b, a) 7→M(b, a, x) are dominated in V ′

k by a P_integrable
function H(x).

(H ′6) : P‖ ∂
∂b
M(ak, ak)‖2 and P‖ ∂

∂a
M(ak, ak)‖2 are �nite and the expressions P ∂2

∂bi∂bj
M(ak, ak) and

Iak
exist and are invertible.

Finally, we de�ne
(H ′7) : There exists k such that PM(ak, ak) = 0.
(H ′8) : (V arP(M(ak, ak)))

1/2 exists and is invertible.
(H ′0): f and g are assumed to be positive and bounded.
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3.1.2 Estimation of the �rst co-vector of f

Let R be the class of all positive functions r de�ned on R and such that g(x)r(a>x) is a density
on Rd for all a belonging to Rd∗. The following proposition shows that there exists a vector a such
that fa

ga
minimizes K(gr, f) in r:

Proposition 2. There exists a vector a belonging to Rd∗ such that

argmin
r∈R

K(gr, f) =
fa
ga

and r(a>x) =
fa(a

>x)
ga(a>x)

.

In the following of sections 3.1 and 3.2, we will use the kernel estimate of f (resp. g, fa and ga
for any a in Rd∗) instead of f (resp. g, fa and ga for any a in Rd∗). We will keep the notation ”f”

(resp. ”g”, ”fa” and ”ga”) to designate this estimate.
Following [BROKEZ], let us introduce the estimate of K(g fa

ga
, f), through

Ǩ(g
fa
ga
, f) =

∫
M(a, a, x)dPn(x)

Proposition 3. Let
ǎ := arg inf

a∈Rd∗
Ǩ(g

fa
ga
, f).

Then, ǎ is a strongly convergent estimate of a as de�ned in proposition 2.

Let us also introduce the following sequences (ǎk)k≥1 and (ǧ(k))k≥1 - for any given n:
• ǎk is an estimate of ak as de�ned in proposition 3 with ǧ(k−1) instead of g - see section 2.2 -,
• ǧ(k) is such that ǧ(0) = g, ǧ(k)(x) = ǧ(k−1)(x)

fǎk
(ǎ>k x)

[ǧ(k−1)]ǎk
(ǎ>k x)

, i.e. ǧ(k)(x) = g(x)Πk
j=1

fǎj (ǎ>j x)
[ǧ(j−1)]ǎj (ǎ>j x)

.
We also note that ǧ(k) is a density.

3.1.3 Convergence study at the kth step of the algorithm:

In this paragraph, we will show that the sequence (ǎk)n converges towards ak and that the sequence
(ǧ(k))n converges towards g(k).
Let čn(a) = arg supc∈Θ PnM(c, a), with a ∈ Θ, and γ̌n = arg infa∈Θ supc∈Θ PnM(c, a). We state

Proposition 4. It holds
1/ supa∈Θ ‖čn(a)− ak‖ tends to 0 a.s.
2/ γ̌n tends to ak a.s. .

Finally, the following theorem shows that ǧ(k) converges almost everywhere towards g(k):

Theorem 1. It holds
ǧ(k) →n g

(k) a.s.

3.2 Asymptotic Inference at the kth step of the algorithm
The following theorem shows that ǧ(k) converges towards g(k) at the rate OP(m−1d=1− 4

4+d
1d>1) in

three di�erents cases, namely for any given x, with the L1 distance and with the relative entropy:
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Theorem 2. It holds
|ǧ(k)(x)− g(k)(x)| = OP(m−1d=1− 4

4+d
1d>1),∫ |ǧ(k)

n (x)− g(k)(x)|dx = OP(m−1d=1− 4
4+d

1d>1),
|K(ǧ

(k)
n , f)−K(g(k), f)| = OP(m−1d=1− 4

4+d
1d>1).

Then, the following theorem shows that the laws of our estimators of ak, namely čn(ak) and γ̌n,
converge towards a linear combination of Gaussian variables.

Theorem 3. It holds√
nA.(čn(ak)− ak)

Law→ B.Nd(0,P‖ ∂∂bM(ak, ak)‖2) + C.Nd(0,P‖ ∂
∂a
M(ak, ak)‖2) and√

nA.(γ̌n − ak)
Law→ C.Nd(0,P‖ ∂∂bM(ak, ak)‖2) + C.Nd(0,P‖ ∂

∂a
M(ak, ak)‖2)

where A = P ∂2

∂b∂b
M(ak, ak)(P

∂2

∂a∂a
M(ak, ak) + P ∂2

∂a∂b
M(ak, ak)), C = P ∂2

∂b∂b
M(ak, ak) and

B = P ∂2

∂b∂b
M(ak, ak) + P ∂2

∂a∂a
M(ak, ak) + P ∂2

∂a∂b
M(ak, ak).

3.3 A stopping rule for the procedure
In this paragraph, we will call ǧ(k)

n (resp. ǧ
(k)
a,n) the kernel estimator of ǧ(k) (resp. ǧ

(k)
a ). We will

�rst show that g(k)
n converges towards f in k and n. Then, we will provide a stopping rule for this

identi�cation procedure.

3.3.1 Estimation of f

Through remark 6 page 13 and as explained in section 14 of [HUB85], the following lemma shows
thatK(g

(k−1)
n

fak,n

g
(k−1)
ak,n

, fak,n) converges almost everywhere towards zero as k and then as n go to in�nity:

Lemma 1. We have limn limkK(ǧ
(k)
n

fak,n

[ǧ(k)]ak,n
, fn) = 0 a.s.

Consequently, the following proposition provides us with an estimate of f :

Theorem 4. We have limn limk ǧ
(k)
n = f a.s.

3.3.2 Testing of the criteria

In this paragraph, through a test of the criteria, namely a 7→ K(ǧ
(k)
n

fa,n

[ǧ(k)]a,n
, fn), we will build a a

stopping rule for this identi�cation procedure.
First, the next theorem enables us to derive the law of the criteria:

Theorem 5. For a �xed k, we have√
n(V arP(M(čn(γ̌n), γ̌n)))

−1/2(PnM(čn(γ̌n), γ̌n)−PnM(ak, ak))
Law→ N (0, I), as n goes to in�nity,

where k represents the kth step of the algorithm, where I is the identity matrix in Rd.

Note that k is �xed in theorem 5 since γ̌n = arg infa∈Θ supc∈Θ PnM(c, a) where M is a known
function of k - see section 3.1.1. Thus, in the case where K(g(k−1) fak

g
(k−1)
ak

, f) = 0, we obtain

Corollary 1. We have √n(V arP(M(čn(γ̌n), γ̌n)))
−1/2(PnM(čn(γ̌n), γ̌n))

Law→ N (0, I).

9
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Hence, we propose the test of the null hypothesis

(H0) : K(g(k−1) fak

g
(k−1)
ak

, f) = 0 versus the alternative (H1) : K(g(k−1) fak

g
(k−1)
ak

, f) 6= 0.

Based on this result, we stop the algorithm, then, de�ning ak as the last vector generated, we derive
from corollary 1 a α-level con�dence ellipsoid around ak, namely

Ek = {b ∈ Rd; √n(V arP(M(b, b)))−1/2PnM(b, b) ≤ qN (0,1)
α }

where qN (0,1)
α is the quantile of a α-level reduced centered normal distribution and where Pn is the

empirical measure araising from a realization of the sequences (X1, . . . , Xn) and (Y1, . . . , Yn).
Consequently, the following corollary provides us with a con�dence region for the above test:

Corollary 2. Ek is a con�dence region for the test of the null hypothesis (H0) versus (H1).

3.4 Goodness-of-�t test for copulas
Let us begin with studying the following case:
Let f be a density de�ned on R2 and let g be an Elliptic distribution with same mean and variance
as f . Assuming �rst that the algorithm leads us to having K(g(2), f) = 0 where family (ai) is the
canonical basis of R2. Hence, we have g(2)(x) = g(x)f1

g1

f2

g
(1)
2

= g(x)f1
g1

f2
g2

- through lemma 14 page 25
- and g(2) = f . Therefore, f = g(x)f1

g1

f2
g2
, i.e. f

f1f2
= g

g1g2
, and then ∂2

∂x∂y
Cf = ∂2

∂x∂y
Cg where Cf (resp.

Cg) is the copula of f (resp. g).
At present, let f be a density on Rd and let g be the density de�ned in section 2.1.2.
Let us assume that the algorithm implies that K(g(d), f) = 0. Hence, we have, for any x ∈ Rd,
g(x)Πd

k=1
fak

(a>k x)
[g(k−1)]ak

(a>k x)
= f(x), i.e. g(x)

Πd
k=1gak

(a>k x)
= f(x)

Πd
k=1fak

(a>k x)
- through lemma 14.

Moreover, the family (ai)i=1...d is a basis of Rd - see lemma 15 page 25. Hence, putting A = (a1, ..., ad)

and de�ning vector y (resp. density f̃ , copula C̃f of f̃ , density g̃, copula C̃g of g̃) as the expression
of vector x (resp. density f , copula Cf of f , density g, copula Cg of g) in basis A, the above equality
implies ∂d

∂y1...∂yd
C̃f = ∂d

∂y1...∂yd
C̃g. Finally, we perform a statistical test of the null hypothesis

(H0) : ∂d

∂y1...∂yd
C̃f =

∂d

∂y1...∂yd
C̃g versus (H1) : ∂d

∂y1...∂yd
C̃f 6= ∂d

∂y1...∂yd
C̃g.

Since under (H0) we have K(g(d), f) = 0, then, as explained in section 3.3.2, corollary 2 provides
us with a con�dence region for the test.

Theorem 6. Keeping the notations of corollary 2, we infer that Ed is a con�dence region for the
test of the null hypothesis (H0) versus the alternative (H1).

3.5 Rewriting of the convolution product
In the present paper, we �rst elaborated an algorithm aiming at isolating several known structures
from initial datas. Our objective was to verify if for a known density on Rd, there exists a known
density n on Rd−j−1 such that, for d > 1

f(x) = n(a>j+1x, ..., a
>
d x)h(a

>
1 x, ..., a

>
j x), (6)
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with j < d, with (a1, . . . , ad) being a basis of Rd and with h being a density on Rj.
Secondly, our next step has been to build an estimate (resp. a representation) of f without neces-
sarily assuming that f meets relationship (6) - see theorem 4 (resp. proposition 13 page 21).
Consequently, let us consider Z1 and Z2, two random vectors with respective densities h1 and h2 -
which is Elliptic - on Rd. Let us consider a random vector X such that X = Z1 + Z2 and let f be
its density. This density can then be written as :

f(x) = h1 ∗ h2(x) =

∫

Rd

h1(x)h2(t− x)dt.

Then, the following property enables us to represent f under the form of a product and without
the integral sign

Proposition 5. Let φ be a centered Elliptic density with σ2.Id, σ2 > 0, as covariance matrix, such
that it is a product density in all orthogonal coordinate systems and such that its characteristic
function s 7→ Ψ(1

2
|s|2σ2) is integrable - see [LANDS03].

