
HAL Id: hal-00429612
https://hal.science/hal-00429612v2

Preprint submitted on 4 Nov 2009 (v2), last revised 4 Jan 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Research report : Collaborative Peer 2 Peer Edition:
Avoiding Conflicts is Better than Solving Conflicts

Stéphane Martin, Denis Lugiez

To cite this version:
Stéphane Martin, Denis Lugiez. Research report : Collaborative Peer 2 Peer Edition: Avoiding Con-
flicts is Better than Solving Conflicts. 2009. �hal-00429612v2�

https://hal.science/hal-00429612v2
https://hal.archives-ouvertes.fr


Research report : Collaborative Peer 2 Peer Edition: Avoiding
Conflicts is Better than Solving Conflicts

S. Martin and D. Lugiez
LIF UMR 6166 Aix-Marseille Université CNRS

ABSTRACT

Collaborative edition is achieved by distinct sites that work independently on (a copy of) a shared document.
Conflicts may arise during this process and must be solved by the collaborative editor. In pure Peer to Peer
collaborative editing, no centralization nor locks nor time-stamps are used which make conflict resolution
difficult. We propose an algorithm which relies on the notionor semantics dependence and avoids the need
of any integration transformation to solve conflicts. Furthermore, it doesn’t use any history file recording
operations performed since starting the edition process. We show how to define editing operations for semi-
structured documents i.e. XML-like trees, that are enriched with informations derived for free from the
editing process. Then we define the semantics dependence relation required by the algorithm and we present
preliminary results obtained by a prototype implementation.

1 Introduction

Collaborative edition becomes more and more popular (writing article with SVN, setting appointments with
doodle, Wikipedia articles,. . . ) and it is achieved by distinct sites that work independently on (a copy of) a
shared document. Several systems have been designed to achieved this task but most of them use centralization
and locks or weak centralization via time-stamps. A alternative approach is the Peer to Peer approach -P2P in
short- where new sites can freely join the process and no central site is required to coordinate the work. This
solution is more secure and scalable since the lack of central site prevents from failures and allows for a huge
number of participants. In this paper we focus on editing semi-structured documents, called XML trees from
now on, using the basic editing operationsadd, deletefor edges orchanging labelsin the document. Since the
process is concurrent, conflicts can occur: for instance a site s1 changes the labelIntroductionof an edge by
De f initionwhen another sites2 want to relabelIntroductionby Abstract. Thens1 informss2 of the operation
performed and conversely. Executing the corresponding operations leads to an incoherent state since the sites
nor longer have identical copies of the shared document. In the optimistic P2P approach, each operation is
accounting for and conflicts are solved by replacing the execution of an operationop2 performed concurrently
with op1 by IT (op2,op1) whereIT is an integration transformation defined on the set of operations. This
transformation computes the effect of the execution ofop1 onop2, i.e. thedependence of op2 from op1.

In the word case, the transformations proposed in [12, 3, 8, 10, 13] turned out to be non-convergent, see
[7] for counter-examples. In particular, none of these transformations satisfy both propertiesTP1 (a local
confluence property) andTP2 (integration stability) that are sufficient to ensure convergence [12]. Currently, no
convergent algorithm based on the integration transformation is known for words. For XML trees, algorithms
and operations have been proposed (like in [1]), but they have the same problem as in the word case or use
time-stamps (see [11]) i.e. are not true P2P.



We propose a new algorithm that relies onsemantic dependenceof operations which allows to reduce the
integration transformation to a trivial one:IT (op2,op1) = op2. This is possible since we enrich the data struc-
ture by adding informations coming for free from the editingprocess on trees yielding an important property:
each edge is uniquely labelled. Furthermore labels also record the level of dependence of the sites that created
or modified them. These properties allow to get a simple convergent editing algorithm which doesn’t require
any history file recording all operations done since the beginning of the edition process. Since a word can
be encoded as a tree, this algorithm also solves the word case, at the price of a more complex representation.
These ideas have been implemented in a prototype that provedthat the editing is done efficiently and that the
process is scalable.

Section 2 discusses the current approaches to collaborative editing, and we present our editing algorithm
in section 3. The data structure used for XML trees is described in section 4 and our first results are given in
section 5. Missing proofs can be found in the full research report.

2 Related Works

Many collaborative edition framework have been proposed, and we discuss only the most prominent ones.

Document synchronization framework. IceCube(see [9]) is a operational-based generic approach for rec-
onciliating divergent copies. Conflicts are solved on a selected site using optimization techniques relying on
semantic static constraints (generated by document rules)and dynamic (generated by the current state of the
document). Complexity is NP-hard and this approach is not a true P2P solution (each conflict is solved by one
site). TheHarmonyproject [4] is a state-based generic framework for merging two divergent copies of docu-
ments. These documents are tree-like data structure similar to the unordered trees that we discuss in section 4.
The synchronization process exploits XML-schema information and is proved terminating and convergent for
two sites.

