
HAL Id: hal-00429610
https://hal.science/hal-00429610v3

Submitted on 7 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Order algebras: a quantitative model of interaction
Emmanuel Beffara

To cite this version:
Emmanuel Beffara. Order algebras: a quantitative model of interaction. Mathematical Structures in
Computer Science, 2018, �10.1017/S0960129516000360�. �hal-00429610v3�

https://hal.science/hal-00429610v3
https://hal.archives-ouvertes.fr

Order algebras: a quantitative model of interaction

Emmanuel Beffara

Institut de Mathématiques de Luminy
UMR6206, Université Aix-Marseille II & CNRS

July 7, 2011

Abstract. A quantitative model of concurrent interaction is introduced. The basic objects
are linear combinations of partial order relations, acted upon by a group of permutations that
represents potential non-determinism in synchronisation. This algebraic structure is shown to
provide faithful interpretations of finitary process algebras, for an extension of the standard
notion of testing semantics, leading to a model that is both denotational (in the sense that the
internal workings of processes are ignored) and non-interleaving. Constructions on algebras and
their subspaces enjoy a good structure that make them (nearly) a model of differential linear
logic, showing that the underlying approach to the representation of non-determinism as linear
combinations is the same.

1 Introduction . 1

2 Order algebras . 4

2.1 Arenas and plays . 4
2.2 Linear combinations . 7
2.3 Bases . 12

3 Logical structure . 18

3.1 Products and linear maps 19
3.2 Bialgebraic structure . 22
3.3 Towards differential linear logic 25

4 Interpretation of process calculi 26

4.1 Quantitative testing . 26
4.2 Decomposition of processes 28
4.3 An order algebraic model 32
4.4 Consequences . 35

1 Introduction

The theory of concurrency has developed several very different models for interactive processes,
focusing on different aspects of computation. Among those, process calculi are an appealing
framework, because the formal language approach is well suited to modular reasoning, allowing
to study sophisticated systems by means of abstract programming primitives for which powerful
theoretical tools can be developed. They are also the setting of choice for extending the vast
body of results of proof theory to less sequential settings. However, the vast majority of the
semantic studies on process calculi like the π-calculus have focused on the so-called interleaving
operational semantics, which is the basic definition of the dynamic of a process: the interaction of
a program with its environment is reduced to possible sequences of transitions, thus considering

1

that parallel composition of program components is merely an abstraction that represents all
possible ways of combining several sequential processes into one. In Hoare’s seminal work on
Communicating Sequential Processes [20], this is even an explicit design choice.

There is clearly something unsatisfactory in this state of things. Although sophisticated
theories have been established for interleaving semantics, most of which are based on various
forms of bisimulation, they fundamentally forget the crucial (and obvious) fact that concurrent
processes are intended to model situations where some events may occur independently, and event
explicitly in parallel. This fact is well known, and the search for non interleaving semantics for
process calculi is an active field of research, with fruitful interaction with proof theory and
denotational semantics. Recently, the old idea of Winskel’s interpretation of CCS in event
structures [35, 36] has been revisited by Crafa, Varacca and Yoshida to provide an actually non-
interleaving operational semantics for the π-calculus, using extensions of event structures [11].
Event structures are also one of the starting points of extensions of game semantics to non-
sequential frameworks, for instance in asynchronous games [25] and concurrent extensions of
ludics [18]. In a neighbouring line of research, the recent differential extension of linear logic is
known to be expressive enough to represent the dynamics of the π-calculus [17, 15]. However
the implications of this fact in the search for denotational semantics of the π-calculus are still
unclear, in particular the quantitative contents of differential linear logic lacks a proper status
in concurrency.

This paper presents a new semantic framework that addresses this question, following previous
work by the author [5] on the search for algebraically pleasant denotational semantics of process
calculi. The first step was to introduce in the π-calculus an additive structure (a formal sum
with zero) that represents pure non-determinism, and this technique proved efficient enough to
provide a readiness trace semantics [29] with a complete axiomatization of equivalence for finite
terms. The second step presented here further extends the space of processes with arbitrary
linear combinations, giving a meaning to these combinations in terms of quantitative testing.
This introduction of scalar coefficients was not possible in the interleaving case, because of the
combinatorial explosion that arose even when simply composing independent traces; moving to
a non-interleaving setting through a quotient by homotopy of executions is the solution to this
problem. Growing the space of processes to get more algebraic structure is also motivated by
the idea that better structured semantics gives cleaner mathematical foundations for the object
of study, in the hope that the obtained theory will be reusable for different purposes and that it
will benefit from existing mathematical tools.

