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Abstract : 
 

In this work, we numerically investigate the performances of optical regenerators 

based on self-phase modulation and spectral offset filtering at 40 Gbit/s. We outline the 

different effects affecting the device performances and explain the choice of the optimal 

working power. The impact of the regenerator on the output signal is also analysed through a 

statistical approach. Both single and double stage configurations are investigated. 
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1. Introduction 
 
With the development of long haul optical telecommunication systems working at high 

repetition rates (40 Gbit/s and beyond), performing an all-optical regeneration of the 

transmission signal has become of a great interest to combat the cumulative impairments 

occurring during the signal propagation and overcoming the electronics bandwidth limitations 

of the current devices [1]. Indeed, during its propagation, the signal undergoes various 

degradations such as amplified spontaneous emission (ASE) noise accumulation, chromatic 

dispersion as well as intra-channel non-linear effects [2]. Non-linear effects lead to jitter 

degradations (in time an amplitude) and ghost-pulse generation in the zero bit-slot [3]. 

Consequently, it is required to limit the amplitude jitter and the timing jitter of the pulses and 

to enhance the extinction ratio (ER) of the signal. To achieve simultaneously such operations, 



different optical methods based on non-linear effects in optical fibers have been proposed; for 

example: the use of non-linear optical loop mirrors (NOLMs) [4], four-wave mixing [5], or 

self-phase modulation (SPM) [6]. The latest method is based on spectral broadening followed 

by an offset spectral filtering and has been proposed in 1998 by P.V. Mamyshev. Many 

works, both experimental [7-13] and theoretical [9, 11, 14-19], have dealt with the 

possibilities of such a device known as the Mamyshev regenerator. For example, its capacity 

of multi-wavelength regeneration [8, 17], the existence of eigen-pulses in concatenated 

regenerators [19] or its inclusion in a set-up compatible with DPSK signals [20] have been 

recently reported. 

 In Ref. [14], general theoretical guidelines have been proposed to design a high-

performances single-stage regenerator with a transfer function exhibiting both a high 

extinction ratio improvement and a locally flat region on the one-level called the plateau. In 

an other numerical study, the authors have tried to link the properties of the transfer function 

with the performances of the regenerator in terms of Q-factor improvement [16]. The authors 

have noticed that the transfer function itself is not sufficient to fix the working power giving 

the best performance and that a trade-off between the improvements and impairments raised 

by the regenerator is then necessary. But to date, no theoretical argument has been suggested 

to clearly explain this observation. 

More importantly, in order to restore the signal at its initial wavelength, a double-stage 

configuration is required and once again, even if some experimental devices have already 

been demonstrated [7], no detailed theoretical work has been reported in the literature. 

 In this article, we propose a numerical study of the Mamyshev regenerators both in 

single-stage and double-stage configurations. Our study combines both the transfer function 

and the Q-factor improvement approaches. Based on the statistical study of the initial and 

regenerated signals, we present an interpretation of the impact of the regenerator on the 

regenerating signal and propose an explanation regarding the choice of the working power. 

Finally, we highlight several key points which affect the regenerator performances. 

This paper will thus be organised as follows. After having recalled the principle of the 

Mamyshev regenerators, we will investigate the performance of a single-stage regenerator 

both in terms of Q-factor improvement and statistical impact. In the fourth part of the paper, 

we will propose a set of explanations about the working power influence and in the final part, 

we will numerically study a double-stage device. 



2. Principle and set-up 
 

The set-up of the single stage Mamyshev regenerator under study is described in Fig 1. The 

signal to be regenerated is first amplified in order to reach an optimum average power Pm 

(corresponding to a peak power P0  for ‘1’ pulses). An optical bandpass filter (OBPF), centred 

at the signal wavelength  λ0  and characterized by its spectral full-width at half maximum 

(FWHM) δ f1 is also used to reduce the ASE noise power [16]. A spectral broadening is then 

achieved through the SPM effect occuring during the propagation in a highly non-linear 

optical fiber (HNLF) with a length L. The broadened spectrum is finally partially sliced by a 

second OBPF shifted by ∆λ. The spectral bandwidth of this second filter δ f0, which 

determines the output pulse width, is then fixed according to the initial pulse properties. 

 

 

 

 

Fig. 1. Set-up of the single stage Mamyshev regenerator. Erbium Doped Fiber Amplifier 
(EDFA), Optical BandPass Filter (OBPF), Highly Non-Linear Fiber (HNLF). 
 

 

In Ref. [14] the authors have shown that, according to the system parameters (L, P0 

and ∆λ ), three different regimes of transfer function ( Pout = f ( Pin ) ) can be observed : a 

transfer function (TF) characterised by a plateau (B regime), by a continuously increasing 

behaviour (C regime) or by a non-monotonic regime (A regime). The transfer function 

associated with the plateau zone of the B regime (and corresponding to an input peak-power 

Ptheo ) has been considered as the most suitable to achieve an efficient regeneration process, 

mainly due to its capacity to equalize pulse-to-pulse peak-power fluctuations. 

Our regenerator is based on a HNLF with a length L of 3500 m, a non-linear 

coefficient γ  of 8.4 W-1.km-1, a dispersion D  of -0.7 ps.km-1.nm-1 and a linear loss coefficient  

α  of 0.6 dB.km-1. We have included in our simulations the ASE noise introduced by the 



erbium doped fiber amplifier (EDFA) by taking into account a noise figure Nf = 4 dB. 