Let f be a density on Rd which can be deconvoluted with φ, i.e.

f = f ∗ φ =

∫

Rd

f(x)φ(t− x)dt,

where f is some density on Rd.
Let g(0) be the Elliptic density belonging to the same Elliptic family as f and having same mean and
variance as f .
Then, the sequence (g(k))k converges uniformly a.s. and in L1 towards f in k, i.e.

lim
k→∞

sup
x∈Rd

|g(k)(x)− f(x)| = 0, and lim
k→∞

∫

Rd

|g(k)(x)− f(x)|dx = 0.

Finally, along with the notations of section 3.3 and of proposition 5, the following theorem enables
us to estimate any convolution product of a multivariate Elliptic density φ with a continuous density
f :

Theorem 7. It holds limn limk ǧ
(k)
n = f ∗ φ a.s.

4 Comparison of all the optimisation methods
In this section, we will study Huber's algorithm in a similar manner to sections 2 and 3. We will
then be able to compare our methodologies.

Remark 5 (Huber's algorithm). First, until now, the choice has only been to use the class of
Gaussian distributions. Here and similarly to section 2.1, we extend this choice to the class of
elliptic distributions.
Moreover, using the subsample X1, X2,..., Xn - see Annex B - and using the protocol of section 2.2
with K(ga, fa) - see section 4.2 - instead of K(g ga

fa
, f), proposition 11 page 19, lemma 11 page 24

and remark 6 page 13 enable us to perform Huber's algorithm :
• we de�ne â1 and the density ĝ(1) such that â1 = argmaxa∈Rd∗ K(ga,n, fa,n) and ĝ(1) = gn

fâ1,n

gâ1,n
,

• we de�ne â2 and the density ĝ(2) such that â2 = argmaxa∈Rd∗ K(ĝ
(1)
a,n, fa,n) and ĝ(2) = ĝ(1) fâ2,n

ĝ
(1)
â2,n

,
and so on, we will end up obtaining a sequence (â1, â2, ...) of vectors in Rd∗ and a sequence of densities
ĝ(k).
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4.1 Hypotheses on f

In this paragraph, we de�ne the set of hypotheses on f which we can possibly use in this work.
First, denote g in lieu of g(k−1). Let

Θ1
a = {b ∈ Θ | ∫

( gb(b
>x)

fb(b>x)
− 1)fa(a

>x) dx <∞},
m(b, a, x) =

∫
ln( gb(b

>x)
fb(b>x)

)ga(a
>x) dx − ( gb(b

>x)
fb(b>x)

− 1),
Pam(b, a) =

∫
m(b, a, x)fa(a

>x) dx and Pnm(b, a) =
∫
m(b, a, x)fa(a>x)

f(x)
dPn,

with Pa being the probability measure with density fa.
Similarly as V an der V aart, in chapter V of [VDW], let us de�ne :
(H1) : For all ε > 0, there is η > 0 such that, for all b ∈ Θ1

a verifying ‖b− ak‖ ≥ ε for all a ∈ Θ,
we have Pam(b, a) < Pam(ak, a)− η,

(H2) : There is a neighborhood of ak, V , and a positive function H, such that,for all b ∈ V ,
we have |m(b, ak, x)| ≤ H(x) (Pa − a.s.) with PaH <∞,

(H3) : There is a neighborhood V of ak, such that for all ε, there is a η such that for all b ∈ V
and a ∈ Θ, verifying ‖a− ak‖ ≥ ε, we have Pakm(b, ak)− η > Pam(b, a).

Moreover, de�ning x→ υ(b, a, x) = ln( gb(b
>x)

fb(b>x)
)ga(a

>x), putting:
(H4) : There exists a neighborhood of (ak, ak), that we will name Vk, such that, for all (b, a) of Vk,

the gradient ∇( ga(a>x)
fa(a>x)) and the Hessian H( ga(a>x)

fa(a>x)) exist (λ− a.s.) and the �rst order
partial derivative ga(a>x)

fa(a>x) and the �rst and second order derivative of order 3 of
(b, a) 7→ υ(b, a, x) are dominated (λ_a.s.) by integrable functions.

(H5) : The function (b, a) 7→ m(b, a) is C3 in a neighborhood Vk of (ak, ak) for all x and all the
partial derivatives of (b, a) 7→ m(b, a) are dominated in Vk by a P_integrable function H(x).

(H6) : P‖ ∂
∂b
m(ak, ak)‖2 and P‖ ∂

∂a
m(ak, ak)‖2 are �nite and the quantities P ∂2

∂bi∂bj
m(ak, ak) and

P ∂2

∂ai∂aj
m(ak, ak) are invertible.

(H7) : there exists k such that Pm(ak, ak) = 0.
(H8) : (V arP(m(ak, ak)))

1/2 exists and is invertible.

4.2 The �rst co-vector of f simultaneously optimizes four problems
Let us �rst study Huber's analytic approach.
Let R′ be the class of all positive functions r de�ned on R and such that f(x)r−1(a>x) is a density
on Rd for all a belonging to Rd∗. The following proposition shows that there exists a vector a such
that fa

ga
minimizes K(fr−1, g) in r:

Proposition 6 (Analytic Approach). There exists a vector a belonging to Rd∗ such that
argminr∈R′K(fr−1, g) = fa

ga
, and r(a>x) = fa(a>x)

ga(a>x)
and K(f, g) = K(fa, ga) +K(f ga

fa
, g).

Let us also study Huber's synthetic approach:
Let R be the class of all positive functions r de�ned on R and such that g(x)r(a>x) is a density
on Rd for all a belonging to Rd∗. The following proposition shows that there exists a vector a such
that fa

ga
minimizes K(gr, f) in r:

Proposition 7 (Synthetic Approach). There exists a vector a belonging to Rd∗ such that
argminr∈RK(f, gr) = fa

ga
, and r(a>x) = fa(a>x)

ga(a>x)

and K(f, g) = K(fa, ga) +K(f, g fa

ga
).
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In the meanwhile, the following proposition shows that there exists a vector a such that fa

ga
minimizes

K(g, fr−1) in r.

Proposition 8. There exists a vector a belonging to Rd∗ such that
argminr∈R′K(g, fr−1) = fa

ga
, and r(a>x) = fa(a>x)

ga(a>x)
Moreover, we have K(g, f) = K(ga, fa) +K(g, f ga

fa
).

Remark 6. First, through property 4 page 18, we get K(f, g fa

ga
) = K(g, f ga

fa
) = K(f ga

fa
, g) and

K(fa, ga) = K(ga, fa). Thus, proposition 8 implies that �nding the argument of the maximum
K(ga, fa) amounts to �nding the argument of the maximum K(fa, ga). Consequently, the criteria
of Huber's methodologies is a 7→ K(ga, fa). Second, our criteria is a 7→ K(g ga

fa
, f) and property 4

implies K(g, f ga

fa
) = K(g fa

ga
, f). Consequently, since [BROKEZ] takes into account the very form of

the criteria, we are then in a position to compare Huber's methodologies with ours.

To recapitulate, the choice of r = fa

ga
enables us to simultaneously solve the following four

optimisation problems, for a ∈ Rd∗:
First, �nd a such that a = arginfa∈Rd∗ K(f ga

fa
, g) - pertaining to the analytic approach -

Second, �nd a such that a = arginfa∈Rd∗ K(f, g fa

ga
) - pertaining to the synthetic approach -

Third, �nd a such that a = argsupa∈Rd∗ K(ga, fa) - to compare Huber's methods with ours -
Fourth, �nd a such that a = arginfa∈Rd∗ K(g fa

ga
, f) - pertaining to our method.

4.3 On the sequence of the transformed densities (g(j))

As already explained in the introduction section, the Mu Zhu article leads us to only consider
Huber's synthetic approach. Moreover, in this section, we will use the kernel estimate of f (resp.
g, fa and ga for any a in Rd∗) instead of f (resp. g, fa and ga for any a in Rd∗). We will keep the
notation ”f” (resp. ”g”, ”fa” and ”ga”) to designate this estimate.

4.3.1 Estimation of the �rst co-vector of f

Using the subsample X1, X2,..,Xn - see Annex B - and following [BROKEZ], let us introduce the
estimate of K(ga, fa), through K̂(ga, fa) =

∫
m(a, a, x)(fa(a>x)

f(x)
)dPn

Proposition 9. Let â := arg supa∈Rd∗ K̂(ga, fa). Then, â is a strongly convergent estimate of a as
de�ned in proposition 8.

Finally, let us de�ne the following sequences (âk)k≥1 and (ĝ(k))k≥1 - for any given n :
• âk is an estimate of ak as de�ned in proposition 9 with ĝ(k−1) instead of g - see remark 5 -,
• ĝ(k) is such that ĝ(0) = g and ĝ(k)(x) = ĝ(k−1)(x)

fâk
(â>k x)

[ĝ(k−1)]âk
(â>k x)

, i.e. ĝ(k)(x) = g(x)Πk
j=1

fâj
(â>j x)

[ĝ(j−1)]âj
(â>j x)

.
We also note that ĝ(k) is a density.

4.3.2 Convergence study at the kth step of the algorithm

Let b̂n(a) = arg supb∈Θ Panm(b, a), with a ∈ Θ, and β̂n = arg supa∈Θ supb∈Θ Panm(b, a). We state

Proposition 10. Both supa∈Θ ‖b̂n(a)− ak‖ and β̂n converge toward ak a.s.

Finally, the following theorem shows that ĝ(k) converges almost everywhere towards g(k) :

Theorem 8. For any given k, it holds ĝ(k) →n g
(k) a.s.
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4.3.3 Asymptotic Inference at the kth step of the algorithm

The following theorem shows that ĝ(k) converges towards g(k) at the rate OP(m−1d=1− 4
4+d

1d>1) in
three di�erents cases, namely for any given x, with the L1 distance and with the relative entropy:

Theorem 9. It holds |ĝ(k)(x)−g(k)(x)| = OP(m−1d=1− 4
4+d

1d>1),
∫ |ĝ(k)(x)−g(k)(x)|dx = OP(m−1d=1− 4

4+d
1d>1),

and |K(f, ĝ(k))−K(f, g(k))| = OP(m−1d=1− 4
4+d

1d>1).

The following theorem shows that the laws of Huber's estimators of ak, namely b̂n(ak) and β̂n,
converge towards a linear combination of Gaussian variables.

Theorem 10. It holds√
nD.(b̂n(ak)− ak)

Law→ E .Nd(0,P‖ ∂∂bm(ak, ak)‖2) + F .Nd(0,P‖ ∂
∂a
m(ak, ak)‖2) and√

nD.(β̂n − ak)
Law→ G.Nd(0,P‖ ∂

∂a
m(ak, ak)‖2) + F .Nd(0,P‖ ∂∂bm(ak, ak)‖2)

where E = P ∂2

∂a2m(ak, ak), F = P ∂2

∂a∂b
m(ak, ak), G = P ∂2

∂b2
m(ak, ak) and

D = (P ∂2

∂b2
m(ak, ak)P

∂2

∂a2m(ak, ak)−P ∂2

∂a∂b
m(ak, ak)P

∂2

∂b∂a
m(ak, ak)) > 0.