Integration transformation based framework. So6[11] is a generic framework based on theSoct4algo-
rithm which requires the local confluence property (TP1). Itrelies on continuous global order information
delivered by a times-tamper, which is not pure P2P since it relies on a central server for delivering these time-
stamps. TheGoto system (Sun et al.[14]), orSDT (Du Li and Rui Li [2]) rely on forward and backward
transformation (for undoing operations). These algorithms need to reorder the history of operations which
involve a lot of computations to update the current state in order to ensure convergence.

Goto (Sun et al. [14]),Adopted(Ressel et al. [12]) andSDT (Du Li and Rui Li [2]) rely on the local
confluence property (TP1) and on the integration stability property (TP2) to guarantee convergence. A main
issue is to ensure that operation integration takes place inthe same context and return the same result and each
algorithm has its own solution. For instance,Gotouses a forward(IT ) and a backwardET) transformation to
reorder the history (record of all operations performed).Adoptedcomputes the sequence of integrations as a
path in a multi-dimensional cube. The main drawback of theseapproach is that it is hard to design set of useful
operations and integration transformations that satisfy both TP1 andTP2. For instance, no such set exists in
the word case nor for linearly ordered structures.

The set of operations given by Davis and Sun provides operations on trees for the Grove editor [1], but this
set doesn’t satisfy the local confluence property TP1. Therefore, there is little hope to get a convergent editing
process.OpTree[5, 6] present a framework for editing trees and graphical documents usingOpt or theSoct2,
and relies extensively on history files containing all operations performed on the date. The complexity is at
least quadratic in the size of the log file and no formal proof of correctness is given.

A main problem of all these solutions -even when convergenceis guaranteed- is that they rely on manipula-
tion of history files that records all operations performed and these computations can become quite expensive.

2



3 Conflict-free Solution

We propose a generic schema for collaborative editing whichavoid the pitfalls of previous works by avoiding
the need to solve conflicts. First we give an abstract presentation of this editing process and of the properties
required to ensure its correctness, then we show how it worksfor XML trees.

Each site participating to the editing process executes thesame algorithm (given in figure 1) and performs
operations on his copy of the shared documents. Operations belong to a set of operations Op , and we assume
that there is a partial order≻s (i.e. an irreflexive, antisymmetric, transitive relation)on operations and we write
op1 ‖s op2 iff op1 6≻s op2 andop2 6≻s op1. This ordering expresses causal dependencies of the editing process:
op1 ≻s op2 iff op2 depends fromop1 (for instanceop1 creates an edge andop2 relabels this edge). In our
model the setOpDepasop∈ Op,∀op′ ∈ OpDep|op≻s op′ is bounded set. We show how to compute this
relation for XML trees in section 4.3. A sequence of operations is denoted by[op1; . . . ;opn] and the result of
applyingop1, followed byop2, . . . ,opn to the documentt is denoted by[op1; . . . ;opn](t). The set of operations
(Op ,≻s) is independentiff ∀op,op′ ∈ Op ∀t,op‖s op′ =⇒ [op,op′](t) = [op′,op](t).

A sequence[op1; . . . ;opn] is valid if for all opi,opj occurring in the sequence,opi ≻s opj implies i < j.
In other words, the sequence isa linearizationof the partial order defined by≻s on the set{op1, . . . ,opn}.
Given a valid sequence[op1; . . . ;opn], a substitutionσ of {1, . . . ,n} is compliant with≻s iff the sequence
[opσ(1); . . . ;opσ(n)] is valid. This yields thatopi ‖s opj iff opσ(i) ‖s opσ( j) or in other terms,σ doesn’t change
the causality relation between operations. The collaborative editing algorithm that we propose relies on the
following proposition1:

Proposition 1 Let (Op ,≻s) an independent set of operations. Let[op1, . . . ,opn] be a valid sequence of oper-
ations in Op and letσ be a substitution compliant with≻s. Then[op1, . . . ,opn](t) = [opσ(1), . . . ,opσ(n)](t)
PROOF. Firstly, we prove that exchanging two consecutive non-dependent operations doesn’t change the result.

Let τi the substitution such thatτi(i) = i + 1,τi(i + 1) = i andτi(k) = k otherwise. Let[op1; . . . ;opn] be a
valid sequence and letopi ‖ opi+1. We prove that[op1; . . . ;opn](t) = [opτi(1); . . . ;opτi(n)(t)] as follows:

[opτi(1); . . . ;opτi(n)](t) = [op1; . . . ;opi−1;opi+1;opi ;opi+2 . . . ;opn](t)
= [opi+1;opi ;opi+2 . . . ,opn](t ′) with s′ = [op1; . . . ,opi−1](t)
= [opi;opi+1;opi+2 . . . ,opn](t ′) since(Op ,≻s) is independent
= [op1, . . . ,opn](t)

Secondly we prove the result by induction on the number of elements in the sequence[op1; . . . ;opn].