Informal description An order algebra is defined on an arena, which represents the set of
all observable events that may occur in the execution of a process. Basic interaction scenarii,
named plays, are partial order relations over finite subsets of the arena. We then postulate two
principles:

• Linear combinations are used to represent non-determinism, which, although not the defin-
ing feature, is an unavoidable effect in concurrent interaction. Coefficients form the quan-
titative part of the model, the first thing they represent is how many times a given play
may occur in a given situation. They can also represent more subtle things, like under
which conditions a given play is relevant. This allows for the representation of features
such as probabilistic choice, in which case coefficients will be random variables. In general,
coefficients are taken in an arbitrary semiring with some additional properties. This use
of linear combinations is a novelty of the differential λ-calculus and subsequent work [16],
although a decomposition of processes as formal linear combinations was first proposed by
Boreale and Gadducci [7], albeit without the quantitative aspect we develop here.

2

• The fact that some events may be indistinguishable by the environment of a process,
typically different inputs (or outputs) on the same channel, is represented by a group
action over the arena. Each element of the group acts as a permutation that represents a
possible way of rearranging the events. A comparable approach was used in particular in
AJM game semantics [2, 4] to represent the interchangeability of copies in the exponentials
of linear logic.

Some words are borrowed from game semantics, since our objects have similarities with games,
but this is not a “game” semantics, at most a degenerate one. In particular, there is no real
notion of player and opponent interacting, since there is no polarity that could distinguish them
or distinguish inputs and outputs. The term “strategy” does not really apply either since there
is no notion of choosing the next move in a given situation. Under these circumstances, calling
anything a “game” is kind of far fetched.

Outline Section 2 defines order algebras from these ideas. Arenas, plays and linear combi-
nations of plays (simply called vectors) are defined, with the two basic operations on vectors:
synchronisation, which extends the merging of orders to take permutations into account, and
outcome, which is a scalar that acts as the “result” of a process. Two vectors are equivalent if
they are indistinguishable by synchronisation and outcome, and the order algebra is the quotient
of the vectors by this equivalence.

Section 3 describes constructs involving order algebras and their subspaces. Cartesian and
tensor products are described in terms of interaction, and the symmetric algebra is constructed
in the framework. This algebra is of particular interest because it represents the basic source
of non-determinism in interaction, namely the fact that any number of interchangeable actions
may occur at a given synchronisation point.

Section 4 shows how order algebras can be used to provide fully abstract models of process
calculi, with the example of the πI-calculus. The crucial ingredient is a quantitative extension
of the standard notion of testing, from which the present work stems. Standard forms of testing
are obtained as particular choices of the semiring of scalars.

Future work Order algebras as defined and studied in the present work are very finitary in
nature, because vectors are finite linear combinations of finite plays. This setting already has an
interesting structure, as this paper illustrates, but it is unable to represent any kind of potentially
infinitary behaviour. This includes identity functions over types that are not finite dimensional,
and as a consequence we do not get a model of differential linear logic. Handling infinity is the
natural next step, and for this we need to add topology to the structure, in order to get a sensible
notion of convergence. Order algebras will then appear not only as the quotient of combinations
of plays by equivalence, but as the separated and completed space generated by plays. In this
line of thought, the dual space should play an important role, in order to define duality in the
logical sense.

Another direction is to exploit the fact that the semiring of scalars is a parameter of the
construction. In particular, going from a semiring S to the semiring of S-valued random variables
over a given probabilistic space properly extends the model to a probabilistic one. Similarly,
using complex numbers and unitary transformations could provide a way to represent quantum
computation in the same framework. Developing these ideas correctly is a line of research by
itself, as the question of denotational models for these aspects of computation is known to be a
difficult matter.

3

Related work Part of the construction of order algebras is concerned with modelling of fea-
tures like name binding or creation of fresh names. The topic of proper formal handling of binders
in syntax is a vast topic known as nominal techniques (see for instance Gabbay’s survey [19]),
and it has been applied in particular to construct operational semantics for process calculi in
a generic way [28, 10]. We feel that our approach is orthogonal: arenas present a flattened
version of the name structure, in which remains no notion of name creation or binding (or only
indirectly); permutations are used only to relate different occurrences of names. Moreover, local
names, by essence, are absent from order algebras, since our intent is to build a denotational
model, in which internal behaviour is forgotten.

