N
N

N

HAL

open science

Research report: Collaborative Peer 2 Peer Edition:
Avoiding Conflicts is Better than Solving Conflicts

Stéphane Martin, Denis Lugiez

» To cite this version:

Stéphane Martin, Denis Lugiez. Research report: Collaborative Peer 2 Peer Edition: Avoiding Con-
flicts is Better than Solving Conflicts. 2009. hal-00429612v2

HAL Id: hal-00429612
https://hal.science/hal-00429612v2

Preprint submitted on 4 Nov 2009 (v2), last revised 4 Jan 2010 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00429612v2
https://hal.archives-ouvertes.fr

Research report : Collaborative Peer 2 Peer Edition: Angidi
Conflicts is Better than Solving Conflicts

S. Martin and D. Lugiez
LIF UMR 6166 Aix-Marseille Universite CNRS

ABSTRACT

Collaborative edition is achieved by distinct sites thatkviaodependently on (a copy of) a shared document.
Conflicts may arise during this process and must be solvetidygdllaborative editor. In pure Peer to Peer
collaborative editing, no centralization nor locks nor eistamps are used which make conflict resolution
difficult. We propose an algorithm which relies on the not@rsemantics dependence and avoids the need
of any integration transformation to solve conflicts. Farthore, it doesn’t use any history file recording
operations performed since starting the edition procegsshgw how to define editing operations for semi-
structured documents i.e. XML-like trees, that are endchéth informations derived for free from the
editing process. Then we define the semantics dependematiemnaiequired by the algorithm and we present
preliminary results obtained by a prototype implementatio

1 Introduction

Collaborative edition becomes more and more popular (ugitrticle with SVN, setting appointments with
doodle, Wikipedia articles,...) and it is achieved by distisites that work independently on (a copy of) a
shared document. Several systems have been designedawettiiis task but most of them use centralization
and locks or weak centralization via time-stamps. A altéveapproach is the Peer to Peer approach -P2P in
short- where new sites can freely join the process and noaleite is required to coordinate the work. This
solution is more secure and scalable since the lack of desitiegprevents from failures and allows for a huge
number of participants. In this paper we focus on editingisstmctured documents, called XML trees from
now on, using the basic editing operati@u, deletdor edges ochanging labelsn the document. Since the
process is concurrent, conflicts can occur: for instancéeassthanges the labéhtroductionof an edge by
Definition when another sits, want to relabelntroductionby Abstract Thens; informss; of the operation
performed and conversely. Executing the correspondingatipas leads to an incoherent state since the sites
nor longer have identical copies of the shared documenthdroptimistic P2P approach, each operation is
accounting for and conflicts are solved by replacing the @tkec of an operatiolp, performed concurrently
with opy by IT (opz,0p1) wherelT is an integration transformation defined on the set of oferst This
transformation computes the effect of the executioa@fonopy, i.e. thedependence of gdrom op;.

In the word case, the transformations proposed ih [jL2 BAgL3] turned out to be non-convergent, see
[ﬁ] for counter-examples. In particular, none of these gfarmations satisfy both properti@s1 (a local
confluence property) andP2 (integration stability) that are sufficient to ensure mmgence@Z]. Currently, no
convergent algorithm based on the integration transfdomas known for words. For XML trees, algorithms
and operations have been proposed (IikeDn [1]), but they llag same problem as in the word case or use
time-stamps (se(ﬂlll]) i.e. are not true P2P.

We propose a new algorithm that relies ssmantic dependenoé operations which allows to reduce the
integration transformation to a trivial onEF (opz,0p1) = ope. This is possible since we enrich the data struc-
ture by adding informations coming for free from the editprgcess on trees yielding an important property:
each edge is uniquely labelled. Furthermore labels alsurdebe level of dependence of the sites that created
or modified them. These properties allow to get a simple cayerg editing algorithm which doesn’t require
any history file recording all operations done since the ti@gg of the edition process. Since a word can
be encoded as a tree, this algorithm also solves the word abse price of a more complex representation.
These ideas have been implemented in a prototype that ptbaethe editing is done efficiently and that the
process is scalable.