Following the method detailed in [14], we have calculated the TF thanks to the propagation of 

a single Gaussian pulse having a temporal FWHM of T0 = 6.25 ps, which corresponds to the 

pulses used in a classical 40-Gbit/s return-to-zero-25% (RZ-25) optical telecommunication 

system. 

Our simulations have been computed by means of the software VPI WDM 

Transmission Maker and rely on the numerical integration of the non-linear Schrödinger 

equation by a split-step Fourier method. Note that polarisation mode dispersion (PMD) as 

well as other higher-order non-linear effects (Raman, Brillouin or self-steepening 

contributions) have been neglected in our simulations. 

OBPF 2 is a Gaussian filter with a spectral width δf0 = 70 GHz and a spectral offset 

∆λ =  160  GHz. For an initial 4-th order supergaussian OBPF with a spectral width δf1 = 100 

GHz (OBPF 1), we obtain a B-like TF (Fig. 2, solid line), with a plateau around Ptheo = 1.05 

W. Let us note that we can easily obtain other TF types by simply adjusting δf1. Indeed, by 

changing the spectral width of the initial filter, we also modify the initial temporal width of 

the pulses entering the HNLF. Given the dependence of TF with the initial pulse properties, 

this leads to noticeable changes of the TF.  For example, if δf1 = 160 GHz (mixed line), we 

obtain a C-like TF and by using narrower filters, an A-like TF could also be achieved. 

 

 

 

Fig. 2. Transfer function of a single-stage regenerator. Evolution of the output peak-power 

versus the input power for two different spectral widths of OBPF 1 (δf1 = 100 GHz and δf1 = 
160 GHz, solid black line and mixed line, respectively). The input average power corresponds 
to the average power of a 40-Gbit/s pseudo-random binary sequence (PRBS) signal. 



3. Performance of the single-stage regenerator 
 

In this part, we aim to quantify the regenerative capacity of the B-like single-stage Mamyshev 

regenerator described in the above section. The transfer function is usually built by computing 

the response of the regenerator to an input single pulse. However, in order to fully 

characterize the performance of a regenerator, a stream of pulses (namely a pseudo-random 

binary sequence (PRBS)) has to be taken into account. In that context, the usual parameter 

widely used to evaluate the signal quality is the Q-factor [2] : Q = (V1 – V0) / (σ1 – σ0), with 

V1 and V0 the average electrical voltage of the ones and zeros respectively at the detection 

instant, and σ1 and σ0  the corresponding standard deviations. A good estimation of the 

performance of our regenerator will be the Q-factor improvement defined as the ratio between 

the input and output signal Q-factor (or equivalently the difference when expressed in dBs). 

On the other hand, the Q-factor parameter, obtained in the electrical domain, often hides the 

physical meaning of the signal degradation and consequently, this data itself is not enough to 

get a precise understanding of the degradation affecting the pulse train. So in order to 

complete the analysis, we will also get interested in the statistical properties of the optical 

signal, i.e. its temporal pulse width, its peak-power, its temporal position and its extinction-

ratio. 

 

3.1.  Initial input pulse properties 
 

In this section, we shall first study the features of the degraded 40-Gbit/s PRBS signal used at 

the input of the regenerator. 

 

In order to model realistically the signal degradation [21] and to maintain an 

affordable computation time, we have numerically propagated a (211-1)-long 40-Gbit/s RZ-25 

PRBS signal in the recirculating loop system represented in Fig. 3(a). The FWHM of the 

pulses is 6.25 ps, the initial extinction ratio (defined by the ratio between the ‘1’ peak-power 

and the ‘0’ level) is 20 dB and the initial signal average power launched into the loop is 1 

dBm. The loop is made of 100 km of standard single mode fiber (SMF) with an anomalous 

dispersion of 16 ps/km/nm, a dispersion slope of 0.08 ps/km/nm2, a non-linear coefficient of 

1.3 W-1.km-1 and an attenuation of 0.2 dB/km. Dispersive effects are compensated by 16 km 

of dispersion compensating fiber (DCF) with a normal dispersion of -100 ps/km/nm, a 



dispersion slope of -0.5 ps/km/nm2, a non-linear coefficient of 5.2 W-1.km-1 and an attenuation 

of 0.6 dB/km. This compensating fiber is preceded and followed by erbium doped fiber 

amplifiers (EDFA) with gains GA = 14 dB and GB = 15.6 dB, respectively. Both amplifiers are 

followed by a 4-th order supergaussian OBPF with a spectral width of 400 GHz in order to 

partly remove the ASE noise introduced by the amplifiers. Finally, the 40-Gbit/s receiver 

module is preceded by a supergaussian OBPF with a FWHM of 160 GHz. 

 

 

 

 

Fig. 3. (a) Scheme of the loop system used to model the degradation of the 40-Gbit/s PRBS 
signal during the propagation.    (b) Evolution of Qin as a function of the number of round 
trips.     (c) Optical eye-diagrams for three different levels of degradation ( Qin = 24, 6 and 3.3, 
subplots 1, 2 and 3 respectively ) 

 

 

Fig. 3(b) represents the evolution of the optical signal quality factor Qin as a function 

of the number of turns completed into the loop. As expected, the Q-factor progressively 

decreases due to the cumulative impairments occurring during the propagation, namely the 

accumulation of in-band ASE noise and combined effects of chromatic dispersion and non-

linear effects (intrachannel cross-phase modulation and four-wave mixing [3]). Consequently, 



without any regeneration, only 20 round trips (2000 km) could be covered before falling down 

to the transmission limit corresponding to Qin = 6. Let us note that the present loop is not 

fully-optimized to its best performances and that some pre-chirp/post-chirp could still enhance 

the transmission distance. 