Our work aims in particular at constructing models of interaction that are not interleaving,
a featured sometimes referred to as “true concurrency”. This objective, of course, is not new,
and the reference model in this respect is that of event structures. A relationship between our
framework and event structures can be formulated: using the simplest semiring of coefficients,
namely {0, 1} with 1 + 1 = 1 (thus losing any “quantitative” content), linear combinations of
plays are simply finite sets of plays. The set of plays interpreting a given process turns out to be
exactly the set of configurations of the event structure interpreting this process, forgetting any
internal events. We do not develop this correspondence in the present paper, as it is of limited
interest in the current state of development of order algebras, however it will certainly be of great
interest in the development of the theory, notably when applying it to modelling probabilistic
processes, for which event structure semantics has been developed [1, 34]. Besides, the use of
symmetry in event structures [37, 33] has been recently identified as a crucial feature; we defer
to future work the comparison with our approach based on group actions.

The shift from sets of configurations to formal linear combinations in the interpretation of
processes has a notable precedent in Boreale and Gadducci’s interpretation of CSP processes
as formal power series [7, 8], building on Rutten’s work relating coinduction and formal power
series [31]. Boreale and Gadducci’s work differs from the present paper in two respects. Firstly,
their interpretation of the semiring of coefficient is of a different nature: sum and product are
seen as internal and external choice respectively, while we interpret them as internal choice and
parallel composition without interaction. Secondly, their technical development uses only idem-
potent semirings (where x + x = x for all x), which does not handle quantitative features, and
leads inevitably to interleaving semantics (as proved in our setting by Theorem 41 and remarks
in Section 4.4). Nevertheless, Rutten’s approach to coinduction, and the idea of coinductive def-
initions by behavioural differential equations is certainly relevant to our work and is a promising
source of inspiration for the extension of the present setting to infinitary behaviours.

2 Order algebras

2.1 Arenas and plays

An order algebra is defined on an arena, which represents a fixed set of potential events. The
arena is equipped with a permutation group that represents the non-determinism that arises
when synchronising events, as described below. Then a play is a partial order relation over a
finite subset of the arena.

1 Definition. An arena X is a pair (|X |,GX) where |X | is a countable set (the web of X) and
GX is a subgroup of the group S(|X |) of permutations of |X |. If GX is trivial, then X is called
static and it is identified with its web.

The points in the web are called events, rather than moves, since there is no actual notion of
players interacting. Permutations represent the fact that there may be several different ways for

4

two processes to synchronise. In process calculus language, permutations can be seen as relating
different occurrences of the same action label.

2 Example. When modelling a simple process algebra like CSP [20] over an alphabet A (with no
value passing), we can use a web like A × N, where N is the set of natural numbers; (a, i) is
interpreted as the i-th copy of a (any other infinite set than N would do: the actual values are
irrelevant). The permutation group will consist of all permutations of A× N that leave the first
member unchanged in each pair: different occurrences of a given event can be freely permuted,
but obviously they cannot be exchanged for events of a different name.

3 Example. When modelling a calculus like CCS [26], the same arena can be used as in CSP,
taking for A the set of action labels, including polarities, that is N ⊎ {ū | u ∈ N} if N is the set
of names.

4 Example. Things get more subtle when modelling a calculus with name passing like the π-
calculus [27]. For the monadic case, the arena will consist of triples (ε, a, i) where ε is a polarity
(input or output), a is a name (either a free name or a name bound by an action) and i is
an occurrence number. Names bound by different input events will be considered different: in
process terms, instead of u(x).P | u(x).Q, write u(x1).P [x1/x] | u(x2).P [x2/x]. The considered
permutations are those that respect the name structure: if σ maps an event u(x1) to an event
u(x2), then it must map any event involving x1 to an event of the same type involving x2 instead.
Private names, like a in (νa)(a.P | ā.Q), will not be represented in arenas, since by definition
they cannot be involved in interaction with the environment, unless they are communicated by
scope extrusion, as in (νa)ūa, in which case they will be modelled the same way as binding input
prefixes. This construction is developed in more detail in Section 4.

5 Definition. A play over X is a pair s = (|s|,6s) where |s| is a finite subset of |X | (the support)
and 6s is a preorder over |s|; the set of plays over X is written S(X). A play s is called consistent
if the relation 6s is a partial order relation (i.e. if it is acyclic).