Section[IZ discusses the current approaches to collabeediting, and we present our editing algorithm
in section[B. The data structure used for XML trees is desdrib sectior[}4 and our first results are given in
sectiorﬂS. Missing proofs can be found in the full researglore

2 Related Works

Many collaborative edition framework have been proposed vee discuss only the most prominent ones.

Document synchronization framework. IceCube(see []9]) is a operational-based generic approach for rec-
onciliating divergent copies. Conflicts are solved on acteksite using optimization techniques relying on
semantic static constraints (generated by document rateslynamic (generated by the current state of the
document). Complexity is NP-hard and this approach is nat@R2P solution (each conflict is solved by one
site). TheHarmonyproject [4] is a state-based generic framework for mergivm divergent copies of docu-
ments. These documents are tree-like data structure simithe unordered trees that we discuss in sefion 4.
The synchronization process exploits XML-schema infofame&nd is proved terminating and convergent for
two sites.

Integration transformation based framework. 806[@] is a generic framework based on t8ect4algo-
rithm which requires the local confluence property (TP1)reltes on continuous global order information
delivered by a times-tamper, which is not pure P2P sincdigsen a central server for delivering these time-
stamps. TheGoto system (Sun et al.[14]), 08DT (Du Li and Rui Li [B]) rely on forward and backward
transformation (for undoing operations). These algorghmeed to reorder the history of operations which
involve a lot of computations to update the current staterd®oto ensure convergence.

Goto (Sun et al. E4]),Adopted(ResseI et al. |E2]) an&DT (Du Li and Rui Li IZ]) rely on the local
confluence propertyl(P1) and on the integration stability properfyy®2) to guarantee convergence. A main
issue is to ensure that operation integration takes platteeisame context and return the same result and each
algorithm has its own solution. For instan€ptouses a forwardI T) and a backwar@ T) transformation to
reorder the history (record of all operations performe&joptedcomputes the sequence of integrations as a
path in a multi-dimensional cube. The main drawback of tlggeoach is that it is hard to design set of useful
operations and integration transformations that satistin b P1 andT P2. For instance, no such set exists in
the word case nor for linearly ordered structures.

The set of operations given by Davis and Sun provides opeimtn trees for the Grove editcﬂ [1], but this
set doesn't satisfy the local confluence property TP1. Thezethere is little hope to get a convergent editing
process.OpTree[E, E] present a framework for editing trees and graphicalaeoents usin@pt or the Soct?
and relies extensively on history files containing all ofierss performed on the date. The complexity is at
least quadratic in the size of the log file and no formal prdafarectness is given.

A main problem of all these solutions -even when convergengearanteed- is that they rely on manipula-
tion of history files that records all operations performed these computations can become quite expensive.

3 Conflict-free Solution

We propose a generic schema for collaborative editing waichid the pitfalls of previous works by avoiding
the need to solve conflicts. First we give an abstract prasentof this editing process and of the properties
required to ensure its correctness, then we show how it Wiork§ML trees.

Each site participating to the editing process executesdhee algorithm (given in figuﬂe 1) and performs
operations on his copy of the shared documents. Operateloadpto a set of operations Op , and we assume
that there is a partial ordefs (i.e. an irreflexive, antisymmetric, transitive relatia@m operations and we write
op ||sope iff opr #sope andop, #sop:r. This ordering expresses causal dependencies of thegefiticess:
op1 s opy iff opz depends fronop; (for instanceop; creates an edge ar, relabels this edge). In our
model the seDpDepasop e Op,Vop € OpDegop s op is bounded set. We show how to compute this
relation for XML trees in sectio@.& A sequence of operatics denoted bjops;...;opn] and the result of
applyingopy, followed byopy, ..., 0p, to the documerttis denoted byopy; . ..;0py|(t). The set of operations
(Op, =s) isindependeniff Yop,op € Op Vt,op|sop = [op,op](t) = [op,0p|(t).

A sequencgopy;...;0py| is valid if for all op, 0p; occurring in the sequencep >sop; impliesi < j.