• Base case:n = 1 straightforward.

• Induction case: Let[op1; . . . ;opn] be a valid sequence ofOp .

Let [opσ(1); . . . ;opσ(n)] be another linearization of{op1, . . . ,opn}.

We prove that[op1; . . . ;opn](t) = [opσ(1); . . . ;opσ(n)](t).

By definitionop1 is a maximal element of≻s. This element occurs at positionj in l = [opσ(1); . . . ;opσ(n)](t).
Let τk be the subtitution that exchanges the elements ofl at positionsk andk+1 and leaves other elements
unchanged.

Sinceop1 is maximal, any operationop′ occurring inl at positionk < j is such thatop′ ‖ op.

Therefore there is a sequenceτ j−1, . . . ,τ1 of substitutions such that the application of these substitu-
tions to [opσ(1); . . . ;opσ(n)] yields a sequence[op1;op′2; . . . ;op′n] such that (i)[op1;op′2; . . . ;op′n](t) =
[opσ(1); . . . ;opσ(n)](t) (by our first result) and (ii)[op1;op′2; . . . ;op′n] is a linearization ofop1, . . . ;opn.

Therefore[op′2; . . . ;op′n] is a linearization ofop2, . . . ,opn.

By induction hypothesis, we get[op′2; . . . ;op′n](t
′) = [op2, . . . ,opn](t ′).

Takings′ = [op1](t) yields the result.

�

Another statement of the proposition is that the execution of any linearization of a partial order on some
initial value yields the same result.

1This result is a classical result in the field of partial order

3



The dependenceOf function. In our setting, operations are issued by sites and are numbered with an op-
eration number on this site. For instance, to delete a node ina tree, the operation is defined by the action
delete, the site identifierSiteIdof the site which issues this deletion and the operation number OpCounton
this site. Furthermore, the data structure (the shared document) is build using these operations and stores this
information for each component (nodes or edges for trees forinstance). A requestr is a triple composed of an
operationop, a site identifierSiteId, and an operation numberOpCount. We assume that there is an function
dependenceO f(r) which returns for each requestr, the pair(SiteId′ : OpCount′) of any operationop′ such that
op′ ≻s op. Actually, this operation can return such pairs only for theminimal (ofr≻s) operationsop′ such that
op′ ≻s op. In section??, we show how to define effectively and in a simple way this function for XML trees.

The (Fast Collaborative Editing) FCeditAlgorithm. The procedures (exceptMain()) of the generic dis-
tributed algorithmFCedit are given in figure 1. Each site has an unique identification stored in SiteId, a
operation numbering stored inOpcount, a copy of the documentt and a listWaitingListof requests awaiting
to be treated. The functiondependenceOf(r)with r = (op,SiteId: OpCount) returns the pairs(nSite: cSite)
with nSitea site identifier,cSitesome operation count, such thatopdepends from an operation issued from site
nSitewith operation countcSite. This function is defined simultaneously with the data structure, set of oper-
ations and dependence relation, see section 4.3 for the definition used for XML-trees. TheMain() procedure
(not given in figure 1) callsInitialize() and enters a loop which terminates when the editing process stops. In
the loop, the algorithm choose non-deterministically to set the variableop to some user’s input and to execute
GenerateRequest(op)or to executeReceive(r). GenerateRequest(op)simply updates the local variables and
broadcast the corresponding request to other sites.Receive(r)addsr to WaitingListand executes all operations
of requests that becomes executable thanks tor (relying onExecuteandIsExecutable).

INITIALIZE ():1

begin2

∀i,SReceived[i] = 0 // State Vector of3

received operations

(SiteId,Ob j,OpCount,WaitingList) = (n,o,1,{})4

end5

GENERATEREQUEST(op): // User emit operation1

begin2

Let r = (op,SiteId : OpCount)3

if isExecutable(r) then4

OpCount= OpCount+15

t = op(t) // Apply operation6

broadCast r to other participant.7

end8

RECEIVE(r): // This function is executed when1

a request is received

begin2

WaitingList= WaitingList∪ r3

forall r ∈WaitingList|isExecutable(r) do4

execute(r). // execute all executable5

request

end6

ISEXECUTABLE(r): // Check that request r is1

executable

begin2

Let r = (op,#Site: #Op)3

// Check that the previous operation on

same site has been executed

if SReceived[#Site] 6= #Op−1 then4

return false5

// Check all dependencies was executed

for (nSite: cSite) ∈ dependancesO f(r) do6

if SReceived[nSite] < cSitethen7

return false8

return true9

end10

EXECUTE(r): // Execute a request r1

begin2

r = (op,#Site: #Op)3

StateReceived[#Site] = #Op // Update state4

vector

WaitingList= WaitingList/r // remove r from5

waiting list

t = op(t) // Applies a operation6

end7

Figure 1: The Concurrent Editing Algorithm

The convergence property states that each site has the same copy t of the shared document after all opera-

4



tions have been received and executed by each site. Firstly,we show that requests are executed in a sequence
that respects the dependence relation.