 

 In the following of the paper, we will particularly investigate the evolution in the 

regenerator of three different levels of Q-factor at the input, i.e. Qin = 24 (signal of excellent 

quality corresponding to a 200 km propagation distance), Qin = 6 (limit transmission signal 

quality [2] ) and Qin = 3.3 (signal of extremely poor quality after 3500 km of propagation 

which can only be used in presence of forward error correction (FEC)). Eye-diagrams 

corresponding to these three levels of degradation are presented in Figs. 3(c) and clearly 

reveal that the degradation of the input Q-factor has multiple sources: amplitude jitter, timing-

jitter as well as an extinction ratio decrease. 

In order to get a more precise quantitative description of the degraded 40-Gbit/s PRBS 

signal, we now consider in Fig. 4 the average values and root-mean square (rms) deviations of 

several signal key parameters. 

As can be seen in Fig. 4(a-b), the amplitude jitter σAin (rms deviation of distribution of 

the peak power of the pulses) as well as the temporal jitter σTin (rms deviation of distribution 

of the central pulse position as defined by its highest peak-power) strongly increase during the 

propagation to reach after 4000 km, 20% of the pulse width and peak power, respectively. 

The effects of the ASE accumulation and the ghost-pulses generation are also apparent 

through the significant decrease of the extinction ratio (Fig 4(d)) which drops from 10 dB 

after 40 round trips. We can finally note in Fig. 4(b) that during the propagation, the temporal 

pulse width increases, with a rise as high as 20 % of its initial value after 4000 km, leading to 

a decrease of the average pulse peak-power. We will discuss in more details the implications 

of those fluctuations in section 4.3. 

 

 



 

 

Fig. 4. Statistics of the 40-Gbit/s PRBS signal as a function of propagation distance (or 
equivalently number of turns n). (a) Evolution of the average peak-power (solid black line, 
left, normalized by the initial peak-power Pin) and the amplitude jitter (grey dotted line, right, 
defined as the standard deviation of the peak-power distribution, normalized by the average 
peak-power)          (b) Evolution of the temporal FWHM Tn (left, solid black line) and its 
standard deviation (right, normalized by the temporal width Tn, grey dotted line).                   
(c) Temporal jitter (defined as the standard deviation of the distribution of the central position 
of the pulse, normalized by the FWHM average temporal width Tn at turn n) (d) Evolution of 
the extinction ratio. 

 

 

3.2. Performance of the regenerator and optimum working point 
 
We first test our regenerator on a degraded signal with Qin = 6. Eye-diagrams after 

regeneration are plotted in Figs. 5 for two regenerator input values of the average powers Pm 

(called the working power (WP)). As can be seen, in both cases, the regenerator improves 

very efficiently the extinction ratio of the pulse train and also tends to limits the amplitude 

jitter. The eye is then clearly more opened than in Fig. 3(c2), despite the presence of some 

additional timing jitter. We can also make out that the WP largely influences the quality of the 

output pulse, with better results obtained at a WP of 180 mW. 

 

 



 

 

Fig. 5. Optical eye-diagrams after regenerator for Qin = 6 for two different working powers. 
(a) WP = 130 mW            (b) WP = 180 mW. 

 

 

 

In order to quantify the impact of the regenerator, we measure the improvement of the 

signal in terms of Q-factor enhancement [16], i.e. the ratio Qout / Qin where Qout is the quality 

factor at the output of the regenerator. We present in Fig. 6(a) the Q-factor improvement as a 

function of the WP for three different levels of degradation. Let us notice that studying the Q 

factor improvement is not sufficient to quantify the performances of a regenerator [22]. 

However, in the context of our study, where we focus on the physical mechanism of the 

regeneration process, the Q-factor is a convenient parameter to quantify the quality of the 

signal after regeneration. First and in disagreement with the TF approach described in Fig. 2, 

we can observe, for Qin = 24 and Qin = 6, that the optimal regeneration is not obtained on the 

plateau (around Ptheo), but for a higher WP. This observation is quite surprising but consistent 

with the behaviour previously highlighted in Ref. [12, 16]. We can also make out that the 

signal quality improvement strongly depends on its initial degradation. Indeed, for a high Qin   

(Qin = 24), the optimum regeneration is achieved on a relatively narrow input power range and 

reaches 3.5 dB for an input average power of 170 mW. On the contrary, for a more degraded 

signal (Qin = 6), the performances of the regenerator fortunately do not exhibit such a strong 

power dependence. 