In other words, the sequenceadinearizationof the partial order defined by s on the set{op,...,opn}.

the causality relation between operations. The collabera&diting algorithm that we propose relies on the
following propositiof:

Proposition 1 Let(Op,>s) an independent set of operations. [ep;, ...,op,] be a valid sequence of oper-
ations in Op and let be a substitution compliant withs. Then[opy,...,0p](t) = [0Pg(1),- - -, OPe(m) (1)
PROOF Firstly, we prove that exchanging two consecutive nonetielgent operations doesn’t change the result.
Let 1; the substitution such that(i) =i+ 1,7i(i + 1) = i andTi(k) = k otherwise. Lefop;...;opn] be a
valid sequence and letp || opi;1. We prove thafop;...;0pn](t) = [0pg(1);---;0P(n) (1)] as follows:
[OPg(1)s---:0P;m)(t) = [OP1;...;0P-1,0P+1;0P; 012 -.;0pn(t)
= [0pi+1;0P;0p+2...,0pn)(t) with s = [opy;...,0p-1](t)
= [0p;0p+1;0P+2---,0pn)(t') since(Op, =) is independent

= [Opla"'vopn](t)

e Base casen = 1 straightforward.

e Induction case: Lefopy;...;0py] be a valid sequence @ip.
Let[0pg(1);---;OPg(n)] be another linearization dopy,...,0pn}.
We prove thafopy;...;0p(t) = [0Pg(1); - - -3 OPg(m) (1)-
By definitionopy is a maximal element of s. This element occurs at positigin | = [0Pg(1); - - -; O Pg(m)] (t)-
Let 1y be the subtitution that exchanges the elemenitsibpositionk andk+ 1 and leaves other elements
unchanged.

Sinceop; is maximal, any operationp occurring inl at positionk < j is such thabp || op.
Therefore there is a sequence,..., Ty of substitutions such that the application of these substit

Takings = [op](t) yields the result.
O

Another statement of the proposition is that the executiosny linearization of a partial order on some
initial value yields the same result.

1This result is a classical result in the field of partial order

The dependenceOf function. In our setting, operations are issued by sites and are n@dlvadth an op-
eration number on this site. For instance, to delete a nodetiee, the operation is defined by the action
delete the site identifielSiteld of the site which issues this deletion and the operation rn@pCounton

this site. Furthermore, the data structure (the sharedrdent) is build using these operations and stores this
information for each component (nodes or edges for treemébance). A requestis a triple composed of an
operationop, a site identifielSiteld and an operation numb&pCount We assume that there is an function
dependenceQqf) which returns for each requesthe pair(Siteld : OpCount) of any operatiomp’ such that

op =sop. Actually, this operation can return such pairs only forthieimal (ofr -) operation®p' such that

op =sop. In section??, we show how to define effectively and in a simple way this fiorcfor XML trees.

The (Fast Collaborative Editing) FCeditAlgorithm. The procedures (excepain()) of the generic dis-
tributed algorithmFCedit are given in figurd]1. Each site has an unique identificatiorest in Siteld a
operation numbering stored Dpcount a copy of the documeiitand a listWaitingListof requests awaiting
to be treated. The functiomependenceOf(wvith r = (op, Siteld: OpCoun) returns the pairgnSite: cSite
with nSitea site identifiercSitesome operation count, such tlegi depends from an operation issued from site
nSitewith operation countSite This function is defined simultaneously with the data strce; set of oper-
ations and dependence relation, see sen 4.3 for thataefinsed for XML-trees. Théain() procedure
(not given in figurd]1) callsnitialize() and enters a loop which terminates when the editing proteps.sin
the loop, the algorithm choose non-deterministically tiotlse variableopto some user’s input and to execute
GenerateRequest(op) to executeReceive(r) GenerateRequest(ogimply updates the local variables and
broadcast the corresponding request to other dReseive(rrddsr to WaitingListand executes all operations
of requests that becomes executable thankgtelying onExecuteandIsExecutabli

1 INITIALIZE (); 1 ISEXECUTABLE(r). // Check that request r is

2 begin exe(?ut abl e

Vi, SReceive] =0 Il State Vector of 2 begin

. . Letr = (op #Site: #Op)

received operations .]
4 (Siteld Obj, OpCountWaitingLis) = (n,0,1, {}) /1 Check that the previous operation on
5 end same site has been executed

if SReceive@#Sitg # #Op— 1 then

1 GENERATEREQUESTOp): // User enmit operation 5 L return false
2 begin _ /| Check all dependencies was executed
8 Let r = (op,Siteld: OpCounf 6 for (nSite: cSite € dependancesQf) do
4 if isExecutabler) then 7 if SReceivethSité < cSitethen
5 OpCount= OpCount+ 1 L return false
6 t=op(t) /1 Apply operation
7 broadCast r to other participant. 9 return true
8 end 10 end