4.4 A stopping rule for the procedure
We will �rst give an estimation of f . We will then provide a stopping rule for this identi�cation
procedure. We note that, in this section, we will call fn (respectively ĝ(k)

n , ∀a ∈ Θ ĝ
(k)
a,n, fa,n) the

kernel estimator of density f (respectively ĝ(k), ∀a ∈ Θ ĝ
(k)
a , fa).

Remark 7. In the case where f is known, then, as explained in section 14 of [HUB85], the
sequence (K(g

(k−1)
ak , fak

))k≥1 converges towards zero. Many authors have studied this hypothesis
and its consequences. For example, Huber deducts that, if f can be deconvoluted with a Gaussian
component, (K(g

(k−1)
ak , fak

))k≥1 converges toward 0. He then shows that g(i) uniformly converges
in L1 towards f - see propositions 14.2 and 14.3 page 461 of his article. Similarly, Friedman in
[Frie8487], page 19, and Hwang, in [HLL94] pages 16 and 17, develop other typical examples.

4.4.1 Estimation of f

The following lemma shows that limkK(ĝ
(k)
ak,n, fak,n) converges towards zero as k and then as n:

Lemma 2. We have limn limkK(ĝ
(k)
ak,n, fak,n) = 0, a.s.

Then, the following theorem enables us to provide simulations through an estimation of f

Theorem 11. We have limn limk ĝ
(k)
n = f, a.s.

4.4.2 Testing of the criteria

In this paragraph, through a test of Huber's criteria, namely a 7→ K(ĝ
(k)
a,n, fa,n), we will build a

stopping rule for the procedure. First, the next theorem gives us the law of Huber's criteria.

Theorem 12. For a �xed k, we have√
n(V arP(m(b̂n(β̂n), β̂n)))

−1/2(Pnm(b̂n(β̂n), β̂n)−Pnm(ak, ak))
Law→ N (0, I), as n goes to in�nity,

where k represents the kth step of the algorithm, where I is the identity matrix in Rd.

Note that k is �xed in theorem 12 since β̂n = arg supa∈Θ supb∈Θ Panm(b, a) where m is a known
function of k - see section 4.1. Thus, in the case where K(g

(k)
a , fa) = 0, we obtain
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Corollary 3. We have √n(V arP(m(b̂n(β̂n), β̂n)))
−1/2(Pnm(b̂n(β̂n), β̂n))

Law→ N (0, I).

Hence, we propose the test of the null hypothesis (H0) : K(g
(k−1)
ak , fak

) = 0 versus the alternative
(H1) : K(g

(k−1)
ak , fak

) 6= 0. Based on this result, we stop the algorithm, then, de�ning ak as the last
vector generated from Huber's algorithm, we derive from corollary 3 a α-level con�dence ellipsoid
around ak, namely E ′k = {b ∈ Rd; √n(V arP(m(b, b)))−1/2Pnm(b, b) ≤ q

N (0,1)
α } where qN (0,1)

α is the
quantile of a α-level reduced centered normal distribution and where Pn is the empirical measure
araising from a realization of the sequences (X1, . . . , Xn) and (Y1, . . . , Yn).
Consequently, the following corollary provides us with a con�dence region for the above test:

Corollary 4. E ′k is a con�dence region for the test of the null hypothesis (H0) versus (H1).

5 Simulations
We will illustrate this section by detailing several examples.
In each example, the �rst part of the program will follow our algorithm and will aim at creating
a sequence of densities (g(j)), j = 1, .., k, k < d, such that g(0) = g, g(j) = g(j−1)faj

/[g(j−1)]aj
and

K(g(k), f) = 0, where K is the relative entropy and aj = arg infbK(g(j−1)fb/[g
(j−1)]b, f), for all

j = 1, ..., k.
Moreover, in a second step, the program will follow Huber's method and will create a sequence of
densities (g(j)), j = 1, .., k, k < d, such that g(0) = g, g(j) = g(j−1)faj

/[g(j−1)]aj
and K(f, g(k)) = 0,

where K is the relative entropy and aj = argsupbK([g(j−1)]b, fb), for all j = 1, ..., k.
Example 1 : We are in dimension 3(=d), let us consider a sample of 50(=n) values of a random
variable X with a density law f de�ned by,

f(x) = Normal(x1 + x2).Gumbel(x0 + x2).Gumbel(x0 + x1),
where the Gumbel law parameters are (−3, 4) and (1, 1) and where the normal distribution param-
eters are (−5, 2). Let us then generate a Gaussian random variable Y - that we will name g - with
a density which presents the same mean and variance as f .
In the �rst part of the program, we theoretically obtain k = 2, a1 = (1, 0, 1) and a2 = (1, 1, 0)

(or a2 = (1, 0, 1) and a1 = (1, 1, 0) which leads us to the same conclusion). To get this result, we
perform the following test

(H0) : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus (H1) : (a1, a2) 6= ((1, 0, 1), (1, 1, 0)).

Moreover, if i represents the last iteration of the algorithm, then√
n(V arP(M(cn(γn), γn)))

(−1/2)PnM(cn(γn), γn)
Law→ N (0, 1),

and then we estimate (a1, a2) with the following 0.9(=α) level con�dence ellipsoid
Ei = {b ∈ R3; (V arP(M(b, b)))−1/2PnM(b, b) ≤ q

N (0,1)
α /

√
n ' 0, 2533/7.0710678 = 0.03582203}.

Indeed, if i = 1 represents the last iteration of the algorithm, then a1 ∈ E1, and if i = 2 represents
the last iteration of the algorithm, then a2 ∈ E2, and so on, if i represents the last iteration of the
algorithm, then ai ∈ Ei.

Now, if we follow Huber's method, we also theoretically obtain k = 2, a1 = (1, 0, 1) and a2 =

(1, 1, 0) (or a2 = (1, 0, 1) and a1 = (1, 1, 0) which leads us to the same conclusion). To get this
result, we perform the following test:

(H0) : (a1, a2) = ((1, 0, 1), (1, 1, 0)) versus (H1) : (a1, a2) 6= ((1, 0, 1), (1, 1, 0)).

The fact that, if i represents the last iteration of the algorithm, then√
n(V arP(m(bn(βn), βn)))

(−1/2)Pnm(bn(βn), βn)
Law→ N (0, 1),

enables us to estimate our sequence of (ai), reduced to (a1, a2), through the following 0.9(=α)
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level con�dence ellipsoid E ′i = {b ∈ R3; (V arP(m(b, b)))−1/2Pnm(b, b) ≤ q
N (0,1)
α /

√
n ' 0.03582203}.

Indeed, if i = 1 represents the last iteration of the algorithm, then a1 ∈ E ′1, and if i = 2 represents
the last iteration of the algorithm, then a2 ∈ E ′2, and so on, if i represents the last iteration of the
algorithm, then ai ∈ E ′i . Finally, we obtain

Our Algorithm Huber's Algorithm

Projection Study number 0 :
minimum : 0.317505 maximum : 0.715135
at point : (1.0,1.0,0) at point : (1.0,1.0,0)
P-Value : 0.99851 P-Value : 0.999839

Test : H0 : a1 ∈ E1 : False H0 : a1 ∈ E ′1 : False

Projection Study number 1 :
minimum : 0.0266514 maximum : 0.00727748
at point : (1.0,0,1.0) at point : (1,0.0,1.0)
P-Value : 0.998852 P-Value : 0.999835

Test : H0 : a2 ∈ E2 : True H0 : a2 ∈ E ′2 : True
K(Kernel Estimation of g(2), g(2)) 0.444388 0.794124

Therefore, we conclude that f = g(2).

Example 2 :
We are in dimension 2(=d), let us consider a sample of 50(=n) values of a random variable X with
a density law f de�ned by, f(x) = Cauchy(x0).Normal(x1), where the Cauchy law parameters are
-5 and 1 and where the normal distribution parameters are (0, 1).
Our reasoning is the same as in Example 1. In the �rst part of the program, we theoretically obtain
k = 1 and a1 = (1, 0). To get this result, we perform the following test:

(H0) : a1 = (1, 0) versus (H1) : a1 6= (1, 0).

We estimate a1 by the following 0.75(=α) level con�dence ellipsoid
Ei = {b ∈ R2; (V arP(M(b, b)))−1/2PnM(b, b) ≤ q

N (0,1)
α /

√
n ' 0, 6745/7.0710678 = 0.095388}.

Now, if we follow Huber's method, we also theoretically obtain k = 1 and a1 = (1, 0). To get
this result, we perform the following test: (H0) : a1 = (1, 0) versus (H1) : a1 6= (1, 0). Hence,
using the same reasoning as in Example 1, we estimate a1 through the following 0.75 (=α) level
con�dence ellipsoid E ′i = {b ∈ R2; (V arP(m(b, b)))−1/2Pnm(b, b) ≤ q

N (0,1)
α /

√
n ' 0.095388}. And,

we obtain
Our Algorithm Huber's Algorithm

Projection Study n◦ 0 :
minimum : 0.00263554 maximum : 0.00376235
at point : (1.0001,0) at point : (1.0,0.0)
P-Value : 0.998683 P-Value : 0.998121

Test : H0 : a1 ∈ E1 : True H0 : a1 ∈ E ′1 : True
K(Kernel Estimation of g(1), g(1)) 2.44546 2.32331

Therefore, we conclude that f = g(1).
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Figure 1: Graph of the distribution to estimate (red) and of our own estimate (green).
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Figure 2: Graph of the distribution to estimate (red) and of Huber's estimate (green).

Critics of the simulations
We note that as the approximations accumulate and according to the power of the calculators
used, we might obtain results above or below the value of the thresholds of the di�erent tests.
Moreover, in the case where f is unknown, we will never be sure to have reached the minimum
or the maximum of the relative entropy: we have indeed used the simulated annealing method to
solve our optimisation problem, and therefore it is only when the number of random jumps tends
in theory towards in�nity that the probability to get the minimum or the maximum tends towards
1. We also note that no theory on the optimal number of jumps to implement does exist, as this
number depends on the speci�cities of each particular problem.
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Finally, we choose the 50−
4
7 (resp. 50−

2
3 ) for the AMISE of example 1 (resp. example 2). This

choice leads us to simulate 50 random variables - see [SCOTT92] page 151 -, none of which have
been discarded to obtain the truncated sample.

Conclusion
Projection Pursuit is useful in evidencing characteristic structures as well as one-dimensional pro-
jections and their associated distributions in multivariate data sets.
Huber, in [HUB85], shows us how to achieve it through maximization of the relative entropy.
The present article demonstrates that our relative entropy minimisation method constitutes a good
alternative to Huber's. Indeed, the convergence results and simulations we carried out convincingly
ful�lled our expectations regarding our methodology.

A Reminders
Let us call ha the density of a>Z if h is the density of Z, and K the relative entropy or Kullback-
Lieber distance. The function K is de�ned by - considering P and Q, two probabilities:

K(Q,P ) =
∫
ϕ(∂Q

∂P
) dP if P << Q and

K(Q,P ) = +∞ otherwise,
where ϕ : x 7→ xln(x)− x+ 1 is strictly convex.
Let us present some well-known properties of the relative entropy.

Property 2. We have K(P,Q) = 0 ⇔ P = Q.