 

 



 

 

Fig. 6. Regenerator performances. (a) Q-factor improvement as a function of the WP for three 
different levels of degradation ( Qin = 24, 6 and 3.3, solid black line, mixed line and grey 
dotted line, respectively).           (b) Optimal WP versus the Qin. In Figs (a) and (b), the shaded 
areas correspond to the plateau zone (see Fig. 2(a)).      (c) Q-factor improvement versus Qin 
for different WP : optimum WP (solid black line), WP of 130 mW, 158 mW and 183 mW 
(solid grey line, dotted grey line and mixed grey line, respectively), corresponding to input 
peak-powers of 1 W, 1.2 W and 1.4 W, respectively. The shaded area denotes the zone where 
the regenerated Q-factor is below 6. 
 
 
 
 

We have also plotted in Fig. 6(b) the evolution of the optimal average WP as a 

function of Qin. We can see that the optimum power has to be tuned above the plateau area 

between 140 and 190 mW and depends on the level of degradation, with a decrease of the 

power for low Qin. We will give some explanations about such a dependence in the next 

section. 

The next plot, Fig. 6(c), shows the Q-factor improvement as a function of the input    

Q-factor Qin for several values of WP. For comparison, we have plotted in solid black line the 

maximum feasible improvement; that is to say for each value of Qin, the maximum of Q-factor 

improvement at the optimum WP. But in practice, it could be easier to fix the amplifier to a 

given WP, no matter what Qin is. This is the reason why we have also plotted the results 

corresponding to a WP of 130, 158 and 183 mW in solid grey line, dotted grey line and mixed 

grey line, respectively. It is then important to notice that in all cases, we have improved the 

signal quality, but the value of this improvement could be significantly different. For 



example, the choice of a working power of 130 mW (corresponding to the value of the plateau 

Ptheo) clearly appears to lead to a non-optimum regeneration whereas a working power of 

183 mW is closer to the all-cases optimum regeneration. 

 

In order to better understand the behaviours related above, we now quantify the action 

of the 2R Mamyshev regenerator in terms of statistics. In Figs. 7, we study the modification of 

the statistics induced by the regenerator on the 40-Gbit/s PRBS signal as a function of the 

input average power for three different levels of degradation (Qin = 24, 6 and 3.3, solid black 

line, mixed line and grey dotted line, respectively). For memory, the optimal WP giving the 

highest Q-factor improvement found in part 3.2, Fig. 6 are indicated by means of a black 

circle, a grey triangle and a grey square for Qin = 24, 6 and 3.3, respectively. 

Let us first study the benefits provided by our regenerator in terms of amplitude jitter 

reduction. We define the amplitude jitter improvement as the ratio between the input and 

output amplitude jitter σAin / σAout (or the difference when expressed in dBs). We can see from 

Fig. 7(a) that for a WP above 125 mW, the regenerator always leads to an amplitude jitter 

improvement, with a maximum as high as 2.6 dB of improvement for weakly degraded 

signals ( Qin = 24). 

We have also calculated the action of the regenerator on the temporal width 

fluctuations by defining the temporal width fluctuations improvement as the ratio between the 

input and output rms deviation of the pulse width distribution σ∆Tin / σ∆Tout. We can see in 

Fig. 7(b) the beneficial impact of the regenerator [13]. The output pulse width fluctuations 

strongly decreases whatever WP for Qin=6 and Qin=3.3 and decreases if WP > 130 mW for 

Qin = 24. Note that this regeneration of the temporal pulse width is a specific benefit of the 

Mamyshev regenerators compared with other usual 2R techniques. This is due to the presence 

of the output filter whose role is to shape the pulse profile at the output of the regenerator. 

If we now have a look at the regenerator impact in terms of timing jitter, we can 

calculate σTin / σTout. We then observe in Fig. 7(c) that the regenerator introduces an extra 

temporal jitter [15] which always degrades the input signal by inducing an average of 1 dB 

penalty whatever the WP is. 

Finally, we have plotted the ER enhancement defined as ERout / ERin in Fig. 7(d). 

These results show that our regenerator leads to a significant ER improvement for any input 

average power between 100 and 250 mW. 

 



 

 

Fig. 7. Statistics regarding the single-stage regenerator impact on a 40-Gbit/s degraded signal 
for three levels of degradation (input Q-factor of 24, 6 and 3.3, solid black line, mixed line 
and grey dotted line, respectively) as a function of the regenerator input average power         
(a) Amplitude jitter improvement      (b) Temporal-width fluctuations improvement               
(c) Timing jitter improvement and     (d) Extinction-ratio improvement. The optimal WP 
found in part III.B, Fig. 5 are indicated by means of a black circle, a grey triangle and a grey 
square for Qin = 24, 6 and 3.3, respectively. The shaded areas correspond to the plateau zone 
(see Fig. 2). 
 
 
 
 

4. Explanations for the choice of the working power 
 

In the last subsection, thanks to the statistical analysis completed on the 40-Gbit/s PRBS 

signal, we now better understand the origin of the Q-factor improvement provided by the 

Mamyshev regenerator as a function of the input average power. However and in agreement 

with reference [16], we observed the non intuitive phenomenon that the effective optimal WP 

does not necessary correspond to the range of powers at which the TF exhibits a plateau area 

around Ptheo. It is the reason why, in the present section, we will try to link the 40-Gbit/s 

PRBS Q-factor improvement approach and its statistical analysis with the TF approach 

computed by the propagation of a single Gaussian pulse. We will then propose and discuss 

explanations about the difference between the usual theoretical WP Ptheo and the effective 



optimal WP where the Q-factor improvement is maximal as well as an explanation to the 

dependence of Q factor improvement over Qin. 