EXECUTE(r): /1 Execute a request r
begin

1 RecEelvE(r). [/ This function is executed when !
2
3 r = (op,#Site: #Op)
4

a request is received

2 begin) i
3 WaitingList = WaitingListUr StateReceivg#Sitd = #Op /1 Update state
4 forall r € WaitingListisExecutablé) do vec't _Or) o
5 executér). /] execute all executabl e 5 Wjaltl‘nngslt:Waltlnngst/r /'l renmove r from
waiting |ist
request .]
6 t=op(t) /1 Applies a operation
6 end
7 end

Figure 1: The Concurrent Editing Algorithm

The convergence property states that each site has the sayeaf the shared document after all opera-

tions have been received and executed by each site. Firgtlghow that requests are executed in a sequence
that respects the dependence relation.

Proposition 2 Letop,...,op; be the sequence of operations generated by site s G@ngrateRequesThen
the operation count associated toftipi and off s op] implies i< j .

PrROOF The first fact is obvious sind®pCountis incremented by 1 at each creation of an executable request
starting from 0. Line 6 to 9 oEExecutable(r=(op,#Site, #Oppsts that each operatiop, issued by sit@Site

with operation numbecSite which is dependent adp contained inr has been executed. This is ensured by
returning false ifSReceivefhSité < cSite O

Proposition 3 Lets s be two distinct sites. Let§p .., op; be the sequence of operations generated by s using
GenerateRequest et opf, . ,0p§1 be the sequence of operations executed’ lsisig GenerateRequesr
Receive If opﬁ is the execution of gi{from s) by §then the sequence ép. . ,opjs'n satisfiesj < jo <... < |n

(i.e. the execution order ori espects the creation order on s, hence the dependencmrélat

PrROOF. Before any execution of an operation (line 6@&énerateRequesr line 5 of Receivg¢a call toisEx-
ecutableis performed. The first step of this function returns falsedio operation of sits numbered if the
operation of sites numberech— 1 has not been executed. Therefore the execution order opitionp?
respects their creation order. Since the creation ordpents the dependence relation, we are done. [

Proposition 4 The algorithmFCeditis convergent if the set of operations is independent.

PROOF. Let|ops;...;0pm by the sequence executed on sit&Ve prove thafops;...;0pm] is a linearization
of the partial order defined byson{opa,...,0pm}.

Letop andop; such thabp andop; have been generated by the samessit€he subsequendep;,;...;0pj,]
Eorresponding to the operations received fromsite such thabp, s opj,, implies jk < ji (by proposition

).

Letop andop; such thabp has been generated Kyandop; has been generated 5{. If op -sopj, the
functionisExecutablealled on the request= (opj,...) before executing on sites checks thabp has been
executed on sitg (line 6 to 9 ofisExecutablg Therefore we get that< j.

Therefordop;...;0pn| is a linearization of the partial order inducedbyon {opa,...,0pm}. Since each
site executes a linearization of the same patrtial ordepqisibionﬂ yields that each site computes the same
value for the shared document.

O

4 Conflict free operations for XML Trees

The basics editing operations on trees are insertion,idelet relabeling of a node. Actually, since we consider

edge labelled trees instead of node labelled trees, ingeatid deletion are performed on edges instead of
nodes. Firstly, we consider unordered trees, and we shoectios[4.4 how to reestablish the ordering between
edges, which allows to get a data-structure correspondiXAL trees.

4.1 Data Structure

The information stored in nodes (or edges in our case) careberitted as a word on some finite alphabet
To get a independent set of operations containing reladpelie must have a much more complex labeling that
we describe now.

The set of identifiersID. Each site is uniquely designated by its identifier which isatural number (IP
numbers could be used as well). The set of identifier is théBsetf pairs ((SiteNumber NbOpnsg) where
NbOpns= Natis denotes some numbering of operations on this site.