Property 3. The application Q 7→ K(Q,P ) is :
• convex,
• lower semi-continuous (l.s.c.) for the topology that makes all the applications of the form Q 7→∫
fdQ continuous where f is bounded and continuous and

• l.s.c. for the topology of the uniform convergence, and greater than the L1 distance.

Moreover, corollary (1.29), page 19 of [LIVAJ], enables us to derive:

Property 4.
If T : (X,A) → (Y,B) is measurable and if K(P,Q) < ∞, then K(P,Q) ≥ K(PT−1, QT−1), with
equality being reached when T is surjective for (P,Q).

And �nally, according to theorem III.4 of [AZE97], we have

Theorem 13. Let f : I → R be a convex function. Then f is a Lipschitz function in all compact
intervals [a, b] ⊂ int{I}. In particular, f is continuous on int{I}.

A.1 Useful lemmas
Through a reductio ad absurdum argument, we derive lemmas 3 and 4 :

Lemma 3. Let f be a density in Rd bounded and positive. Then, any projection density of f - that
we will name fa, with a ∈ Rd∗ - is also bounded and positive in R.
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Lemma 4. Let f be a density in Rd bounded and positive. Then any density f(./a>x), for any
a ∈ Rd∗, is also bounded and positive.

By induction and from lemmas 3 and 4, we have

Lemma 5. If f and g are positive and bounded densities, then g(k) is positive and bounded.

Finally we introduce a last lemma

Lemma 6. Let f be an absolutely continuous density, then, for all sequence (an) tending to a in
Rd∗, sequence fan uniformly converges towards fa.

Proof :

For all a in Rd∗, let Fa be the cumulative distribution function of a>X and ψa be a complex function
de�ned by ψa(u, v) = Fa(Re(u+ iv)) + iFa(Re(v + iu)), for all u and v in R.
First, the function ψa(u, v) is an analytic function, because x 7→ fa(a

>x) is continuous and as a
result of the corollary of Dini's second theorem - according to which "A sequence of cumulative
distribution functions which pointwise converges on R towards a continuous cumulative distribution
function F on R, uniformly converges towards F on R"- we deduct that, for all sequence (an)

converging towards a, ψan uniformly converges towards ψa. Finally, the Weierstrass theorem, (see
proposal (10.1) page 220 of the "Calcul in�nitésimal" book of Jean Dieudonné), implies that all
sequences ψ′a,n uniformly converge towards ψ′a, for all an tending to a. We can therefore conclude. 2

B Study of the sample
LetX1, X2,..,Xm be a sequence of independent random vectors with same density f . Let Y1, Y2,..,Ym
be a sequence of independent random vectors with same density g. Then, the kernel estimators fm,
gm, fa,m and ga,m of f , g, fa and ga, for all a ∈ Rd∗, almost surely and uniformly converge since we
assume that the bandwidth hm of these estimators meets the following conditions (see [BOLE]):

(Hyp): hm ↘m 0, mhm ↗m ∞, mhm/L(h−1
m ) →m ∞ and L(h−1

m )/LLm→m ∞,
with L(u) = ln(u ∨ e).
Let us consider A1(m, a) = 1

m
Σm
i=1ln{ ga,m(a>Yi)

fa,m(a>Yi)
}ga,m(a>Yi)

gm(Yi)
, A2(m, a) = 1

m
Σm
i=1(

ga,m(a>Xi)

fa,m(a>Xi)
−1)fa,m(a>Xi)

fm(Xi)
,

B1(m, a) = 1
m

Σm
i=1ln{fa,m(a>Yi)

ga,m(a>Yi)
gm(Yi)
fm(Yi)

}fa,m(a>Yi)

ga,m(a>Yi)
and B2(m, a) = 1

m
Σm
i=1(1− {fa,m(a>Xi)

ga,m(a>Xi)
gm(Xi)
fm(Xi)

}).
Our goal is to estimate the maximum of K(ga, fa) and the minimum of K(g fa

ga
, f)). To achieve this,

it is necessary for us to truncate the samples:
Let us consider now a sequence θm such that θm → 0, and ym/θ2

m → 0, where ym is the almost sure
convergence rate of the kernel density estimator, i.e. ym = OP(m− 2

4+d ) - see lemma 12. We will
generate fm, gm and gb,m from the starting sample and we will select the Xi and Yi vectors and
such that fm(Xi) ≥ θm and gm(Yi) ≥ θm, for all i and for all b ∈ Rd∗ - for Huber's algorithm - and
such that fm(Xi) ≥ θm and gb,m(b>Yi) ≥ θm, for all i and for all b ∈ Rd∗ - for our algorithm.
The vectors meeting these conditions will be called X1, X2, ..., Xn and Y1, Y2, ..., Yn.
Consequently, the next proposition provides us with the condition required to obtain our estimates
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Proposition 11. Using the notations introduced in [BROKEZ] and in sections 3.1.1 and 4.1, it
holds

sup
a∈Rd∗

|(A1(n, a)− A2(n, a))−K(ga, fa)| → 0 a.s., (7)

sup
a∈Rd∗

|(B1(n, a)−B2(n, a))−K(g
fa
ga
, f)| → 0 a.s. (8)

Remark 8. We can take for θm the expression m−ν, with 0 < ν < 1
4+d

.

C Case study : f is known
In this Annex, we will study the case when f and g are known. We will then use the notations
introduced in sections 3.1.1 and 3.1.2 with f and g, i.e. no longer with their kernel estimates.

C.1 Convergence study at the kth step of the algorithm:
In this paragraph, when k is less than or equal to d, we will show that the sequence (ǎk)n converges
towards ak and that the sequence (ǧ(k))n converges towards g(k).
Both γ̌n and čn(a) are M-estimators and estimate ak - see [BROKEZ]. We state

Proposition 12. Assuming (H ′1) to (H ′3) hold. Both supa∈Θ ‖čn(a)− ak‖ and γ̌n tends to ak a.s.

Finally, the following theorem shows us that ǧ(k) converges uniformly almost everywhere towards
g(k), for any k = 1..d.

Theorem 14. Assumimg (H ′1) to (H ′3) hold. Then, ǧ(k) →n g
(k) a.s. and uniformly a.e.

C.2 Asymptotic Inference at the kth step of the algorithm
The following theorem shows that ǧ(k) converges at the rate OP(n−1/2) in three di�erents cases,
namely for any given x, with the L1 distance and with the relative entropy:

Theorem 15. Assuming (H ′0) to (H ′3) hold, for any k = 1, ..., d and any x ∈ Rd, we have

|ǧ(k)(x)− g(k)(x)| = OP(n−1/2), (9)∫
|ǧ(k)(x)− g(k)(x)|dx = OP(n−1/2), (10)

|K(ǧ(k), f)−K(g(k), f)| = OP(n−1/2). (11)

The following theorem shows that the laws of our estimators of ak, namely čn(ak) and γ̌n,
converge towards a linear combination of Gaussian variables.

Theorem 16. Assuming that conditions (H ′1) to (H ′6) hold, then√
nA.(čn(ak)− ak)

Law→ B.Nd(0,P‖ ∂∂bM(ak, ak)‖2) + C.Nd(0,P‖ ∂
∂a
M(ak, ak)‖2) and√

nA.(γ̌n − ak)
Law→ C.Nd(0,P‖ ∂∂bM(ak, ak)‖2) + C.Nd(0,P‖ ∂

∂a
M(ak, ak)‖2)

where A = (P ∂2

∂b∂b
M(ak, ak)(P

∂2

∂ai∂aj
M(ak, ak) + P ∂2

∂ai∂bj
M(ak, ak))), C = P ∂2

∂b∂b
M(ak, ak) and

B = P ∂2

∂b∂b
M(ak, ak) + P ∂2

∂ai∂aj
M(ak, ak) + P ∂2

∂ai∂bj
M(ak, ak).
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C.3 A stopping rule for the procedure
We now assume that the algorithm does not stop after d iterations. We then remark that, it still
holds - for any i > d:

• g(i)(x) = g(x)Πi
k=1

fak
(a>k x)

[g
(k−1)
n ]ak

(a>k x)
, with g(0) = g.

• K(g(0), f) ≥ K(g(1), f) ≥ K(g(2), f)... ≥ 0.
• Theorems 14, 15 and 16.

Moreover, through remark 6 page 13 and as explained in section 14 of [HUB85], the sequence
(K(g(k−1) fak

g
(k−1)
ak

, f))k≥1 converges towards zero. Then, in this paragraph, we will show that g(i)

converges towards f in i. And �nally, we will provide a stopping rule for this identi�cation procedure.

C.3.1 Representation of f

Under (H ′0), the following proposition shows us that the probability measure with density g(k)

converges towards the probability measure with density f :

Proposition 13. We have limk g
(k) = f a.s.

C.3.2 Testing of the criteria

Through a test of the criteria, namely a 7→ K(g(k−1) fa

g
(k−1)
a

, f), we will build a stopping rule for this
procedure. First, the next theorem enables us to derive the law of the criteria.

Theorem 17. Assuming that (H ′1) to (H ′3), (H ′6) and (H ′8) hold. Then,√
n(V arP(M(čn(γ̌n), γ̌n)))

−1/2(PnM(čn(γ̌n), γ̌n)− PnM(ak, ak))
Law→ N (0, I),

where k represents the kth step of the algorithm and where I is the identity matrix in Rd.

Note that k is �xed in theorem 17 since γ̌n = arg infa∈Θ supc∈Θ PnM(c, a) where M is a known
function of k - see section 3.1.1. Thus, in the case where K(g(k−1) fak

g
(k−1)
ak

, f) = 0, we obtain

Corollary 5. Assuming that (H ′1) to (H ′3), (H ′6), (H ′7) and (H ′8) hold. Then,√
n(V arP(M(čn(γ̌n), γ̌n)))

−1/2(PnM(čn(γ̌n), γ̌n))
Law→ N (0, I).

Hence, we propose the test of the null hypothesis (H0) : K(g(k−1) fak

g
(k−1)
ak

, f) = 0 versus (H1) :

K(g(k−1) fak

g
(k−1)
ak

, f) 6= 0. Based on this result, we stop the algorithm, then, de�ning ak as the last
vector generated, we derive from corollary 5 a α-level con�dence ellipsoid around ak, namely
Ek = {b ∈ Rd; √n(V arP(M(b, b)))−1/2PnM(b, b) ≤ q

N (0,1)
α }, where qN (0,1)

α is the quantile of a α-level
reduced centered normal distribution.
Consequently, the following corollary provides us with a con�dence region for the above test:

Corollary 6. Ek is a con�dence region for the test of the null hypothesis (H0) versus (H1).

D Hypotheses' discussion
D.1 Discussion on (H ′2).
We verify this hypothesis in the case where :
• a1 is the unique element of Rd∗ such that f(./a>1 x) = g(./a>1 x), i.e. K(g(./a>1 x)fa1(a

>
1 x), f) = 0,(1)
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• f and g are bounded and positive, (2)
• there exists a neighborhood V of ak such that, for all b in V and for all positive real A, there
exists S > 0 such that g(./b′x) ≤ S.f(./b′x) with ‖x‖ > A (3).
Let us remark that we obtain the same proof with f , g(k−1) and ak.