 
 

4.1. Induced timing jitter and output temporal width fluctuations 
 

In reference [14], the aim of the paper was mainly focus on both the peak-power equalisation 

and the extinction ratio-improvement by means of the single-pulse TF optimisation. 

Following a similar approach, we can calculate the temporal changes affecting the output 

Gaussian pulse properties as a function the input power. Let us note that this study is different 

from the results dealing with the nominal soliton number parameter presented in [14] (cf. 

Fig. 5 of this reference) where the regenerator properties (fiber length and filter offset) where 

constantly adjusted in order to operate on the plateau area. 

Results plotted in Fig. 8(a) show that, in the case of a single pulse propagation, the 

fluctuations of the output temporal width are maximum in the range of power corresponding 

to the plateau area, which has been recently confirmed by experimental FROG measurements 

[9]. Let us however relativize the impact of those fluctuations: as can been seen in Fig. 7(b), 

the 40-Gbit/s statistical study outlines a clear improvement of the regenerated pulse train in 

terms of temporal width fluctuation. In other words, the fluctuations induced by the 

regenerator are largely compensated for by the intrinsic enhancement provided by the 

Mamyshev method [13] and are consequently not sufficient to explain the WP offset. 

 



 

 

 

Fig 8. (a) Evolution of the temporal width ∆Tout of the output pulse as a function of the input 

peak-power       (b) Time delay δT introduced by the single-stage regenerator     (c) Derivative 
of the time delay. Results are normalised by the input pulse width T0. The grey area represents 
the plateau zone. The sampling time is 24 fs  (.004 T0). 
 

 

We also got interested in the delay potentially introduced by the regenerator (Fig 8(b)). 

Note that the sign of the delay depends on the spectral offset sign. Changing the sign of the 

spectral offset in –∆λ will lead to an opposite time delay. Once again, we notice that the 

temporal delay exhibits maximum variations in the plateau zone. But here, the most 

interesting point does not lie in the absolute value of the delay in itself, but rather in its 

fluctuations, which directly induce timing jitter. Figure 8(c) shows the amplitude-derivative of 

the time-delay as a function of input power. We can clearly observe that this function is 

remarkably maximum at the plateau zone and that the time delay fluctuations and thus the 

extra induced timing jitter could be minimised by at least a factor four for a higher WP (for 

example 180 mW) which could partially explain the behaviour observed in Fig. 7 for Qin = 24 

and Qin = 6 where, as the input signal is of a pretty good quality, the optimum WP 

corresponds to the minimum of timing jitter degradation provided by the regenerator itself. 



 

4.2. Pulse-to-pulse overlapping induced amplitude jitter 
 

Besides this first aspect, another key point we got interested in is the effect provided 

by the pulse-to-pulse overlapping occurring inside the regenerator due to the chromatic-

dispersion induced pulse broadening [23]. To this aim, we study, in a similar manner as in 

references [14, 17], the amplitude jitter induced by the cross-phase modulation occurring 

during the adjacent pulse-to-pulse overlapping (what is called “collision” in ref. [14]) in a 

sequence of 2 or 3 pulses propagating in the regenerator. We have also considered a PRBS of 

1024 pulses which includes all the possible combinations up to tens consecutive pulses. Using 

longer sequences has not lead to noticeable changes. In order to be solely sensitive to the 

impact of this overlapping, we have considered an initial signal with an infinite ER and we 

have neglected the ASE introduced by the EDFA. For each input peak-power, we have 

computed the difference ∆A (see Fig. 9(a)) between the two peak-power extrema obtained in 

the output pulse sequence. The quantity ∆A qualifies the amplitude jitter induced by the intra-

channel interactions. Results are normalized by the average output pulse peak-power and are 

plotted in Fig. 9(b).  

 

 

 

 

 

Fig. 9. Effects of pulse-to-pulse overlapping in the optical regenerator. (a) Principle and 
notations (b) Peak-power fluctuations at the output of the regenerator (normalized by the 

average output peak-power) for a sequence of 2 (black solid line), 3 (mixed line) and 1024 
PRBS pulses (dotted grey line). The grey area represents the plateau zone 
 



 

As in the previous timing-jitter study, the degradation due to overlapping is more 

pronounced on the plateau zone than at higher working power: the minimum of induced 

amplitude jitter is observed around 1.3 W, corresponding to a 40-Gbit/s PRBS average power 

of 170 mW. These conclusions then clearly explain the WP offset observed in Fig. 7 for the 

Qin = 24 initial pulse train where the optimal input average power mostly corresponds to the 

minimum of amplitude jitter degradation introduced by the regenerator itself which, with the 

intrinsic enhancement provided by the Mamyshev method, participates to reach a maximum 

amplitude jitter improvement. In other words, for input signals of good quality, the main 

factor affecting the 2R performance is the pulse-to-pulse overlapping induced amplitude jitter. 

For a poor quality signal (Qin = 3.3), the interpretation is still more complex. 

Let us finally note that it could be possible to significantly reduce the impact of pulse-

to-pulse overlapping by an appropriate choice of the regenerator parameters (L, ∆f), as well as 

the initial OBPF 1 (as it determines the duty-cycle of the signal). More precisely, using a 

lower nominal soliton number parameter (as defined in ref [14]) would allow us to partly 

eliminate this deleterious pulse overlapping [14]. However such a change in the regenerator 

features is usually at the cost of the ER. So, a trade-off between the ER improvement and the 

collision-induced amplitude jitter reduction has to be found. Such a study is however beyond 

the scope of the present paper. 