The set of labelsc . A labelis a pair(l,id) whereid € ID andl is a triple(lab,id’,dep with lab € Z} with
%, afinite alphabeid’ € ID, depe ¢ (expressing a level of dependence).

Trees. Trees are defined by the grammar

Tota={}|{mt),...,

whereeachid; occurs once int.

Np(tp)} wheren= (lj,idi) e £,ti €T

The uniqueness of labels is guaranteed by the facidhat ((SiteNumber NbOpng) states that the edge
has been created by operatidhO pnsof site SiteNumber

Trees are unorderedi.ény(t1),...,

tation of{1,...,n}.

Np(tp)

} is identified with{ng (1) (tg(1)), - - -

No(p) (ta(p)

)} for any permu-

Example. We give an XML document and a tree that may represent thisrdenuas the result of some

editing process.

<?xm version="1.0"

1

2 <Pat >

3 <Phone>

4 <Cel lul ar >

5 0691543545
6 </ Cel lul ar >
7 <Home >

8 0491543545
9 </ Home >

10 </ Phone >

1 </ Pat >

12 <Henri >

13 <Adress >

14 45 Emi |l e Caplant Street
15 </ Adr ess >

16 </ Henri >

encodi ng="UTF-8"?>

(a) XML Document

((Pat,(1:3),2),(1:1)) ({
((Henri,(2:3),1),(2:

-

4.2 Editing Operations

((Phone(3:4),
2))({((Address(3:5),

Figure 2: Document

)

{ (Home(3:2),

Henri

0491543545

(b) Schematic tree

1)(3:1))({((0491543545(4 : 2),

)7

(Cellular,(5: 2),3),(5: 1))({((0691543545(6 2),

) ({(45Em|IeCapIant Street4: 9),5

), (4:

We extend the séf; by a symboNoValuethat states that a label is not yet set.
Adding an edge. The operationAdd(idp,id) with idp # id adds an edge labelled ly,id) with | =

(NoValueid,0) under edge labelled. . ,id

defined by:

Add(idp,id)({ }) ={ }
Add(id p,id) ({n(ty), ...

Add(idp,id)({m(ty),....n

,(liyid) (6), - .
if idp = ich
p(tp)}) =

Np(tp)}) =

{m(Add(idp,id)(t1)),....n

{nl(tl),...,(h,idi)(ti

if ni = (Ij,id;) withid; #idp fori=1,...,n
Deleting a subtree. The operatiorDel(id) deletes the whole subtree corresponding to the unique edge

labelled by(...,id

defined by:
Del(id)({ }) ={}
Del(id)({na(t1), ...,
Del(id)({n1(t1),...,Np(tp)}) =

(|i,idi)(ti),...,

”p(tp)})f:_d{nl(_té)v---;ni—l(ti),ﬂi+1(ti+1)7---
if id = id;
{n1(Del(id)(t1)), ..., np(Del(id)(tp)) }

if ni = (Ii,idi) with id #id fori=1,....n

){HH})

p(Add(idp,id)(tp))}

Np(tp) }

U((NoValueid,0),id)({ })...

) (including this edge). Wheid doesn't occur, the tree is not modified.

(4:D)({hH})
1),6:1){H}

b

p)- Whenid, doesn't occur, the tree is not modified. Itis formally

Np(tp)}

It is formally

Changing a label.ChLaly(ide, idop,dep L) with ide,idop € ID,depe a(,L € Z, replaces the labéle, ide)

of the edge identified by...,ide

) by (L,idop,Vv) depending on some relations on dependencies. It is defined

formally by:

ChLak(ide, idop, dep L) ({n1(t1), ..
wherele = (Le,ide,deps) andly = le, otherwise

ChLak(ide,idop, depL)({ny(t1),....Np(tp)})) = ({n1(ChLak(ide,idop,depL)(t1)) ... np(ChLak(ide,idop, depL)(tp))})
if nj = (lj,id;) with id; Zidefori=1,...,p

—

(L,idop,dep), if dep. > depor elsedep= dep andidop < idp|

—

4.3 Semantic Dependence

Let the set of operations i2p = {Add(id,id’), Del(id),ChLak(id,id’,depL) |id,id" € ID,depe A(,L € Z}' }.
The dependence relation; is defined as follows:

e Add(id,id) s Del(id): an edge can be deleted only if it has been created.
e Add(idp,id,) =sAdd(id,idp): adding edgéd under edgeéd, requires that edgiel, has been created.

e Add(id,id) >sChLak(id,idop,depL): changing the labeling of edde requires that edgiel has been
created.