The intuition is that a play represents a possible way a process may act: the support contains
the set of all events that will actually occur, the preorder represents scheduling constraints for
these events. Consistency means that these constraints are not contradictory, i.e. that they do
not lead to a deadlock. Synchronisation, defined below, consists in combining constraints from
two plays, assuming they have the same events. The primitive definition of plays as pre-orders
is a way to make it a total operator by separating it from the consistency condition: two plays
can synchronise even if their scheduling constraints are not compatible, but then the result is
inconsistent.

6 Example. We will represent a (consistent) play graphically as the Hasse diagram of its order
relation, with each node labelled by the event’s name. By convention, when two events are part
of the same orbit under GX , we use the same name with different indices:

a

b1 c

b2

d e
This represents a play with support {a, b1, b2, c, d, e}, with the order
relation such that a < b1, a < b2, b1 < d, c < b2, b2 < d and b2 < e,
in an arena that has a permutation that swaps b1 and b2.

7 Definition. For r, s ∈ S(X) with |r| = |s|, the synchronisation of r and s is the play

r ∗ s :=
(

|r|, (6r ∪ 6s)∗
)

,

where (·)∗ denotes the reflexive transitive closure. Given a finite subset A of |X |, define the
A-neutral play as eA := (A, idA) where idA is the identity relation.

5

8 Example. We have the following synchronizations:

(

a1

b a2

)

∗

(

a1 b

a2

)

=

a1

b

a2

,

(

a1

b a2

)

∗

(

a2 b

a1

)

=

(

a1 b

a2

)

.

The second one leads to an inconsistent play, since the union of the order relations is cyclic.

Note that synchronisation is a very restrictive operator because it requires the event sets to
be equal. The possibility of synchronising on some events while keeping the others indepen-
dent, which is a natural notion, will be defined in Section 3.1 using this primitive form of total
synchronisation.

Commutativity of ∗ is immediate from the definition. Associativity is also clear: for r, s, t ∈
S(X), (r ∗ s) ∗ t and r ∗ (s ∗ t) are defined if and only if |r|, |s|, |t| are equal, and in this case we
have 6(r∗s)∗t = (6r ∪ 6s ∪6t)∗ = 6r∗(s∗t). Because of the constraint on supports, there cannot
be a neutral element. However, among plays of a given support A, the neutral play eA is actually
neutral for synchronisation.

We now define the action of the permutation group GX over the set of plays. Since there
is usually no ambiguity, we overload the notation for group actions: given σ ∈ GX , for x ∈ X
we write σx for the image of x, for A ⊆ X we write σA for the set of images {σx | x ∈ A}, and
similarly for r ∈ S(X) we write σr for the play r permuted by σ, as defined below.

9 Definition. Let X be an arena. The action of a permutation σ ∈ GX on a play r ∈ S(X) is
defined as

σr :=
(

σ|r|, {(σx, σy) | (x, y) ∈ 6r}
)

.

The orbit of a play r in S(X) is the set

GX (r) :=
{

σr
∣

∣ σ ∈ GX
}

.

We refer the reader to some reference textbook (for instance Lang’s Algebra [23]) for details
on the standard group-theoretic notions in use here. For reference, given a group G acting on
a set X , the stabilizer of a point x ∈ X in the action of G is, by definition, the subgroup of G
consisting of all the σ ∈ G that leave x unchanged, i.e. σx = x. The pointwise stabilizer of a
set A ⊆ X is the subgroup of those that leave each point in A unchanged, as opposed to the
setwise stabilizer which includes all permutations that leave the set A unchanged as a whole (i.e.
{σx | x ∈ A} = A). The index of a subgroup H in a group G, written (H : G), is the number of
left cosets of H in G, that is the cardinal of {σH | σ ∈ G}. When H is a normal subgroup of G,
the index (H : G) is the cardinal of the quotient group G/H .

10 Definition. Let X be an arena and r be a play in S(X). Let GX
r be the stabilizer of r in the

action of GX over S(X) and let GX
|r| be the pointwise stabilizer of |r| in GX , then the multiplicity

of r in X is the index of GX
|r| in GX

r :

µX (r) := (GX
r : GX

|r|).

Hence, the multiplicity of r is the number of different ways one can permute r into itself.
Indeed, the definition as (Gr : G|r|) exactly means the number of permutations of r into itself
(elements of Gr), up to permutations that leave each point of |r| invariant (elements of G|r|), in
other words µ (r) is the order of the group {σ||r| | σ ∈ G, σr = r}, which is always finite since
the support |r| is finite.