Proposition 2 Let ops
1, . . . ,ops

n be the sequence of operations generated by site s usingGenerateRequest. Then
the operation count associated to ops

i is i and opsi ≻s ops
j implies i< j .

PROOF. The first fact is obvious sinceOpCountis incremented by 1 at each creation of an executable request,
starting from 0. Line 6 to 9 ofisExecutable(r=(op,#Site,#Op))tests that each operationop′, issued by sitenSite
with operation numbercSite, which is dependent ofop contained inr has been executed. This is ensured by
returning false ifSReceived[nSite] < cSite. �

Proposition 3 Let s,s′ be two distinct sites. Let ops
1, . . . ,ops

n be the sequence of operations generated by s using
GenerateRequest. Let ops

′

1 , . . . ,ops′
m be the sequence of operations executed by s′ usingGenerateRequestor

Receive. If ops′
j i

is the execution of opsi (from s) by s′ then the sequence ops′
j1
, . . . ,ops′

jn satisfies j1 < j2 < .. . < jn
(i.e. the execution order on s′ respects the creation order on s, hence the dependence relation).

PROOF. Before any execution of an operation (line 6 ofGenerateRequestor line 5 ofReceive) a call toisEx-
ecutableis performed. The first step of this function returns false for an operation of sites numberedn if the
operation of sites numberedn−1 has not been executed. Therefore the execution order of theoperationsops

i
respects their creation order. Since the creation order respects the dependence relation, we are done. �

Proposition 4 The algorithmFCeditis convergent if the set of operations is independent.

PROOF. Let [op1; . . . ;opm] by the sequence executed on sites. We prove that[op1; . . . ;opm] is a linearization
of the partial order defined by≻s on{op1, . . . ,opm}.

Letopi andopj such thatopi andopj have been generated by the same sites′. The subsequence[opj1; . . . ;opj l ]
corresponding to the operations received from sites′ is such thatopjk ≻s opjk′ implies jk < jk′ (by proposition
3).

Let opi andopj such thatopi has been generated bys′ andopj has been generated bys′′. If opi ≻s opj , the
functionisExecutablecalled on the requestr = (opj , . . .) before executingr on sites checks thatopi has been
executed on sites (line 6 to 9 ofisExecutable). Therefore we get thati < j.

Therefore[op1; . . . ;opm] is a linearization of the partial order induced by≻s on{op1, . . . ,opm}. Since each
site executes a linearization of the same partial order, proposition 1 yields that each site computes the same
value for the shared document.

�

4 Conflict free operations for XML Trees

The basics editing operations on trees are insertion, deletion or relabeling of a node. Actually, since we consider
edge labelled trees instead of node labelled trees, insertion and deletion are performed on edges instead of
nodes. Firstly, we consider unordered trees, and we show in section 4.4 how to reestablish the ordering between
edges, which allows to get a data-structure corresponding to XML trees.

4.1 Data Structure

The information stored in nodes (or edges in our case) can be described as a word on some finite alphabetΣ.
To get a independent set of operations containing relabeling, we must have a much more complex labeling that
we describe now.

The set of identifiersID. Each site is uniquely designated by its identifier which is a natural number (IP
numbers could be used as well). The set of identifier is the setID of pairs((SiteNumber: NbOpns)) where
NbOpns∈ Nat is denotes some numbering of operations on this site.

The set of labelsL . A label is a pair(l , id) whereid ∈ ID andl is a triple(lab, id′,dep) with lab∈ Σ∗
L with

ΣL a finite alphabet,id′ ∈ ID, dep∈ N (expressing a level of dependence).

5



Trees.Trees are defined by the grammar

T ∋ t ::= { } | {n1(t1), . . . ,np(tp)} where ni = (l i , idi) ∈ L ,ti ∈ T

whereeachidi occurs once int.
The uniqueness of labels is guaranteed by the fact thatidi = ((SiteNumber: NbOpns)) states that the edge

has been created by operationNbOpnsof siteSiteNumber.
Trees are unordered i.e.{n1(t1), . . . ,np(tp)} is identified with{nσ(1)(tσ(1)), . . . ,nσ(p)(tσ(p))} for any permu-

tation of{1, . . . ,n}.
Example. We give an XML document and a tree that may represent this document as the result of some

editing process.