This allows to compute the set of identifiers depending fromjeration:
idp for op= Add(idp,id)

dependencesQdp) = | id for op= Del(id)
id for op=ChLal(id, idop,depLvl1bl)

Proposition 5 The se{Op,) is an independent set of operations.

PROOF We prove that iop: ||sopz then[opr,0p](t) = [opz,0p1](t) by a case analysis on all possible pairs
0p1,0pp.

1. opy = Add(idy, idp,)

(@) opz = Add(id2,idp,)
e idp; =idz oridp, = id; there for respectivelgp; ~s0op; oropy s 0p;.
e else we can insert a edge before another independently ef tirel result will be same as a set.
(b) ope = Del(idy)
e idy =idp; oridp, is in subtready:
lett a treet; = Del(idz)(t) by definitionid,, is deleted.
Add(id1,idp,) = t1. t2 = Add(id2,idp,) (t) andDel(idz)(t2) = t1 because a subtree are erased.
e idy = idy: becausédd(idy,idp,) ~sdel(idy).
e other: the edg@; has been created ai} has been deleted whatever order.
(c) opz =ChLabelidz,idop, dep,Iblo)
e id>=id; : the edge be created before renamed becaddgd,idp,) -sChLabelidy,idop, dep, Ibl2).
e other, the add have no effect on ChLabel and vice versa. o

2. opy = Del(idy)

(@) op = Add(ida,idp,) : It's [case.

(b) opz = Del(idy) If id1 is a subtreed, then[del(id;),del(id2)](t) there are no edge to delete with
del(id1) because it was deleted wittel(id») . And [del(idz),del(id1)](t) the the edge and subedge
of id1 were deleted at first time andb with id; was deleted too. else two subtree are distinct .

(c) opz =ChLabelidz,idop, dep,Ibls)

e idy =idz
Lett’ = del(id1)(t). Chlabelid1,idop2, dep, Ibl2)(t") = t’ becauséd; is not present itt’.
del(idy)(Chlabelidy,idop,dep, Iblo)(t)) = t’ becauséd; and it subtree was deleted. What-
ever her label.

e Other : there are no problems.

3. opr = Chlabelidy,idop,,dep, Ibl1)

() opz = Add(ida,idp,) : It's [Ld case.
(b) opz = Del(idy) : It's pd case.
(c) op =ChLabelidy,idop, dep,Ibly) :
e id; # id2: The edge be different.
e id; =id2
— dep < dep letty = opy(op(t)) Y
lett, = op(opy(t))@
In (W the label ofid; is Ibl, and not changed byp; (definition). in(® the label ofid; is
Ibl; and changed bgp; to Ibl, (definition).
thereforey =t.
— dep < dep: idem with number of label are inverted.
— dep =depif idop, < idop SAaMe ofdep < dep
else same odlep < dep
By definitionidop, # idop2 o

4.4 Ordered Trees

The previous editing process is defined on unordered trees WML documents are ordered trees. To make
the algorithm work in this case, we enrich the labeling ofesdgith an ordering information. This shows that
our approach works in this general case. The propertiesrezhon the ordering information are:

e The ordering of labels must be a total order
e The ordering is the same for each site

e Insertion can be done between two consecutive edges, libfosenallest edge and after the largest edge.

The ordering that we design enjoys all these properties.ath edge corresponding to some identifiewe
associate a word on some finite alphabstich that two distinct edges corresponds to distinct words.

Let>g={as,...,an} afinite alphabet such that there is a injective mapgifrgm ID into Z;. For instance,
to a pair((s: n)) with s a site numbem an operation number, we can associate a va@ds) - dedn) on the
alphabet0,1,...,9} U{-} with dedx) the representation ofin base 10.

We extend> by the letter # used as a separator dndsed as a minimal element, yielding a alphabet
>. The ordering on letters is <# < a;... < a,. The lexicographic ordering on words Bf induced by the
ordering of letters is a total ordering.