6

11 Example. Using the same conventions as in Example 6, we have

µ

a

b1

c1

b2

c2

 = 2 and µ

a

b1

c1

b2

c2

= 1

Both plays have the same support, there are 4 permutations of this support: b1 and b2 can be
exchanged, idem for c1 and c2. In the first case if we exchange b1 with b2 and c1 with c2, we
get the same play (permuting the b but not the c yields a different play). In the second case, no
permutation can yield the same play.

2.2 Linear combinations

The set of plays of an arena X is independent of the group G, but our idea is that plays that
are permutations of each other should be considered equivalent, since permutations exchange
occurrences of indistinguishable actions. In the presence of permutations, however, there are
several ways to synchronise two plays, so in order to extend the definition of synchronisation we
have to be able to consider combinations of possible plays. For genericity, and because our aim
is to get a quantitative account of interaction, we will use linear combinations, with coefficients
in an unspecified commutative semiring.

12 Definition. A commutative semiring S is a tuple (S,+, ·, 0, 1) such that (S,+, 0) and (S, ·, 1) are
commutative monoids and for all x, y, z ∈ S it holds that x · (y + z) = x · y + x · z and x · 0 = 0.
A semimodule over S is a commutative monoid (M,+, 0) with an action (·) : S × M → M that
commutes with addition on both sides and satisfies λ · (µ · x) = (λ · µ) · x for all λ, µ ∈ S and
x ∈ M . A commutative semialgebra over S is a semimodule M with a bilinear operation that is
associative and commutative.

Terminology about semirings, semimodules and semialgebras is not standard, in particular
some definitions do not require both neutrals. Sometimes, the neutrals are not required to be
distinct (they are equal if and only if the semiring is a singleton, but this is a degenerate case that
we will not consider). In the above definitions, if all elements of S have additive inverses, then
S is a (commutative unitary) ring, and the semimodules and semialgebras are actually modules
and algebras (indeed, the action of S imposes the existence of additive inverses in them too). If
S is a field, we get the usual notions of vector space and algebra.

13 Definition. Let S be a commutative semiring. The integers of S are the finite sums of 1 including
the empty sum 0, the non-zero integers are the finite non-empty sums. We call S regular if for
every non-zero integer n ∈ S, for all x, y ∈ S, nx = ny implies x = y. We call S rational if every
non-zero integer has a multiplicative inverse.

In particular, regularity applied to x = 1 and y = 0 imposes that no non-empty sum of 1 can
be equal to 0, in other words S has characteristic zero. The rationality condition means that it
is possible to divide by non-zero natural numbers, or in more abstract terms that the considered
semiring is a semimodule over the semiring of non-negative rationals. This obviously implies
regularity.

Two important cases of rational semirings will be considered here. The first case is that of
commutative algebras over the field Q of rational numbers, which includes fields of characteristic
zero (among which rational, real and complex numbers) and commutative algebras over them.
The second case is when addition is idempotent, which includes so-called tropical semirings [30],
and the canonical examples are that of min-plus and max-plus semirings. Boolean algebras with

7

disjunction as sum and conjunction as product are another typical example. In this case, all
integers except 0 are equal to 1, so they obviously have multiplicative inverses.

Throughout this paper, unless explicitly stated otherwise, S is any semiring. Note that the
semiring N of natural numbers and the ring Z of integers are regular but not rational. Indeed,
when using natural numbers as scalars, some properties of order algebras will be lost, for instance
the existence of bases. Hence some statements will explicitly require S to be regular or rational.

For an arbitrary set X , a formal linear combination over X is a function from X to S that has
a value other than 0 on a finite number of points. Formal linear combinations over X , with sum
and scalar product defined pointwise, form the free S-semimodule over X and an element x ∈ X
is identified with its “characteristic” function δx : X → S, such that δx(x) = 1 and δx(y) = 0 for
all y 6= x. If X is finite, then the set of formal linear combinations is the S-semimodule SX . For
an arbitrary subset A of a S-semimodule E, we denote by 〈A〉S, or simply 〈A〉, the submodule
of E generated by A, i.e. the smallest submodule of E that contains A, that is the set of finite
linear combinations of elements of A.

14 Definition. Let X be an arena. The preliminary order algebra CS(X) is the free S-semimodule
over S(X). The outcome is the linear form ⌊·⌋ over CS(X) such that ⌊r⌋ = 1 when r is consistent
and ⌊r⌋ = 0 otherwise.