1 <?xml version ="1.0" encoding ="UTF-8"?>
2 <Pat>
3 <Phone >
4 <Cellular>
5 0691543545
6 </Cellular>
7 <Home >
8 0491543545
9 </Home>
10 </Phone >
11 </Pat>
12 <Henri >
13 <Adress >
14 45 Emile Caplant Street
15 </Adress >
16 </Henri >

(a) XML Document

...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
...................

..................
...................

.............

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..
...
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
. ..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..
..
.........

.

.

.

..

..........
.
..
..

.

.

..

..
..........

.

.

.

..

..........
..
.
..

.

.

..

..
..........

.

.

.

..

..........
..
.
..

.

.

..

..
..........

.

.

.

..

..........
..
..
.

.

.

..

..
..........

.

.

.

..

..........
..
..
.

.

.

..

..
...
.......

.

.

.

..

..
........
..
..
.

.

.

..

..
...
.......

.

.

.

..

..
........
..
..
.

.

.

..

..
...
.......

.

.

.

..

..
........
..
..
.

.

.

..

..
...
......

..

.

..

.

..........
..
.
.
. .

.

..

..
...
......

..

.

..

.

..........
..
.
.
.

t =

Pat Henri

Phone

HomeCellular

04915435450691543545

Address

45 Emile Caplant Street

(b) Schematic tree

Figure 2: Document

t =







((Pat,(1 : 3),2),(1 : 1))

({

((Phone,(3 : 4),5),(2 : 1))

({

((Home,(3 : 2),1)(3 : 1))({((0491543545,(4 : 2),1),(4 : 1))({})})
((Cellular,(5 : 2),3),(5 : 1))({((0691543545,(6 : 2),1),(6 : 1))({})})

}) })

((Henri,(2 : 3),1),(2 : 2))({((Address,(3 : 5),2),(3 : 2))({((45Emile Caplant Street,(4 : 9),5),(4 : 2))({})})})







4.2 Editing Operations

We extend the setΣL by a symbolNoValuethat states that a label is not yet set.
Adding an edge. The operationAdd(idp, id) with idp 6= id adds an edge labelled by(l , id) with l =

(NoValue, id,0) under edge labelled(. . . , idp). Whenidp doesn’t occur, the tree is not modified. It is formally
defined by:
Add(idp, id)({ }) = { }
Add(idp, id)({n1(t1), . . . ,(l i , idi)(ti), . . . ,np(tp)}) = {n1(t1), . . . ,(l i , idi)(ti ∪ ((NoValue, id,0), id)({ }) . . .np(tp)}

i f id p = idi

Add(idp, id)({n1(t1), . . . ,np(tp)}) = {n1(Add(idp, id)(t1)), . . . ,np(Add(idp, id)(tp))}
i f ni = (l i , idi) with idi 6= idp f or i = 1, . . . ,n

Deleting a subtree. The operationDel(id) deletes the whole subtree corresponding to the unique edge
labelled by(. . . , id) (including this edge). Whenid doesn’t occur, the tree is not modified. It is formally
defined by:

Del(id)({ }) = { }
Del(id)({n1(t1), . . . ,(l i , idi)(ti), . . . ,np(tp)}) = {n1(t1), . . . ,ni−1(ti),ni+1(ti+1), . . .np(tp)}

i f id = idi

Del(id)({n1(t1), . . . ,np(tp)}) = {n1(Del(id)(t1)), . . . ,np(Del(id)(tp))}
i f ni = (l i , idi) with idi 6= id f or i = 1, . . . ,n

Changing a label.ChLab(ide, idop,dep,L) with ide, idop∈ ID,dep∈ N ,L ∈ ΣL replaces the label(le, ide)
of the edge identified by(. . . , ide) by (L, idop,v) depending on some relations on dependencies. It is defined

6



formally by:

ChLab(ide, idop,dep,L)({n1(t1), . . . (le, ide)(te), . . .np(tp)})) = {n1(t1), ...(l ′e, ide)(te), . . . ,np(tp)

wherele = (Le, ide,depe) andl ′e =

{

(L, idop,dep), if depe > depor elsedep= depe andidop < idlbl

le, otherwise
ChLab(ide, idop,dep,L)({n1(t1), ...,np(tp)})) = ({n1(ChLab(ide, idop,dep,L)(t1)) . . .np(ChLab(ide, idop,dep,L)(tp))})
if ni = (l i , idi) with idi 6= ide for i = 1, . . . , p

4.3 Semantic Dependence

Let the set of operations beOp = {Add(id, id′),Del(id),ChLab(id, id′,dep,L) |id, id′ ∈ ID,dep∈N ,L∈Σ∗
L}.