First, (1) implies that g fa1

ga1
= f . Hence, 0 >

∫
ln( g

f
fc

gc
)g

fa1

ga1
dx = −K(g fc

gc
, f) > −K(g, f) by the very

construction of g fc

gc
. Besides, (2) and (3) imply that there exists a neighborhood V of ak such that,

for all c in V , there exists S > 0 such that, for all x in Rd, g(./c′x) ≤ S.f(./c′x).
Consequently, we get |M(c, a1, x)| ≤ | −K(g, f)|+ | − ( g(./c

′x)
f(./c′x) − 1)| ≤ K(g, f) + S + 1.

Finally, we obtain the existence a neighborhood V of ak such that, for all c in V ,
|M(c, ak, x)| ≤ H(x) = K(g, f) + S + 1 (P− a.s.) with PH <∞.

D.2 Discussion on (H ′3).
We verify this hypothesis in the case where a1 is the unique element of Rd∗ such that f(./a>1 x) =

g(./a>1 x), i.e. K(g(./a>1 x)fa1(a
>
1 x), f) = 0 - we obtain the same proof with f , g(k−1) and ak.

Preliminary (A):
Shows that A = {(c, x) ∈ Rd∗\{a1} × Rd;

fa1(a>1 x)
ga1 (a>1 x)

> fc(c>x)
gc(c>x)

and g(x)fc(c>x)
gc(c>x)

> f(x)} = ∅ through a
reductio ad absurdum, i.e. if we assume A 6= ∅.
Thus, our hypothesis enables us to derive

f(x) = f(./a>1 x)fa1(a
>
1 x) = g(./a>1 x)fa1(a

>
1 x) > g(./c>x)fc(c>x) > f

since fa1 (a>1 x)
ga1 (a>1 x)

≥ fc(c>x)
gc(c>x)

implies g(./a>1 x)fa1(a
>
1 x) = g(x)

fa1 (a>1 x)
ga1 (a>1 x)

≥ g(x)fc(c>x)
gc(c>x)

= g(./c>x)fc(c>x),
i.e. f > f . We can therefore conclude.
Preliminary (B):
Shows that B = {(c, x) ∈ Rd∗\{a1} × Rd;

fa1 (a>1 x)
ga1 (a>1 x)

< fc(c>x)
gc(c>x)

and g(x)fc(c>x)
gc(c>x)

< f(x)} = ∅ through a
reductio ad absurdum, i.e. if we assume B 6= ∅.
Thus, our hypothesis enables us to derive

f(x) = f(./a>1 x)fa1(a
>
1 x) = g(./a>1 x)fa1(a

>
1 x) < g(./c>x)fc(c>x) < f

We can therefore conclude as above.
Let us now prove (H ′3):
We have PM(c, a1)−PM(c, a) =

∫
ln( g(x)fc(c>x)

gc(c>x)f(x)
){fa1(a>1 x)

ga1(a>1 x)
− fc(c>x)

gc(c>x)
}g(x)dx.Moreover, the logarithm

ln is negative on {x ∈ Rd∗; g(x)fc(c>x)
gc(c>x)f(x)

< 1} and is positive on {x ∈ Rd∗; g(x)fc(c>x)
gc(c>x)f(x)

≥ 1}.
Thus, the preliminary studies (A) and (B) show that ln( g(x)fc(c>x)

gc(c>x)f(x)
) and {fa1 (a>1 x)

ga1 (a>1 x)
− fc(c>x)

gc(c>x)
} always

present a negative product. We can therefore conclude, since (c, a) 7→ PM(c, a1)− PM(c, a) is not
null for all c and for all a 6= a1. 2

E Proofs
This last section includes the proofs of most of the lemmas, propositions, theorems and corollaries
contained in the present article.

Remark 9. 1/ (H ′0) - according to which f and g are assumed to be positive and bounded - through
lemma 5 (see page 19) implies that ǧ(k) and ĝ(k) are positive and bounded.
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2/ remark 4 implies that fn, gn, ǧ(k) and ĝ(k) are positive and bounded since we consider a Gaussian
kernel.

Proof of propositions 6 and 7. Let us �rst study proposition 7.
Without loss of generality, we will prove this proposition with x1 in lieu of a>X.
Let us de�ne g∗ = gr. We remark that g and g∗ present the same density conditionally to x1.
Indeed,
g∗1(x1) =

∫
g∗(x)dx2...dxd =

∫
r(x1)g(x)dx2...dxd = r(x1)

∫
g(x)dx2...dxd = r(x1)g1(x1).

Thus, we can demonstrate this proposition.
We have g(.|x1) = g(x1,...,xn)

g1(x1)
and g1(x1)r(x1) is the marginal density of g∗. Hence,∫

g∗dx =
∫
g1(x1)r(x1)g(.|x1)dx =

∫
g1(x1)

f1(x1)
g1(x1)

(
∫
g(.|x1)dx2..dxd)dx1 =

∫
f1(x1)dx1 = 1 and since

g∗ is positive, then g∗ is a density. Moreover,

K(f, g∗) =

∫
f{ln(f)− ln(g∗)}dx, (12)

=

∫
f{ln(f(.|x1))− ln(g∗(.|x1)) + ln(f1(x1))− ln(g1(x1)r(x1))}dx,

=

∫
f{ln(f(.|x1))− ln(g(.|x1)) + ln(f1(x1))− ln(g1(x1)r(x1))}dx, (13)

as g∗(.|x1) = g(.|x1). Since the minimum of this last equation (13) is reached through the mini-
mization of

∫
f{ln(f1(x1)) − ln(g1(x1)r(x1))}dx = K(f1, g1r), then property 2 necessarily implies

that f1 = g1r, hence r = f1/g1.
Finally, we have K(f, g)−K(f, g∗) =

∫
f{ln(f1(x1))− ln(g1(x1))}dx = K(f1, g1), which completes

the demonstration of proposition 7.
Similarly, if we replace f ∗ = fr−1 with f and g with g∗, we obtain the proof of proposition 6. 2

Proof of proposition 8. The demonstration is very similar to the one for proposition 7, save
for the fact we now base our reasoning at row (12) on

∫
g{ln(g∗)− ln(f)}dx instead of K(f, g∗) =∫

f{ln(f)− ln(g∗)}dx. 2

Proof of proposition 2. The demonstration is also very similar to the one for proposition 7, save
for the fact we now base our reasoning at row 12 on K(g∗, f) =

∫
g∗{ln(f) − ln(g∗)}dx instead of

K(f, g∗) =
∫
f{ln(f)− ln(g∗)}dx. 2

Proof of lemma 7.

Lemma 7. If the family (ai)i=1...d is a basis of Rd then
g(./a>1 x, ..., a

>
j x) = n(a>j+1x, ..., a

>
d x) = f(./a>1 x, ..., a

>
j x).

Putting A = (a1, .., ad), let us determine f in the A basis. Let us �rst study the function de�ned
by ψ : Rd → Rd, x 7→ (a>1 x, .., a

>
d x). We can immediately say that ψ is continuous and since A is a

basis, its bijectivity is obvious. Moreover, let us study its Jacobian.

By de�nition, it is Jψ(x1, . . . , xd) =

∣∣∣∣∣∣∣∣∣

∂ψ1

∂x1

· · · ∂ψ1

∂xd
· · · · · · · · ·
∂ψd
∂x1

· · · ∂ψd
∂xd

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣

a1,1 · · · a1,d

· · · · · · · · ·
ad,1 · · · ad,d

∣∣∣∣∣∣
= |A| 6= 0 since A is a

basis. We can therefore infer : ∀x ∈ Rd, ∃!y ∈ Rd such that f(x) = |A|−1Ψ(y), i.e. Ψ (resp. y) is
the expression of f (resp of x) in basis A, namely Ψ(y) = ñ(yj+1, ..., yd)h̃(y1, ..., yj), with ñ and h̃
being the expressions of n and h in basis A. Consequently, our results in the case where the family
{aj}1≤j≤d is the canonical basis of Rd, still hold for Ψ in the A basis - see section 2.1.2. And then,
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if g̃ is the expression of g in basis A, we have g̃(./y1, ..., yj) = ñ(yj+1, ..., yd) = Ψ(./y1, ..., yj), i.e.
g(./a>1 x, ..., a

>
j x) = n(a>j+1x, ..., a

>
d x) = f(./a>1 x, ..., a

>
j x). 2

Proof of lemma 8. By de�nition of the closure of a set, we have

Lemma 8. The set Γc is closed in L1 for the topology of the uniform convergence.

Proof of lemma 9. Since K is greater than the L1 distance, we have

Lemma 9. For all c > 0, we have Γc ⊂ BL1(f, c), where BL1(f, c) = {p ∈ L1; ‖f − p‖1 ≤ c}.

Proof of lemma 10. The de�nition of the closure of a set and lemma 6 (see page 19) imply

Lemma 10. G is closed in L1 for the topology of the uniform convergence.

Proof of lemma 11.

Lemma 11. infa∈Rd∗ K(g fa

ga
, f) is reached.

Indeed, let G be {g fa

ga
; a ∈ Rd∗} and Γc be Γc = {p; K(p, f) ≤ c} for all c>0. From lemmas 8,

9 and 10 (see page 24), we get Γc ∩ G is a compact for the topology of the uniform convergence,
if Γc ∩ G is not empty. Hence, and since property 3 (see page 18) tells us that Q 7→ K(Q,P )

is lower semi-continuous in L1 for the topology of the uniform convergence, then the in�mum is
reached in L1. (Taking for example c = K(g, f), Ω is necessarily not empty because we always have
K(g fa

ga
, f) ≤ K(g, f)). 2

Proof of lemma 12.

Lemma 12. For any continuous density f , we have ym = |fm(x)− f(x)| = OP(m− 2
4+d ).

De�ning bm(x) as bm(x) = |E(fm(x))− f(x)|, we have ym ≤ |fm(x)−E(fm(x))|+ bm(x). More-
over, from page 150 of [SCOTT92], we derive that bm(x) = OP(Σd

j=1h
2
j) where hj = OP(m− 1

4+d ).
Then, we obtain bm(x) = OP(m− 2

4+d ). Finally, since the central limit theorem rate is OP(m− 1
2 ), we

then obtain that ym ≤ OP(m− 1
2 ) +OP(m− 2

4+d ) = OP(m− 2
4+d ). 2

Proof of proposition 11. Let us �rst remark that we have f(Xi) ≥ θn − yn, g(Yi) ≥ θn − yn and
gb(b

>Yi) ≥ θn − yn, for all i and for all b ∈ Rd∗, thanks to the uniform convergence of the kernel
estimators. Indeed, we have f(Xi) = f(Xi)− fn(Xi) + fn(Xi) ≥ −yn + fn(Xi), by de�nition of yn,
and then f(Xi) ≥ −yn + θn, by hypothesis on fn(Xi). This is also true for gn and gb,n. This entails:

Lemma 13. supb∈Rd∗ | 1nΣn
i=1{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− ∫ { gb(b

>x)
fb(b>x)

− 1}fb(b>x)dx| → 0 a.s.,
supb∈Rd∗ | 1nΣn

i=1ln{ ga,n(a>Yi)

fa,n(a>Yi)
}ga,n(a>Yi)

gn(Yi)
− ∫

ln( ga(a>x)
fa(a>x))ga(a

>x) dx| → 0 a.s. and
limn→∞ supa∈Rd∗ |(B1(n, a)−B2(n, a))−K(g fa

ga
, f)| = 0 a.s. with

B1(n, a) = 1
n
Σn
i=1ln{fa,n(a>Yi)

ga,n(a>Yi)
gn(Yi)
fn(Yi)

}fa,n(a>Yi)

ga,n(a>Yi)
and B2(n, a) = 1

n
Σn
i=1(1− {fa,n(a>Xi)

ga,n(a>Xi)
gn(Xi)
fn(Xi)

}).