The labeling of an edgecorresponding to the identifiéde is enriched by a new fielge € (Zo U { L;#})*
and we associate ®the wordwe = pe#(ide). The #p(ide) part is added to guarantee that distinct edges are
associated to distinct words.

Proposition 6 The ordering on edges defined by & iff we = pet@(ide) < Wi = ps#@(id;) is a total ordering
on edges.

PROOF Since distinct edges have distinct identifier, the funcfiés injective and #(ide) is the smallest suffix
of we containing only one occurrence of #, then the words asstiatdistinct edges are distinct. This proves
the proposition since& is a total ordering on words. O

Example. Lete, f be edges identified bige = (1,10) andids = (2,1). Let@(ide) = 1.10 andg(id¢) = 2.1.
Let the priority ofe be 12 and the priority of be 211. The ordering on digit 1§ <’ j’ if i < j and. <'i’.
Since 11#110« 211#21, we get that edge precedes edggin the tree.

Let w be the set of words of the formptwig with wp € Z*, wig € ¢(ID) C Z5.

Proposition 7 Let ww' € % such that w w'.

(i) There exists a computablé’'ve w such that w& w’ and W < w'.
(i) There exists w,wym € W such that w, < w and W < wy.
PROOF. Letslk] denote theék" letter of a words and let|s| denote the length of the wosd

(i) Letw=wp#w; < W = wy#w. We constructv’ such thatv < w’ < w'. Let j be the minimal integer
such thawv[j] < w/j].

Case 1.j < lengthwp#w/). Let wyr such thatwj| = |wi#w/| andwjk] = wy[K] for k=1,...,j and
wplk] = L for j < k <lengthiwy). Given anyw’ = ¢(id) for someid, by construction the word
w’ = wi#w is such thatv < w’ < w'.

Case 2.j = lengthw,#w). Letwy = wp#wi#. Given anyw;’ = (id) for someid, by construction the
wordw” = wi#w" is such thatv < w’ < w'.

(i) Letw=wp#w; <W =wy#w,. We constructym such thatvm < w. Letwif[k] = L fori=1,...,length(wp) +
1. Given anyw" = ¢(id) for someid, by construction the word, = W'F‘J"#WIm is such thatvy, < w. The
same construction works to gef; such thatv' < wy (usea, instead ofL).

O

An updated set of operations. The data structure is slightly modified since the labels aw alements
(1,id) with id € ID andl! a tuple(lab,id’,dep p) € %} ,id" € ID,depe a(, p € w . The fieldp combined with
the identifierid is used to order the edges arising from the same node, theté®data structure is similar to
semi-structured documents.

TheAddandChLaboperations must be slightly modified to handle the new figlethich simply amounts
to considering a different set of labels. The set of depecelbetween operation is the same as before and we
have:

Proposition 8 The se{Op,) is an independent set of operations.

Therefore our collaborative editing algorithms works fodered trees, i.e. XML trees.

5 Experiment and Future Works

We have implemented the algorithm and the data structurXkbk trees in java (including the ordering
information) on a Mac with a 2.53GHz processor.
The data structurgeeis composed oédges Each edge have the following fields :

e afield for storing its identifier (which is unique).
¢ afield for storing the sons (which are edges).

¢ afield for storing its ancestor (which is an edge).

Atree is identified as a some edge (the root). Access to antealgreg some identifier is done using a hash-
table with identifier as key. The initial document is compbbg only one edge: the root with like identifier
0: 0. Applying an operation op on the tree is performed by theefiondo: Treex Op—— Tree

The implement oflois straightforward. For instancko(Add(id¢,id),tree):

(i) creates a new edge with identifiiel.
(i) asks the hash-table to get the father ettye
(iii) stores the father reference.
(iv) adds new edge into the father list.
(v) adds new edge references in the hash-table.

The P2P framework is simulated by random shuffling of the agss that are broadcast. The results
obtained with our prototype are given in Figlﬂe 3.

ms +
ms 800+ ms
+ +
300 Lt 600} 300
++TEF " T " + + + +
100 4001 1001 ¥+ ¥+ 4+ 4
0 20 40 60 80#users 200+ . + 0 20k 40k 60k 80Kfops

(a) Average time computer on function of 0 2k 4k 6k #edges (c) Average computing time to execute 10
number of user for 1000 operations (b) Average time to fill a document for 20 000 operations function of the total number
users on all Site of operation performed

Figure 3: Prototype statistic

The reader can see that execution time is almost linear.h&umore memory consumption (not shown
here) is directly related to the size of the document (sine@$e no history file when for GOTO has a quadratic
complexity).