The dependence relation≻s is defined as follows:

• Add(id, idp) ≻s Del(id): an edge can be deleted only if it has been created.

• Add(idp, idp
′) ≻s Add(id, idp): adding edgeid under edgeidp requires that edgeidp has been created.

• Add(id, idp) ≻s ChLab(id, idop,dep,L): changing the labeling of edgeid requires that edgeid has been
created.

This allows to compute the set of identifiers depending from an operation:

dependencesO f(op) =







idp for op= Add(idp, id)
id for op= Del(id)
id for op= ChLab(id, idop,depLvl, lbl)

Proposition 5 The set(Op ,≻s) is an independent set of operations.

PROOF. We prove that ifop1 ‖s op2 then[op1,op2](t) = [op2,op1](t) by a case analysis on all possible pairs
op1,op2.

1. op1 = Add(id1, idp1)

(a) op2 = Add(id2, idp2)

• idp1 = id2 or idp2 = id1 there for respectivelyop1 ≻s op2 or op2 ≻s op1.

• else we can insert a edge before another independently of order the result will be same as a set.

(b) op2 = Del(id2)

• id2 = idp1 or idp1 is in subtreeid2:
let t a tree.t1 = Del(id2)(t) by definitionidp is deleted.
Add(id1, idp1) = t1. t2 = Add(id2, idp1)(t) andDel(id2)(t2) = t1 because a subtree are erased.

• id2 = id1: becauseAdd(id1, idp1) ≻s del(id1).

• other : the edgeid1 has been created andid2 has been deleted whatever order.

(c) op2 = ChLabel(id2, idop2,dep2, lbl2)

• id2 = id1 : the edge be created before renamed becauseAdd(id1, idp1)≻sChLabel(id1, idop2,dep2, lbl2).

• other, the add have no effect on ChLabel and vice versa. ⋄

2. op1 = Del(id1)

(a) op2 = Add(id2, idp2) : It’s 1b case.

(b) op2 = Del(id2) If id1 is a subtreeid2 then[del(id1),del(id2)](t) there are no edge to delete with
del(id1) because it was deleted withdel(id2) . And [del(id2),del(id1)](t) the the edge and subedge
of id1 were deleted at first time andid2 with id1 was deleted too. else two subtree are distinct .

(c) op2 = ChLabel(id2, idop2,dep2, lbl2)

7



• id1 = id2

Let t ′ = del(id1)(t). Chlabel(id1, idop2,dep2, lbl2)(t ′) = t ′ becauseid1 is not present int ′.
del(id1)(Chlabel(id1, idop2,dep2, lbl2)(t)) = t ′ becauseid1 and it subtree was deleted. What-
ever her label.

• Other : there are no problems.

⋄

3. op1 = Chlabel(id1, idop1,dep1, lbl1)

(a) op2 = Add(id2, idp2) : It’s 1c case.

(b) op2 = Del(id2) : It’s 2c case.

(c) op2 = ChLabel(id2, idop2,dep2, lbl2) :

• id1 6= id2: The edge be different.

• id1 = id2

– dep1 < dep2 let t1 = op1(op2(t))(1)

let t2 = op2(op1(t))(2)

In (1) the label ofid1 is lbl2 and not changed byop1 (definition). in(2) the label ofid1 is
lbl1 and changed byop2 to lbl2 (definition).
thereforet1 = t2.

– dep2 < dep1: idem with number of label are inverted.

– dep1 = dep2 if idop1 < idop2 same ofdep1 < dep2

else same ofdep2 < dep1

By definitionidop1 6= idop2 ⋄

�

4.4 Ordered Trees

The previous editing process is defined on unordered trees when XML documents are ordered trees. To make
the algorithm work in this case, we enrich the labeling of edges with an ordering information. This shows that
our approach works in this general case. The properties required on the ordering information are:

• The ordering of labels must be a total order

• The ordering is the same for each site

• Insertion can be done between two consecutive edges, beforethe smallest edge and after the largest edge.

The ordering that we design enjoys all these properties. To each edge corresponding to some identifierid we
associate a word on some finite alphabetΣ such that two distinct edges corresponds to distinct words.

Let Σ0 = {a1, . . . ,an} a finite alphabet such that there is a injective mappingφ from ID into Σ∗
0. For instance,

to a pair((s : n)) with s a site number,n an operation number, we can associate a worddec(s) ·dec(n) on the
alphabet{0,1, . . . ,9}∪{·} with dec(x) the representation ofx in base 10.

We extendΣ0 by the letter # used as a separator and⊥ used as a minimal element, yielding a alphabet
Σ. The ordering on letters is⊥ ≤ #≤ a1 . . . < an. The lexicographic ordering on words ofΣ∗ induced by the
ordering of letters is a total ordering.