Proof :

Let us remark that
| 1
n
Σn
i=1{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− ∫ { gb(b

>x)
fb(b>x)

− 1}fb(b>x)dx|
= | 1

n
Σn
i=1{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− 1

n
Σn
i=1

gb(b
>Xi)

fb(b>Xi)
− 1}fb(b

>Xi)
f(Xi)

+ 1
n
Σn
i=1

gb(b
>Xi)

fb(b>Xi)
− 1}fb(b

>Xi)
f(Xi)

− ∫ { gb(b
>x)

fb(b>x)
− 1}fb(b>x)dx|

≤ | 1
n
Σn
i=1{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− 1

n
Σn
i=1

gb(b
>Xi)

fb(b>Xi)
− 1}fb(b

>Xi)
f(Xi)

|
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+| 1
n
Σn
i=1

gb(b
>Xi)

fb(b>Xi)
− 1}fb(b

>Xi)
f(Xi)

− ∫ { gb(b
>x)

fb(b>x)
− 1}fb(b>x)dx|

Moreover, since
∫ |{ gb(b

>x)
fb(b>x)

− 1}fb(b>x)|dx ≤ 2, the law of large numbers enables us to state:
| 1
n
Σn
i=1

gb(b
>Xi)

fb(b>Xi)
− 1}fb(b

>Xi)
f(Xi)

− ∫ { gb(b
>x)

fb(b>x)
− 1}fb(b>x)dx| → 0 a.s..

Moreover, | 1
n
Σn
i=1{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− 1

n
Σn
i=1

gb(b
>Xi)

fb(b>Xi)
− 1}fb(b

>Xi)
f(Xi)

|
≤ 1

n
Σn
i=1|{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− { gb(b

>Xi)
fb(b>Xi)

− 1}fb(b
>Xi)

f(Xi)
|

and
|{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− { gb(b

>Xi)
fb(b>Xi)

− 1}fb(b
>Xi)

f(Xi)
| = |gb,n(b>Xi)−fb,n(b>Xi)

fn(Xi)
− gb(b

>Xi)−fb(b
>Xi)

f(Xi)
|

≤ 1
|f(Xi)|.|fn(Xi)|{|f(Xi)|.|gb,n(b>Xi)− gb(b

>Xi)|+ |f(Xi)− fn(Xi)|.|gb(b>Xi)|
+|f(Xi)|.|fb,n(b>Xi)− fb(b

>Xi)|+ |f(Xi)− fn(Xi)|.|fb(b>Xi)|}, through the
introduction of terms gbf − gbf and ffb − ffb,
≤ OP(1).yn

θn.(θn−yn)
= OP(1) 1

θ2
n

yn
−θn

, by de�nitions of θn and yn,
→ 0, a.s. because, yn

θ2n
→ 0 a.s., by hypothesis on θn.

Consequently, 1
n
Σn
i=1|{ gb,n(b>Xi)

fb,n(b>Xi)
− 1}fb,n(b>Xi)

fn(Xi)
− { gb(b

>Xi)
fb(b>Xi)

− 1}fb(b
>Xi)

f(Xi)
| → 0, as it is a Cesàro mean.

This enables us to conclude.
Similarly, we show that :
• supb∈Rd∗ | 1nΣn

i=1ln{ ga,n(a>Yi)

fa,n(a>Yi)
}ga,n(a>Yi)

gn(Yi)
− ∫

ln( ga(a>x)
fa(a>x))ga(a

>x) dx| → 0 a.s. and then limit 7 page 20
holds,
• limm→∞ supa∈Rd∗ |(B1(m, a)−B2(m, a))−K(g fa

ga
, f)| = 0 a.s. and then limit 8 page 20 holds. 2

Proof of lemma 14.

Lemma 14. For any p ≤ d, we have f (p−1)
ap = fap - see Huber's analytic method -, g(p−1)

ap = gap -
see Huber's synthetic method - and g(p−1)

ap = gap - see our algorithm.

Proof :

As it is equivalent to prove either our algorithm or Huber's, we will only develop here the proof for
our algorithm. Assuming, without any loss of generality, that the ai, i = 1, .., p, are the vectors of the
canonical basis, since g(p−1)(x) = g(x)f1(x1)

g1(x1)
f2(x2)
g2(x2)

...
fp−1(xp−1)

gp−1(xp−1)
we derive immediately that g(p−1)

p = gp.
We note that it is su�cient to operate a change in basis on the ai to obtain the general case. 2

Proof of lemma 15.

Lemma 15. If there exits p, p ≤ d, such that K(g(p), f) = 0, then the family of (ai)i=1,..,p - derived
from the construction of g(p) - is free and orthogonal.

Proof :

Without any loss of generality, let us assume that p = 2 and that the ai are the vectors of
the canonical basis. Using a reductio ad absurdum with the hypotheses a1 = (1, 0, ..., 0) and
that a2 = (α, 0, ..., 0), where α ∈ R, we get g(1)(x) = g(x2, .., xd/x1)f1(x1) and f = g(2)(x) =

g(x2, .., xd/x1)f1(x1)
fαa1 (αx1)

[g(1)]αa1 (αx1)
. Hence f(x2, .., xd/x1) = g(x2, .., xd/x1)

fαa1 (αx1)

[g(1)]αa1 (αx1)
. It consequently

implies that fαa1(αx1) = [g(1)]αa1(αx1) since
1 =

∫
f(x2, .., xd/x1)dx2...dxd =

∫
g(x2, .., xd/x1)dx2...dxd

fαa1 (αx1)

[g(1)]αa1 (αx1)
=

fαa1 (αx1)

[g(1)]αa1 (αx1)
.

Therefore, g(2) = g(1), i.e. p = 1 which leads to a contradiction. Hence, the family is free.
Moreover, using a reductio ad absurdum we get the orthogonality. Indeed, we have∫

f(x)dx = 1 6= +∞ =
∫
n(a>j+1x, ..., a

>
d x)h(a

>
1 x, ..., a

>
j x)dx. 2

Proof of lemma 16.
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Lemma 16. We have Θ = {b ∈ Θ | ∫
( g(x)
f(x)

fb(b
>x)

gb(b>x)
− 1)f(x)dx <∞}.

We get the result since
∫

( g(x)fb(b
>x)

f(x)gb(b>x)
− 1)f(x) dx =

∫
(g(x)fb(b

>x)
gb(b>x)

− f(x)) dx = 0. 2

Proof of propositions 12. In the same manner as in Proposition 3.4 of [BROKEZ], we prove this
proposition through lemma 16. 2

Proof of propositions 4 and 10. Proposition 4 comes immediately from proposition 11 page 19
and lemma 12 page 20. Similarly, we prove proposition 10 since both supa∈Θ ‖b̂n(a) − ak‖ and β̂n
converge toward ak a.s in the case where f is known - see also in annex C where the case when f
is known has been carried out in our algorithm. 2

Proof of theorem 14. Using lemma 6 page 19 and since, for any k, g(k) = g(k−1) fak

g
(k−1)
ak

, we prove
this theorem by induction. 2

Proof of theorems 1 and 8. We prove the theorem by induction. First, by the very de�nition
of the kernel estimator ǧ(0)

n = gn converges towards g. Moreover, the continuity of a 7→ fa,n and
a 7→ ga,n and proposition 4 imply that ǧ(1)

n = ǧ
(0)
n

fa,n

ǧ
(0)
a,n

converges towards g(1). Finally, since, for any

k, ǧ(k)
n = ǧ

(k−1)
n

fǎk,n

ǧ
(k−1)
ǎk,n

, we conclude similarly as for ǧ(1)
n . In a similar manner, we prove theorem 8. 2

Proof of theorem 15.
relationship (9). Let us consider Ψj = { fǎj (ǎj

>x)
[ǧ(j−1)]ǎj (ǎj

>x)−
faj (a>j x)

[g(j−1)]aj (a>j x)
}. Since f and g are bounded,

it is easy to prove that from a certain rank, we get, for any x given in Rd
|Ψj| ≤ max( 1

[ǧ(j−1)]ǎj (ǎj
>x) ,

1
[g(j−1)]aj (a>j x)

)|fǎj
(ǎj

>x)− faj
(a>j x)|.

Remark 10. First, based on what we stated earlier, for any given x and from a certain rank, there
is a constant R>0 independent from n, such that max( 1

[ǧ(j−1)]ǎj (ǎj
>x) ,

1
[g(j−1)]aj (a>j x)

) ≤ R = R(x) =

O(1). Second, since ǎk is an M−estimator of ak, its convergence rate is OP(n−1/2).

Thus using simple functions, we obtain an upper and lower bound for fǎj
and for faj

and we
reach the following conclusion:

|Ψj| ≤ OP(n−1/2). (14)
We �nally obtain:

|Πk
j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x) − Πk

j=1

faj (a>j x)
[g(j−1)]aj (a>j x)

| = Πk
j=1

faj (a>j x)
[g(j−1)]aj (a>j x)

|Πk
j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

[g(j−1)]aj (a>j x)
faj (a>j x)

− 1|.
Based on relationship (14), the expression fǎj (ǎj

>x)
[ǧ(j−1)]ǎj (ǎj

>x)
[g(j−1)]aj (a>j x)

faj (a>j x)
tends towards 1 at a rate of

OP(n−1/2) for all j. Consequently, Πk
j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)

[g(j−1)]aj (a>j x)
faj (a>j x)

tends towards 1 at a rate of
OP(n−1/2). Thus from a certain rank, we get

|Πk
j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x) − Πk

j=1

faj (a>j x)
[g(j−1)]aj (a>j x)

| = OP(n−1/2)OP(1) = OP(n−1/2).

In conclusion, we obtain |ǧ(k)(x)−g(k)(x)| = g(x)|Πk
j=1

fǎj (ǎj
>x)

[ǧ(j−1)]ǎj (ǎj
>x)−Πk

j=1

faj (a>j x)
[g(j−1)]aj (a>j x)

| ≤ OP(n−1/2).

relationship (10). The relationship 9 of theorem 15 implies that | ǧ(k)(x)

g(k)(x)
−1| = OP(n−1/2) because,

for any given x, g(k)(x)| ǧ(k)(x)

g(k)(x)
−1| = |ǧ(k)(x)−g(k)(x)|. Consequently, there exists a smooth function

C of Rd in R+ such that limn→∞ n−1/2C(x) = 0 and | ǧ(k)(x)

g(k)(x)
− 1| ≤ n−1/2C(x), for any x. We then

have
∫ |ǧ(k)(x)− g(k)(x)|dx =

∫
g(k)(x)| ǧ(k)(x)

g(k)(x)
− 1|dx ≤ ∫

g(k)(x)C(x)n−1/2dx.
Moreover, supx∈Rd |ǧ(k)(x)− g(k)(x)| = supx∈Rd g(k)(x)| ǧ(k)(x)

g(k)(x)
− 1|

= supx∈Rd g(k)(x)C(x)n−1/2 → 0 a.s., by theorem 14.
This implies that supx∈Rd g(k)(x)C(x) < ∞ a.s., i.e. supx∈Rd C(x) < ∞ a.s. since g(k) has been
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assumed to be positive and bounded - see remark 9.
Thus,

∫
g(k)(x)C(x)dx ≤ supC.