Future works: We plan to extend this word by adding type information likeMdr XML schemas which
are used to ensure that XML documents comply with for gerstratture. The second main extension that we
investigate is the ability tondosome operations, which may require a limited use of an hjigtierto recover
missing information (needed for instance to recover a ddlaee).

REFERENCE

[1] Davis, A., SUN, C.,AND Lu, J. Generalizing operational transformation to the stechdaneral markup language.
In CSCW '02: Proceedings of the 2002 ACM conference on Compupgorted cooperative woilNew York, NY,
USA, 2002), ACM, pp. 58-67.

[2] Du, L., AND Rul, L. Preserving operation effects relation in group editénsCSCW '04: Proceedings of the 2004
ACM conference on Computer supported cooperative {dew York, NY, USA, 2004), ACM, pp. 457-466.

[3] ELLis,C. A.,AND GIBBS, S. J. Concurrency control in groupware systemSIBMOD Conferencél989), vol. 18,
pp. 399-407.

[4] FOSTER J., GREENWALD, M., KIRKEGAARD, C., RERCE, B. C.,AND SCHMITT, A. Exploiting schemas in data
synchronizationJ. of Computer and System Sciences#@007).

[5] IGNAT, C.,AND NORRIE, M. Tree-based Model Algorithm for Maintaining Consisteit Real-time Collaborative
Editing Systems.Fourth International Workshop on Collaborative EditingSCW 2002, IEEE Distributed Systems
online (November 2002).

10

(6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

IGNAT, C.,AND NORRIE, M. Customisable Collaborative Editing Supporting the WBrocesses of Organisations.
Computers in Industry 58B-9 (December 2006), 758-767.

IMINE, A. Conception Formelle d’Algorithmes de Réplication Opstei Vers I'Edition Collaborative dans les
Réseaux Pair-a-PairPhD thesis, Université Henri Poincaré, Nancy, decen2006.

IMINE, A., MoLLI, P., GsTER, G., AND RUSINOWITCH, M. Proving correctness of transformation functions in
real-time groupware. 18th European Conference of Computer-supported Cooperatiork(2003).

KERMARREC, A., ROWSTRON A., SHAPIRO, M., AND DRUSCHEL, P. The icecube approach to the reconciliation
of divergent replicas. IRODC '01: Proceedings of the twentieth annual ACM symposinmrinciples of distributed
computing(New York, NY, USA, 2001), ACM, pp. 210-218.

L1, D.,AND L1, R. Ensuring content intention consistency in real-timeugreditors. Ir24th International Confer-
ence on Distributed Com- puting Syste{2804), IEEE Computer Society.

OSTER, G., XAF-MoLLI, H., MoLLlI, P., AND NAJA-JAZZAR, H. Supporting Collaborative Writing of XML
Documents. IrProceedings of the International Conference on Enterpigermation Systems: Software Agents and
Internet Computing - ICEIS 200(Funchal, Madeira, Portugal, jun 2007), pp. 335-342.

RESSEL M., NITSCHE-RUHLAND, D., AND GUNZENHAUSER, R. An integrating, transformation-oriented ap-
proach to concurrency control and undo in group editor€3CW '96: Proceedings of the 1996 ACM conference on
Computer supported cooperative wditew York, NY, USA, 1996), ACM, pp. 288-297.

SULEIMAN, M., CART, M., AND FERRIE, J. Serialization of concurrent operations in a distridutellaborative
environment. INGROUP '97: Proceedings of the international ACM SIGGROURfeeence on Supporting group
work (New York, NY, USA, 1997), ACM, pp. 435-445.

SuN, C.,AND ELLIS, C. Operational transformation in real-time group editéssues, algorithms, and achievements.
In CSCW '98: Proceedings of the 1998 ACM conference on Compuported cooperative woilNew York, NY,
USA, 1998), ACM, pp. 59-68.

11