 

 

4.3. Impact of temporal width change 
 

In summary, from the conclusions outlined in the last subsections 1 and 2, it could be efficient 

to use a WP higher than the plateau power in order to minimise the timing jitter intrinsically 

induced by the regenerator, as well as the amplitude jitter induced by the pulse-to-pulse 

overlapping. 

In this subsection, we highlight the strong impact of the initial temporal pulse 

fluctuations, leading to an additional source of amplitude jitter. Statistics of the input signal 

presented in Fig. 4 have revealed that the temporal width undergoes some non-negligible 

fluctuations (both in terms of average value and standard deviation). This can have a large 

impact on the regenerator behaviour. Indeed, it has been previously demonstrated [11, 14, 19] 

that, contrary to NOLMs or other 2R regenerating devices, temporal width of the incoming 



pulses is a crucial parameter in the sense that the transfer function strongly depends on this 

parameter. In this context, considering a single TF relying on well defined 6.25 ps Gaussian 

pulses can be viewed as an inaccurate approximation. 

In order to better apprehend the impact of this temporal width distribution, we have 

plotted in Figs. 10(a) the distribution of the temporal width of the 40-Gbit/s PRBS signal for 

three levels of degradation (Qin = 24, 6 and 3.3, (a1), (a2) and (a3) respectively).  

 

 

 

Fig. 10. Impact of the statistical evolution of the temporal width for three different values of 
Qin of 24, 6 and 3.3 (subplots 1, 2 and 3 respectively).      (a) Statistical distribution of the 
temporal pulse width of the 40-Gbit/s signal              (b) statistical TF for input pulses with a 
temporal width distribution corresponding to Figs. (a). Black line corresponds to the average 
peak power of the pulse train and the shaded area corresponds to the whole output peak 
powers possibilities. 
 

We have plotted in Figs. 10(b) the transfer functions obtained by taking into account 

the whole distribution of temporal pulse width. In order to do that, we have taken an input 

series of 256 Gaussian pulses with a temporal width distribution similar to that exposed in 

Figs. 10(a) (same average, same deviation). Note that the input pulses have been separated by 

an empty time slot in order to remove pulse-to-pulse overlapping induced effects. All the 

initial pulses have the same initial energy. In other words, the fluctuations of temporal width 

are directly associated with fluctuations of the input peak power. The output peak power 

(black solid line) represents the output pulse train average peak-power. It can be seen that in 



all cases, a TF exhibiting a plateau is achieved. However, the change in the average temporal 

width leads to a slight shift in the value of the plateau which increases from an input average 

power of 140 mW for Qin = 24 up to a 160 mW for Qin = 3.3. But, the most striking point is 

undoubtedly the significant fluctuations in the TF. We have plotted as shaded area the whole 

values of the output peak-powers. For high Qin, as the deviation of the temporal width is not 

high, the fluctuations are not severe. But for more degraded signals, the temporal width 

fluctuations may lead to a non-negligible additional source of amplitude jitter in the 

regenerated signal. It is then remarkable that the output amplitude fluctuations are reduced 

when increasing the input average power, in agreement with the trends observed in Fig. 7(a). 

This phenomenon underlines again the key role played by the amplitude jitter improvement in 

the choice of the optimal input power and thus the trend to operate with a WP higher than the 

plateau area. 

Let us however note that the choice of taking all the initial pulses with the same 

energy represents an approximation, since in reality temporal fluctuations are also not strictly 

correlated with peak-power fluctuations. More realistic simulations could be carried out by 

use of more sophisticated methods such as multicanonal Monte-Carlo approach [18], but such 

an analysis is beyond the scope of the present paper.  

 

 

4.4. Impact of Extinction Ratio improvement 
 

The three previous subsections have provided us several trends which help us to better 

understand the choice of the optimal WP for high or intermediate qualities of initial signals 

(Qin = 24  or Qin = 6). We have indeed shown that amplitude- and timing- jitter reductions are 

the key issues that govern the choice of the WP. 

On the contrary, for a highly degraded signal (Qin = 3.3), the choice of the WP 

becomes a trade-off between the ER improvement and the amplitude jitter reduction. Indeed, 

in Fig. 7(d), as the evolution of the ER improvement is quite flat for Qin = 6 between 125 and 

225 mW, the performances of the regenerator is weakly influenced by the ER improvement 

but rather governed by the amplitude- and timing- jitters reductions. On the opposite, 

variations as high as 4 dB can be observed for Qin = 3.3 in the same range of power. The Qin = 

3.3 ER enhancement being a decreasing function with respect to WP, a large improvement of 

the ER will consequently lead to a lower WP with a minimum of 130 mW corresponding to 



the limit of a non degradation of the initial amplitude jitter (σAin / σAout = 0 dB). This 

behaviour which explains the decrease of the optimal WP observed for Qini < 6 in Fig. 6(b). 

 

 

 
 

5. Performance of the double-stage regenerator 
 
Let us first recall that in order to restore the initial signal wavelength, a second wavelength-

converter stage is required. We now study the performance of such a double stage 

regenerator. 