∫
g(k)(x)dx = supC < ∞ since g(k) is a density, therefore we can

conclude
∫ |ǧ(k)(x)− g(k)(x)|dx ≤ supC.n−1/2 = OP(n−1/2). 2

relationship (11). We have
K(ǧ(k), f)−K(g(k), f) =

∫
f(ϕ( ǧ

(k)

f
)− ϕ(g

(k)

f
))dx ≤ ∫

f S| ǧ(k)

f
− g(k)

f
|dx = S

∫ |ǧ(k) − g(k)|dx
with the line before last being derived from theorem 13 page 18 and where ϕ : x 7→ xln(x)− x+ 1

is a convex function and where S > 0. We get the same expression as the one found in our Proof
of Relationship (10) section, we then obtain K(ǧ(k), f)−K(g(k), f) ≤ OP(n−1/2). Similarly, we get
K(g(k), f)−K(ǧ(k), f) ≤ OP(n−1/2). We can therefore conclude. 2

Proof of lemma 17.

Lemma 17. With the notations introduced in Appendix B. It holds n = O(m2).

Proof :

Let us �rst study the Huber's case.
Let N be the randon variable such that N = Σm

j=11{fm(Xj)≥θm, gm(Yj)≥θm}. The very de�nition of
X1, . . . Xm and of Y1, . . . Ym and the fact that the Xj the Yj are independent, enable us to derive
that n = m.P(fm(Xj) ≥ θm, gm(Yj) ≥ θm) = m.P(fm(Xj) ≥ θm).P(gm(Yj) ≥ θm).
Consequently, let us study P(fm(Xi) ≥ θm).
Let (ξi)i=1...m be the sequence such that, for any i and any x in Rd,

ξi(x) = Πd
l=1

1
(2π)1/2hl

e
− 1

2
(

xl−Xil
hl

)2 − ∫
Πd
l=1

1
(2π)1/2hl

e
− 1

2
(

xl−Xil
hl

)2
f(x)dx.

Hence, for any given j and conditionally toX1, . . . , Xj−1, Xj+1, . . . , Xm, the variables (ξi(Xj))
i6=j
i=1...m

are i.i.d. and centered, have same second moment, and are such that
|ξi(Xj)| ≤ Πd

l=1
1

(2π)1/2hl
+ Πd

l=1
1

(2π)1/2hl

∫ |f(x)|dx = 2.(2π)−d/2Πd
l=1h

−1
l

since supx e
− 1

2
x2 ≤ 1.

Moreover, noting that fm(x) = 1
m

Σm
i=1ξi(x) + (2π)−d/2 1

m
Σm
i=1Π

d
l=1h

−1
l

∫
e
− 1

2
(

xl−Xil
hl

)2
f(x)dx, we have

fm(Xj) ≥ θm ⇔ 1

m
Σm
i=1ξi(Xj) + (2π)−d/2

1

m
Σm
i=1Π

d
l=1h

−1
l

∫
e
− 1

2
(

xl−Xil
hl

)2
f(x)dx ≥ θm

⇔ 1

m− 1
Σm

i=1
i 6=j
ξi(Xj) ≥ (θm − (2π)−d/2

1

m
Σm
i=1Π

d
l=1h

−1
l

∫
e
− 1

2
(

xl−Xil
hl

)2
f(x)dx− 1

m
ξj(Xj))

m

m− 1

with ξj(Xj) = 0. Then, de�ning t (resp. ε) as t = 2.(2π)−d/2Πd
l=1h

−1
l (resp.

ε = (θm−(2π)−d/2Πd
l=1h

−1
l

1
m

Σm
i=1Π

d
l=1

∫
e
− 1

2
(

xl−Xil
hl

)2
f(x)dx) m

m−1
), the Bennet's inequality -[DEVGY85]

page 160- implies that P( 1
m−1

Σm
i=1
i6=j
ξi(Xj) ≥ ε/X1, . . . , Xj−1, Xj+1, . . . , Xm) ≤ 2.exp(− (m−1)ε2

4t2
).

Finally, since the Xi are i.i.d. and since
∫

(
∫

Πd
l=1e

− 1
2
(

xl−yl
hl

)2
f(x)dx)f(y)dy < 1, then the law of large

numbers says that 1
m

Σm
i=1

∫
Πd
l=1e

− 1
2
(

xl−Xil
hl

)2
f(x)dx →m

∫ ∫
Πd
l=1e

− 1
2
(

xl−yl
hl

)2
f(x)f(y)dxdy a.s. Con-

sequently, since 0 < ν < 1
4+d

, we then obtain − (m−1)ε2

4t2
∼∞ −m.1

4

∫ ∫
Πd
l=1e

− 1
2
(

xl−yl
hl

)2
f(x)f(y)dxdy,

i.e. the limit of − (m−1)ε2

4t2
is −∞. Thus, from a certain rank, we have eam = O(1), i.e.

P(fm(Yj) ≥ θm) = O(1). Similarly, we get P(gm(Yj) ≥ θm) = O(1).
In conclusion, we can say that n = m.P(fm(Xj) ≥ θm).P(gm(Yj) ≥ θm) = O(m2).
In the same manner, we derive the same result as above for our method. 2

Proof of theorems 2 and 9. First, from lemma 12, we derive that, for any x, supa∈Rd∗ |fa,n(a>x)−
fa(a

>x)| = OP(n−
2

4+d ). Then, let us consider Ψj =
fǎj ,n(ǎj

>x)

ǧ
(j−1)
ǎj ,n (ǎj

>x)
− faj (a>j x)

g
(j−1)
aj

(a>j x)
, we have
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Ψj = 1

ǧ
(j−1)
ǎj ,n (ǎj

>x)g(j−1)
aj

(a>j x)
((fǎj ,n(ǎj

>x)−faj
(a>j x))g

(j−1)
aj (a>j x)+faj

(a>j x)(g
(j−1)
aj (a>j x)−ǧ(j−1)

ǎj ,n
(ǎj

>x))),

i.e. |Ψj| = OP(n−
1
2
1d=1− 2

4+d
1d>1) since faj

(a>j x) = O(1) and g(j−1)
aj (a>j x) = O(1). We can therefore

conclude similarly as in theorem 15 and through lemma 17. Similarly, we prove theorem 9. 2

Proof of theorem 16. First of all, let us remark that hypotheses (H ′1) to (H ′3) imply that γ̌n
and čn(ak) converge towards ak in probability.
Hypothesis (H ′4) enables us to derive under the integrable sign after calculation,
P ∂
∂b
M(ak, ak) = P ∂

∂a
M(ak, ak) = 0,

P ∂2

∂ai∂bj
M(ak, ak) = P ∂2

∂bj∂ai
M(ak, ak) =

∫
ϕ”(

gfak

fgak
) ∂
∂ai

gfak

fgak

∂
∂bj

gfak

fgak
f dx,

P ∂2

∂ai∂aj
M(ak, ak) =

∫
ϕ′(

gfak

fgak
) ∂2

∂ai∂aj

gfak

fgak
f dx, P ∂2

∂bi∂bj
M(ak, ak) = − ∫

ϕ”(
gfak

fgak
) ∂
∂bi

gfak

fgak

∂
∂bj

gfak

fgak
f dx,

and consequently P ∂2

∂bi∂bj
M(ak, ak) = −P ∂2

∂ai∂bj
M(ak, ak) = −P ∂2

∂bj∂ai
M(ak, ak), which implies,

∂2

∂ai∂aj
K(g

fak

gak
, f) = P ∂2

∂ai∂aj
M(ak, ak)−P ∂2

∂bi∂bj
M(ak, ak),

= P ∂2

∂ai∂aj
M(ak, ak) + P ∂2

∂ai∂bj
M(ak, ak), = P ∂2

∂ai∂aj
M(ak, ak) + P ∂2

∂bj∂ai
M(ak, ak).

By de�nition of the estimators γ̌n and čn(ak), we have
{

Pn ∂
∂b
M(b, a) = 0

Pn ∂
∂a
M(b(a), a) = 0

ie
{

Pn ∂
∂b
M(čn(ak), γ̌n) = 0

Pn ∂
∂a
M(čn(ak), γ̌n) + Pn ∂

∂b
M(čn(ak), γ̌n)

∂
∂a
čn(ak) = 0,

i.e.
{
Pn ∂

∂b
M(čn(ak), γ̌n) = 0 (E0)

Pn ∂
∂a
M(čn(ak), γ̌n) = 0 (E1)

.

Under (H ′5) and (H ′6), and using a Taylor development of the (E0) (resp. (E1)) equation, we infer
there exists (cn, γn) (resp. (c̃n, γ̃n)) on the interval [(čn(ak), γ̌n), (ak, ak)] such that
−Pn ∂

∂b
M(ak, ak) = [(P ∂2

∂b∂b
M(ak, ak))

> + oP(1), (P ∂2

∂a∂b
M(ak, ak))

> + oP(1)]an.

(resp. −Pn ∂
∂a
M(ak, ak) = [(P ∂2

∂b∂a
M(ak, ak))

> + oP(1), (P ∂2

∂a2M(ak, ak))
> + oP(1)]an)

with an = ((čn(ak)− ak)
>, (γ̌n − ak)

>). Thus we get

√
nan =

√
n

[
P ∂2

∂b2
M(ak, ak) P ∂2

∂a∂b
M(ak, ak)

P ∂2

∂b∂a
M(ak, ak) P ∂2

∂a2M(ak, ak)

]−1 [ −Pn ∂
∂b
M(ak, ak)

−Pn ∂
∂a
M(ak, ak)

]
+ oP(1)

=
√
n(P ∂2

∂b∂b
M(ak, ak)

∂2

∂a∂a
K(g

fak

gak
, f))−1

.

[
P ∂2

∂b∂b
M(ak, ak) + ∂2

∂a∂a
K(g

fak

gak
, f) P ∂2

∂b∂b
M(ak, ak)

P ∂2

∂b∂b
M(ak, ak) P ∂2

∂b∂b
M(ak, ak)

]
.