The labeling of an edgee corresponding to the identifieride is enriched by a new fieldpe ∈ (Σ0∪{⊥;#})∗

and we associate toe the wordwe = pe#φ(ide). The #φ(ide) part is added to guarantee that distinct edges are
associated to distinct words.

Proposition 6 The ordering on edges defined by e≺ e′ iff we = pe#φ(ide)≪wf = pf #φ(id f ) is a total ordering
on edges.

8



PROOF. Since distinct edges have distinct identifier, the functionφ is injective and #φ(ide) is the smallest suffix
of we containing only one occurrence of #, then the words associated to distinct edges are distinct. This proves
the proposition since≪ is a total ordering on words. �

Example. Let e, f be edges identified byide = (1,10) andid f = (2,1). Let φ(ide) = 1.10 andφ(id f ) = 2.1.
Let the priority ofe be 12 and the priority off be 211. The ordering on digit is′i′ <′ j ′ if i < j and. <′ i′.
Since 11#1.10≪ 211#2.1, we get that edgee precedes edgef in the tree.

LetW be the set of words of the formwp#wid with wp ∈ Σ∗, wid ∈ φ(ID) ⊆ Σ∗
0.

Proposition 7 Let w,w′ ∈W such that w≪ w′.

(i) There exists a computable w′′ ∈W such that w≪ w′′ and w′′ ≪ w′.

(ii) There exists wm,wM ∈W such that wm ≪ w and w′ ≪ wM .

PROOF. Let s[k] denote thekth letter of a wordsand let|s| denote the length of the words.

(i) Let w = wp#wi ≪ w′ = wp′#w′
i . We constructw′′ such thatw≪ w′′ ≪ w′. Let j be the minimal integer

such thatw[ j] < w′[ j].

Case 1. j < length(w′
p#w′

i). Let wp′′ such that|w′′
p| = |w′

p#w′
i | andw′′

p[k] = w′
p[k] for k = 1, . . . , j and

w′′
p[k] = ⊥ for j < k≤ length(w′′

p). Given anyw′′
i = φ(id) for someid, by construction the word

w′′ = w′′
p#w′′

i is such thatw≪ w′′ < w′.

Case 2. j = length(w′
p#w′

i). Let wp′′ = wp#wi#. Given anyw′′
i = φ(id) for someid, by construction the

wordw′′ = w′′
p#w′′

i is such thatw≪ w′′ < w′.

(ii) Let w= wp#wi < w′ = wp′#w′
i . We constructwm such thatwm≪w. Letwm

p [k] =⊥ for i = 1, . . . , length(wp)+
1. Given anywm

i = φ(id) for someid, by construction the wordwm = wm
p#wm

i is such thatwm < w. The
same construction works to getwM such thatw′ ≪ wM (usean instead of⊥).

�

An updated set of operations. The data structure is slightly modified since the labels are now elements
(l , id) with id ∈ ID andl a tuple(lab, id′,dep, p) ∈ Σ∗

L, id′ ∈ ID,dep∈ N , p∈W . The fieldp combined with
the identifierid is used to order the edges arising from the same node, therefore the data structure is similar to
semi-structured documents.

TheAddandChLaboperations must be slightly modified to handle the new fieldp, which simply amounts
to considering a different set of labels. The set of dependence between operation is the same as before and we
have:

Proposition 8 The set(Op ,≻s) is an independent set of operations.

Therefore our collaborative editing algorithms works for ordered trees, i.e. XML trees.

5 Experiment and Future Works

We have implemented the algorithm and the data structure forXML trees in java (including the ordering
information) on a Mac with a 2.53GHz processor.

The data structuretree is composed ofedges. Each edge have the following fields :

• a field for storing its identifier (which is unique).

• a field for storing the sons (which are edges).

• a field for storing its ancestor (which is an edge).

9



A tree is identified as a some edge (the root). Access to an edgehaving some identifier is done using a hash-
table with identifier as key. The initial document is composed by only one edge: the root with like identifier
0 : 0. Applying an operation op on the tree is performed by the functiondo : Tree×Op 7−→ Tree.

The implement ofdo is straightforward. For instancedo(Add(id f , id),tree):

(i) creates a new edge with identifierid.

(ii) asks the hash-table to get the father edgeid f

(iii) stores the father reference.

(iv) adds new edge into the father list.

(v) adds new edge references in the hash-table.

The P2P framework is simulated by random shuffling of the messages that are broadcast. The results
obtained with our prototype are given in Figure 3.

...............................................................................................................................................................................................................................................................................................

..

..
...
....
.......
.......

..........................
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.

..
.
..
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.

..
.
..
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

.............

.............

.............

.............

0 20 40 60 80#users

+ + + + + + + +

100

300

ms

(a) Average time computer on function of
number of user for 1000 operations

......................................................................................................................................................................................................................................