 

5.1. Principle and set-up 
 

The set-up based on a two-stage Mamyshev regenerator is presented in Fig. 11. Two single 

stage regenerators are then concatenated. In order to have a device compatible with a 

bidirectional use [7, 8], we have used the same HNLF properties in the two stages of 

regeneration. 

Let us outline that the OBPF 1 and 3 can be identical, in which case a configuration B 

+ B is obtained. But they can also be different, leading to various arrangements such as C + B 

or A + B, or any other type of association. This opens many possibilities, but a complete study 

of those combinations is out of the scope of the present paper. We will then only focus on the 

B + B arrangement. 

 

 

 

 

Fig. 11. Set-up of the Mamyshev double stage regenerator 



 

The TF obtained by this concatenation is plotted in Fig. 12 for several values of the 

intermediate amplifier gain G2 (noise figure of the amplifier Nf = 4 dB). We have plotted the 

results for three different gains of 11.3 dB, 12.8 dB and 14.3 dB (dotted line, solid black line 

and mixed line, respectively). We can see that the 12.8 dB gain leads to a good power 

equalisation (Fig. 12(a)) and limits the impact of the extra-temporal jitter (Fig. 12(c)). Indeed, 

temporal jitter introduced by the first regenerator is partly compensated by the second one. 

Let us however outline that the time delay introduced by each regenerator do not add and that 

the concatenation of two regenerator leads to a more complex dynamics [19]. Regarding the 

output pulse temporal width fluctuations (Fig. 12(b)), they are quite limited. 

We can also see from Fig. 12(a) that the TF is now steeper with a larger plateau and an 

enhanced ER compared to a single stage B (black circles).  

 

 

 

 

Fig. 12. Characteristic of a double-stage regenerator. Evolution of the output pulse properties 
according to the input power for three different gains G2 = 11.3, 12.8 and 14.3 dB (dotted line, 
solid black line and mixed grey line respectively). Results are compared with results of the 
single-stage regenerator (black circles)      (a) Evolution of the output peak-power. 

(b) Evolution of the temporal width ∆Tout of the output pulses         (c) Derivative of the time 
delay versus the input peak-power. Results (b) and (c) are normalised by the input pulse width 
T0. 
 

 



5.2. Q-factor improvement 
 

We have plotted in Fig. 13 the performances of the double stage regenerator in terms of Q-

factor improvements. Compared to the results described in section 3.2 Fig. 6, several 

differences can be outlined. First, we can see in Fig. 13(a) that the regeneration input power 

range is broader than for a single stage regenerator.  

 

 

 

Fig. 13. Double-stage regenerator performances.  (a) Q-factor improvement according to the 
WP for three different levels of degradation (same convention as Fig. 4(a))      (b) Optimal 
WP versus the input Q-factor.           (c) Q-factor improvement relative to the input Q-factor 
for different WP : optimum working power (solid black line), working power of 183 mW 
(mixed grey line), Results of the two-stage regenerator are compared with the results of a 
single-stage configuration (dotted grey line). 
 

 

We can also observe that the dependence (Fig. 13(b)) of the optimal WP versus the 

initial degradation is less pronounced than in the single stage configuration, which is 

beneficial for system implementation. 

We can also make out from the comparison of Figures 6(c) and 13(c) that for a low 

degraded signal, a double stage device is slightly less efficient than a single-stage 

configuration. But for lower Qini (Qini < 10), the double stage leads to regeneration 



enhancements. For example, the regeneration (Qout > 6) of a degraded signal with a quality 

factor as low as 3.3 becomes possible. Let us however here recall that the Q-factor data must 

be handled with special care in the case of optical regenerators [22]   and that a link with bit 

error rates is not straightforward in that context. 
 

 

 

 

 

5.3. Statistical impact of the double stage regenerator 
 

We carry out in this sub-section similar study as the one presented in part 3.2. Results are 

plotted in Fig. 14 and the general trends are similar to the results obtained for a single stage 

configuration. 

 

 

 

Fig. 14. Statistics regarding the double-stage regenerator impact on a degraded signal for three 
levels of degradation (input Q-factor of 24, 6 and 3.3, solid black line, mixed line and grey 
dotted line respectively). Same conventions as Fig. 7. Optimal working points are the WP 
found Fig. 13. 

 

 

As compared with the quantitative results obtained for a single stage, we can note the 

followings points. First, the amplitude jitter reduction capacity is improved, which is 



consistent with the enhanced plateau observed Fig. 12(a). Then, improvement of the temporal 

width fluctuations is also observed, in agreement with Fig. 12(b). The extinction ratio 

improvement is also significantly enhanced, in agreement with the stepper TF observed in 

Fig. 12(a). Regarding the timing jitter introduced during the regeneration, the double stage 

scheme does not seem to significantly further degrade this data. We could have expected from 

Fig. 12(c) a reduction of the timing jitter, but one has also to take into account the other 

sources of timing jitter such as intra channel pulse-to-pulse overlapping. As a consequence, 

for a low degradated initial signal, the extra timing jitter is slightly higher in the double stage 

configuration than in the single stage, which can partly explain the performance degradation 

of the double stage regenerator for Qin above 10. 