[ −Pn ∂
∂b
M(ak, ak)

−Pn ∂
∂a
M(ak, ak)

]
+ oP(1)

Moreover, the central limit theorem implies: Pn ∂
∂b
M(ak, ak)

Law→ Nd(0,P‖ ∂∂bM(ak, ak)‖2),
Pn ∂

∂a
M(ak, ak)

Law→ Nd(0,P‖ ∂
∂a
M(ak, ak)‖2), since P ∂

∂b
M(ak, ak) = P ∂

∂a
M(ak, ak) = 0, which leads

us to the result. Finally, if f is known, we similarly prove theorem 10. 2

Proof of theorems 3 and 10. We immediately get the theorem through proposition 11 and
theorem 16. 2

Proof of proposition 13. Let us consider ψ, ψa, ψ(k), ψ(k)
a the characteristic functions of densities

f , fa, g(k−1) and [g(k−1)]a.
We have |ψ(ta) − ψ(k−1)(ta)| = |ψa(t) − ψ

(k−1)
a (t)| ≤ ∫ |fa(a>x) − [g(k−1)]a(a

>x)|dx, and then
supa |ψa(t) − ψ

(k−1)
a (t)| ≤ supa

∫ |fa(a>x) − [g(k−1)]a(a
>x)|dx ≤ supaK([g(k−1)]a, fa) since ψ(ta) =

E(eita
>x) = ψa(t) - where t ∈ R and a ∈ Rd∗ - and since the relative entropy is greater than the L1 dis-

tance. Therefore, since, as explained in section 14 of Huber's article, we have limkK([g(k−1)]ak
, fak

) =

0 we then get limk g
(k) = f - which is the Huber's representation of f . Moreover, we have

|ψ(t) − ψ(k)(t)| ≤ ∫ |f(x) − g(k)(x)|dx ≤ K(g(k), f). As explained in section 14 of Huber's arti-
cle and through remark 6 page 13 and through the additive relation of proposition 6, we can say
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that limkK(g(k−1) fak

[g(k−1)]ak

, f) = 0. Consequently, we get limk g
(k) = f - which is our representation

of f .
Proof of lemmas 1 and 2. Let us apply our algorithm between f and g. There exists a sequence
of densities (g(k))k such that 0 = K(g(∞), f) ≤ .. ≤ K(g(k), f) ≤ .. ≤ K(g, f), (*)
where g(∞) = limk g

(k) which is a density by construction.
Moreover, let (g

(k)
n )k be the sequence of densities such that g(k)

n is the kernel estimate of g(k). Since
we derive from remark 9 page 22 an integrable upper bound of g(k)

n , for all k, which is greater than
f - see also the de�nition of ϕ in the proof of theorem 4 -, then the dominated convergence theorem
implies that, for any k, limnK(g

(k)
n , fn) = K(g(k), f), i.e., from a certain given rank n0, we have

0 ≤ .. ≤ K(g
(∞)
n , fn) ≤ .. ≤ K(g

(k)
n , fn) ≤ .. ≤ K(gn, fn), (**)

Consequently, through lemma 18 page 29, there exists a k such that
0 ≤ .. ≤ K(Ψ

(∞)
n,k , fn) ≤ .. ≤ K(g

(∞)
n , fn) ≤ .. ≤ K(Ψ

(∞)
n,k−1, fn) ≤ .. ≤ K(gn, fn), (***)

where Ψ
(∞)
n,k is a density such that Ψ

(∞)
n,k = limk g

(k)
n .

Finally, through the dominated convergence theorem and taking the limit as n in (***) we get
0 = K(g(∞), f) = limnK(g

(∞)
n , fn) ≥ limnK(Ψ

(∞)
n,k , fn) ≥ 0.

The dominated convergence theorem enables us to conclude:
0 = limnK(Ψ

(∞)
n,k , fn) = limn limkK(g

(k)
n , fn). Similarly, we get lemma 2. 2

Proof of lemma 18.

Lemma 18. With the notation of the proof of lemma 1, we have
0 ≤ .. ≤ K(Ψ

(∞)
n,k , fn) ≤ .. ≤ K(g

(∞)
n , fn) ≤ .. ≤ K(Ψ

(∞)
n,k−1, fn) ≤ .. ≤ K(gn, fn), (***)

Proof :

First, as explained in section 4.2, we have K(f (k), g) − K(f (k+1), g) = K(f
(k)
ak+1 , gak+1

). Moreover,
through remark 6 page 13, we also derive that K(f (k), g) = K(g(k), f). Then, K(f

(k)
ak+1 , gak+1

) is the
decreasing step of the relative entropies in (*) and leading to 0 = K(g(∞), f). Similarly, through the
construction of (**), we obtain that K(f

(k)
ak+1,n, gak+1,n) is the decreasing step of the relative entropies

in (**) and leading to K(g
(∞)
n , fn).

Second, through the conclusion of the section 4.2 and lemma 14.2 of Huber's article, we obtain that
K(f

(k)
ak+1,n, gak+1,n) converges - in decreasing and in k - towards a positive function of n - that we

will call ξn.
Third, the convergence of (g(k))k - see proposition 13 - implies that, for any given n, the se-
quence (K(g

(k)
n , fn))k is not �nite. Then, through relationship (∗∗), there exists a k such that

0 < K(g
(k−1)
n , fn)−K(g

(∞)
n , fn) < ξn.

Consequently, since Q 7→ K(Q,P ) is l.s.c. - see property 3 page 18 - the relationship (**) implies
(***). 2

Proof of theorems 4 and 11. We recall that g(k)
n is the kernel estimator of ǧ(k). Since the relative

entropy is greater than the L1-distance, we then have
limn limkK(g

(k)
n , fn) ≥ limn limk

∫ |g(k)
n (x)− fn(x)|dx

Moreover, the Fatou's lemma implies that
limk

∫ |g(k)
n (x)− fn(x)|dx ≥

∫
limk

[|g(k)
n (x)− fn(x)|

]
dx =

∫ |[limk g
(k)
n (x)]− fn(x)|dx

and limn

∫ |[limk g
(k)
n (x)]− fn(x)|dx ≥

∫
limn

[|[limk g
(k)
n (x)]− fn(x)|

]
dx

=
∫ |[limn limk g

(k)
n (x)]− limn fn(x)|dx.

We then obtain that 0 = limn limkK(g
(k)
n , fn) ≥

∫ |[limn limk g
(k)
n (x)]− limn fn(x)|dx ≥ 0, i.e. that∫ |[limn limk g

(k)
n (x)]− limn fn(x)|dx = 0.

Moreover, for any given k and any given n, the function g(k)
n is a convex combination of multivariate
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Gaussian distributions. As derived at remark 4 of page 5, for all k, the determinant of the covariance
of the random vector - with density g(k) - is greater than or equal to the product of a positive constant
times the determinant of the covariance of the random vector with density f . Consequently, the
form of the kernel estimate implies that there exists an integrable function ϕ such that, for any
given k and any given n, we have |g(k)

n | ≤ ϕ.
Finally, the dominated convergence theorem enables us to say that limn limk g

(k)
n = limn fn = f ,

since fn converges towards f and since
∫ |[limn limk g

(k)
n (x)]− limn fn(x)|dx = 0.

Similarly, we prove theorem 11. 2

Proof of theorem 17. Through a Taylor development of PnM(čn(ak), γ̌n) of rank 2, we get at
point (ak, ak):
PnM(čn(ak), γ̌n) = PnM(ak, ak) + Pn ∂

∂a
M(ak, ak)(γ̌n − ak)

> + Pn ∂
∂b
M(ak, ak)(čn(ak)− ak)

>

+1
2
{(γ̌n − ak)

>Pn ∂2

∂a∂a
M(ak, ak)(γ̌n − ak) + (čn(ak)− ak)

>Pn ∂2

∂b∂a
M(ak, ak)(γ̌n − ak)

+(γ̌n − ak)
>Pn ∂2

∂a∂b
M(ak, ak)(čn(ak)− ak) + (čn(ak)− ak)

>Pn ∂2

∂b∂b
M(ak, ak)(čn(ak)− ak)}

The lemma below enables us to conclude.

Lemma 19. Let H be an integrable function and let C =
∫
H dP and Cn =

∫
H dPn,

then, Cn − C = OP( 1√
n
).

Thus we get PnM(čn(ak), γ̌n) = PnM(ak, ak) +OP( 1
n
),

i.e. √n(PnM(čn(ak), γ̌n)−PM(ak, ak)) =
√
n(PnM(ak, ak)−PM(ak, ak)) + oP(1).

Hence √n(PnM(čn(ak), γ̌n)−PM(ak, ak)) abides by the same limit distribution as√
n(PnM(ak, ak)−PM(ak, ak)), which is N (0, V arP(M(ak, ak))). 2

Proof of theorems 5 and 12. Through proposition 11 and theorem 17, we derive theorem 5.
Similarly, we get theorem 12. 2

Proof of proposition 5. Let us �rst show by induction the following assertion
P(k) = {g(k) allows a deconvolution g(k) = g(k) ∗ φ}

Initialisation : For k = 0, we get the result since g = g(0) is elliptic.
Going from k to k + 1 : Let us assume P(k) is true, we then show that P(k + 1).
Since the family of ai, i ≤ k + 1 is free - see lemma 15 - then, we de�ne B as the basis of Rd such
that its k + 1 �rst vectors are the ai, i ≤ k + 1 - see the incomplete basis theorem for its existence.
Thus, in B and using the same procedure to prove lemma 7 page 23, we have
g(k)(x) = g(k)(./xk+1)g

(k)
k+1(xk+1). Consequently, the very de�nition of the convolution product, the

Fubini's theorem and the hypothesis on the Elliptical family used imply that
g(k)(x) = g(k)(./xk+1)g

(k)
k+1(xk+1) with g(k)(./xk+1) = g(k)(./xk+1) ∗ Ed−1(0, σ

2Id−1, ξd−1) and with
g

(k)
k+1(xk+1) = g

(k)
k+1(xk+1) ∗ E1(0, σ

2, ξ1). Finally, replacing g(k)
k+1 with fk+1 = fk+1 ∗ E1(0, σ

2, ξ1), we
conclude this induction with g(k+1) = g(k)(./xk+1)fk+1(xk+1).
Now, let us consider ψ (rep. ψ, ψ(k), ψ(k)) the characteristic function of f (resp. f , g(k), g(k)). We
then have ψ(s) = ψ(s)Ψ(1

2
σ2|s|2) and ψ(k)(s) = ψ

(k)
(s)Ψ(1

2
σ2|s|2). Hence, ψ and ψ(k) are less or

equal to Ψ(1
2
σ2|s|2) which is integrable by hypothesis, i.e. ψ and ψ(k) are absolutely integrable. We

then obtain g(k)(x) = (2π)−d
∫
ψ(k)(s)e−is

>xds and f(x) = (2π)−d
∫
ψ(s)e−is

>xds.
Moreover, since the sequence (ψ(k)) uniformly converges and since ψ and ψ(k) are less or equal to
Ψ(1

2
σ2|s|2), then the dominated convergence theorem implies that

limk |f(x)− g(k)(x)| ≤ (2π)−d
∫

limk |ψ(s)−ψ(k)(s)|ds = 0 a.s. i.e. limk supx|f(x)− g(k)(x)| = 0 a.s.
Finally, since, by hypothesis, (2π)−d

∫ |ψ(s) − ψ(k)(s)|ds ≤ 2(2π)−d
∫

Ψ(1
2
σ2|s|2)ds < ∞, then the

above limit and the dominated convergence theorem imply that limk

∫ |f(x)− g(k)(x)|dx = 0. 2

Proof of theorem 7. We immediately get the proof through theorem 4. 2
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