..

..
...
...
......
.........

..........................
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.

..
.
..
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.

..
.
..
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.............

.............

.............

.............

.............

.............

.............

.............

0 2k 4k 6k #edges

200

400

600

800
ms

+
+

+

+

+

+

(b) Average time to fill a document for 20
users on all Site

...............................................................................................................................................................................................................................................................................................

..
..
...
...
.....
..........

..........................
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.

..

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.............

.............

.............

.............

0 20k 40k 60k 80k#ops

+ + + + + + + +100

300

ms

(c) Average computing time to execute 10
000 operations function of the total number
of operation performed

Figure 3: Prototype statistic

The reader can see that execution time is almost linear. Furthermore memory consumption (not shown
here) is directly related to the size of the document (since we use no history file when for GOTO has a quadratic
complexity).

Future works: We plan to extend this word by adding type information like DTD or XML schemas which
are used to ensure that XML documents comply with for generalstructure. The second main extension that we
investigate is the ability toundosome operations, which may require a limited use of an history file to recover
missing information (needed for instance to recover a deleted tree).

REFERENCE

[1] DAVIS , A., SUN, C., AND LU, J. Generalizing operational transformation to the standard general markup language.
In CSCW ’02: Proceedings of the 2002 ACM conference on Computersupported cooperative work(New York, NY,
USA, 2002), ACM, pp. 58–67.

[2] DU, L., AND RUI , L. Preserving operation effects relation in group editors. In CSCW ’04: Proceedings of the 2004
ACM conference on Computer supported cooperative work(New York, NY, USA, 2004), ACM, pp. 457–466.

[3] ELLIS , C. A., AND GIBBS, S. J. Concurrency control in groupware systems. InSIGMOD Conference(1989), vol. 18,
pp. 399–407.

[4] FOSTER, J., GREENWALD, M., K IRKEGAARD, C., PIERCE, B. C., AND SCHMITT, A. Exploiting schemas in data
synchronization.J. of Computer and System Sciences 73, 4 (2007).

[5] I GNAT, C., AND NORRIE, M. Tree-based Model Algorithm for Maintaining Consistency in Real-time Collaborative
Editing Systems.Fourth International Workshop on Collaborative Editing, CSCW 2002, IEEE Distributed Systems
online(November 2002).

10



[6] I GNAT, C., AND NORRIE, M. Customisable Collaborative Editing Supporting the Work Processes of Organisations.
Computers in Industry 57, 8-9 (December 2006), 758–767.

[7] I MINE , A. Conception Formelle d’Algorithmes de Réplication Optimiste. Vers l’Edition Collaborative dans les
Réseaux Pair-à-Pair. PhD thesis, Université Henri Poincaré, Nancy, décembre 2006.

[8] I MINE , A., MOLLI , P., OSTER, G., AND RUSINOWITCH, M. Proving correctness of transformation functions in
real-time groupware. In8th European Conference of Computer-supported Cooperative Work(2003).

[9] K ERMARREC, A., ROWSTRON, A., SHAPIRO, M., AND DRUSCHEL, P. The icecube approach to the reconciliation
of divergent replicas. InPODC ’01: Proceedings of the twentieth annual ACM symposiumon Principles of distributed
computing(New York, NY, USA, 2001), ACM, pp. 210–218.

[10] L I , D., AND L I , R. Ensuring content intention consistency in real-time group editors. In24th International Confer-
ence on Distributed Com- puting Systems(2004), IEEE Computer Society.

[11] OSTER, G., SKAF-MOLLI , H., MOLLI , P., AND NAJA-JAZZAR , H. Supporting Collaborative Writing of XML
Documents. InProceedings of the International Conference on EnterpriseInformation Systems: Software Agents and
Internet Computing - ICEIS 2007(Funchal, Madeira, Portugal, jun 2007), pp. 335–342.

[12] RESSEL, M., NITSCHE-RUHLAND , D., AND GUNZENHÄUSER, R. An integrating, transformation-oriented ap-
proach to concurrency control and undo in group editors. InCSCW ’96: Proceedings of the 1996 ACM conference on
Computer supported cooperative work(New York, NY, USA, 1996), ACM, pp. 288–297.

[13] SULEIMAN , M., CART, M., AND FERRIÉ, J. Serialization of concurrent operations in a distributed collaborative
environment. InGROUP ’97: Proceedings of the international ACM SIGGROUP conference on Supporting group
work (New York, NY, USA, 1997), ACM, pp. 435–445.

[14] SUN, C.,AND ELLIS , C. Operational transformation in real-time group editors: issues, algorithms, and achievements.
In CSCW ’98: Proceedings of the 1998 ACM conference on Computersupported cooperative work(New York, NY,
USA, 1998), ACM, pp. 59–68.

11