 

 

6. Conclusion 
 

We have numerically studied the performances of a 2R Mamyshev optical regenerator used in 

a 40-Gbit/s RZ-25 system. Based on this given configuration, we have outlined several key 

elements of Mamyshev regenerators which have to be taken into account into the set-up 

design : the induced timing jitter, the temporal width fluctuations and the pulse-to-pulse 

overlapping. Impact of the fluctuations of the temporal width of the initial pulses has also 

been outlined. Those generic elements enable us to physically explain the differences which 

can be observed between the general predictions of Provost et al. in Ref. [14] and the working 

power which is required to achieve optimum eye opening for our given configuration. 

We have also used a statistical approach to describe quantitatively the role of the 

regenerator and to explain the dependence of the performance on the degradation of input 

signal. 

We have finally proposed and analyzed a two-stage configuration where the 

deleterious impact of the timing jitter can be partly minimized. Improvement of amplitude 

jitter and extinction-ratio is demonstrated and the distance of propagation can be improved by 

using such a double-stage in front of the receiver. A further step will be the investigation of 

the regenerator capacity in a loop configuration but let us note that the requirements of such a 

regenerator will be quite different : due to the periodic use, improvements of the ER and 

amplitude jitter will not be so severe as amplitude jitter and noise will not develop so heavily. 

On the contrary, in a loop configuration, issues such as timing-jitter reduction and collisions 



induced-effects [14] will become even more crucial. Given those given specific requirements, 

we anticipate that further optimization process adapted to in-line regeneration will be 

necessary. 



 

Acknowledgments 
 

This research was supported by the Agence Nationale de la Recherche (FUTUR project). We 

acknowledge fruitful discussions with B. Patin (Institut Carnot Bourgogne, France). We are 

very grateful to I. Joindot and M. Joindot (FOTON, France) for their comments on the 

manuscript. 



References 
 
 

[1] D. Rouvillain, P. Brindel, F. Seguineau, L. Pierre, O. Leclerc, H. Choumane, G. 
Aubin, and J. L. Oudar, Electron. Lett.  38 (2002) 1113-1114. 

[2] G. P. Agrawal, Fiber-Optic Communication Systems: Wiley-Interscience, 2002. 
[3] R. J. Essiambre, B. Mikkelsen, and G. Raybon, Electron. Lett.  35 (1999) 1576-1578. 
[4] N. J. Doran and D. Wood, Opt. Lett.  13 (1988) 56-58. 
[5] E. Ciaramella, F. Curti, and S. Trillo, IEEE Photon. Technol. Lett.  13 (2001) 142-144. 
[6] P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation 

effect," in European Conference on Optical Communication, ECOC'98, Institute of 
Electrical and Electronics Engineering, Madrid, Spain, 1998, pp. 475-476. 

[7] M. Matsumoto, Opt. Express  14 (2006) 11018-11023. 
[8] L. Provost, F. Parmigiani, C. Finot, P. Petropoulos, and D. J. Richardson, "Self-Phase 

Modulation-based 2R optical regenerator for the simultaneous processing of two 
WDM channels " in CLEO Europe, Munich, 2007. 

[9] L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, "Generalisation 
and experimental validation of design rules for self-phase modulation-based 2R-
regenerators," in Optical Fiber Conference, OFC 2007, Anaheim, USA, 2007, p. 
OThB6. 

[10] C. Finot, S. Pitois, and G. Millot, Opt. Lett.  30 (2005) 1776-1778. 
[11] M. Rochette, L. B. Fu, V. G. Ta'eed, D. J. Moss, and B. J. Eggleton, IEEE J. Sel. Top. 

Quantum Electron.  12 (2006) 736-744. 
[12] T.-H. Her, G. Raybon, and C. Headley, IEEE Photon. Technol. Lett.  16 (2004) 200-

202. 
[13] B. E. Olsson and D. J. Blumenthal, J. Lightwave Technol.  20 (2002) 1113-1117. 
[14] L. Provost, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, Opt. Express  

15 (2007) 5100-5113. 
[15] J.-T. Mok, J. L. Blows, and B. J. Eggleton, Opt. Express  12 (2004) 4411-4422. 
[16] T. N. Nguyen, M. Gay, L. Bramerie, T. Chartier, and J. C. Simon, Opt. Express  14 

(2006) 1737-1747. 
[17] T. I. Lakoba and M. Vasilyev, Opt. Express  15 (2007) 10061-10074. 
[18] T. I. Lakoba and M. Vasilyev, "Multicanonical Monte-Carlo simulations of the 

dynamix power transfer characteristic of an all-optical 2R regenerator," in Nonlinear 
Photonics 2007, Québec, 2007, p. JWA6. 

[19] S. Pitois, C. Finot, and L. Provost, Opt. Lett.  32 (2007) 3262-3264. 
[20] M. Matsumoto, IEEE Photon. Technol. Lett.  19 (2007) 273-275. 
[21] L. K. Wickham, R. J. Essiambre, A. H. Gnauck, P. J. Winzer, and A. R. Chraplyvy, 

IEEE Photon. Technol. Lett.  16 (2004) 1041-1043. 
[22] M. Gay, L. Bramerie, J. C. Simon, V. Roncin, G. Girault, M. Joindot, B. Clouet, S. 

Lobo, S. Feve, and T. Chartier, "2R and 3R optical regeneration : from device to 
system characterization," in European Conference on Optical Communication, ECOC 
Cannes, 2006. 

[23] J. E. Rothenberg, Opt. Lett.  15 (1990) 443-445. 
 
 