We usually keep the semiring S implicit in our notations. Vectors in C(X) are finite linear
combination of plays in X , they represent the collection of all possible behaviours of a finite
process. The coefficients can be understood as the amount of each behaviour that is present
in the process. Examples in further sections also illustrate that S can be chosen to represent
conditions on the availability of each behaviour. The outcome represents how relevant each play
is, and by the intuition exposed in the previous section, plays with cyclic dependencies cannot
happen, so they are considered irrelevant.

15 Example. Consider the CSP term P = a→(b ‖ c) | a→c (remember that in CSP | is the choice
operator, and ‖ is parallel composition). An interpretation of P in a preliminary order algebra
containing only a, b, c as events could be

() + 2 (a) +
(

a

b
)

+ 2
(

a

c
)

+
(

a

b c
)

where we have a summand for each partial run of P . The coefficient 2 in the second and fourth
summands represent the fact that there are two ways to perform only a, and two ways to perform
a then c, depending on the choice one has done.

16 Definition. Let X be an arena. Permuted synchronisation in X is the bilinear operator ‖ over
C(X) such that for all plays r, s ∈ S(X),

r ‖ s := µX (s)
∑

s′∈GX (s)

|s′|=|r|

r ∗ s′

Observe that this sum is always finite. The reason is that each s′ can be written σs for some
σ ∈ GX , and |σs| = |r| implies σ|s| = |r|. Since σs is determined by the action of σ on |s|, there
is at most one image of s for each bijection between |s| and |r|. Since |r| and |s| are finite, the
number of such bijections is finite.

8

17 Example. Considering again the plays in Example 8, we have

(

a1

b a2

)

‖

(

a2 b

a1

)

=

a1

b

a2

+

(

a1 b

a2

)

.

The first term in the sum corresponds to the identity permutation, the second one exchanges a1

and a2. Here, all plays involved have multiplicity 1.

18 Permuted synchronisation is similar to the parallel composition operator of CSP, in the case
of processes defined on the same alphabet: in r ‖ s, every event of r must be synchronized with
some event of the same name in s. There is a difference between plays and processes, however,
in that in a play, every event must occur, whereas in a process, an action may be cancelled, for
lack of a partner action to synchronize with.

Any partial function f : S(X)n → S(X) extends as an n-linear operator f̄ : C(X)n →
C(X), by setting f̄(r1, . . . , rn) = 0 when f(r1, . . . , rn) is undefined. This applies in particular to
synchronisation, which yields a bilinear operator ∗̄ over C(X). As a slight abuse of notations, we
will write it simply as ∗ when there is no ambiguity.

Using this convention, permuted synchronisation can be seen as a generalisation of non-
permuted synchronisation, since when the permutation group is trivial, all multiplicities are 1
and all orbits are singletons. Although ‖ is a generalisation of ∗, we still use different notations,
since both operators are of interest in a given non-static arena. The non-permuted version will
be referred to as static synchronisation to avoid confusion.

19 Definition. Let X be an arena. Observational equivalence in CS(X) is defined as u ≈X u′ when
⌊u ‖ v⌋ = ⌊u′ ‖ v⌋ for all v ∈ CS(X). The order algebra over X is AS(X) := CS(X)/≈X .

The scalar ⌊u ‖ v⌋ is understood as the result of testing a process u against a process v.
It linearly extends the basic case of single plays: ⌊r ∗ s⌋ is 1 if r and s are compatible and 0
otherwise; ⌊r ‖ s⌋ is the number of different ways r and s can be permuted so that they become
compatible. Hence the definition: u ≈ v if u and v are indistinguishable by this testing protocol.

20 Example. Any inconsistent play is observationally equivalent to 0, since synchronising it with
any order yields an inconsistent play. Hence the synchronisation of Example 17 implies

(

a1

b a2

)

‖

(

a2 b

a1

)

≈

a1

b

a2

.

21 Lemma. Let X be an arena. For all u ∈ C(X) and σ ∈ GX , we have u ≈ σu.

Proof. Since plays generate the module C(X), clearly u ≈ σu if and only if ⌊u ‖ s⌋ = ⌊σu ‖ s⌋
for all play s. Since u is a finite linear combination of plays, the definition of synchronisation on
plays extends as ⌊u ‖ s⌋ = µ (s)

∑

s′∈G(s) ⌊u ∗ s′⌋. It is clear that for all σ ∈ G we have σ(u∗s′) =
σu ∗ σs′, moreover outcomes are preserved by permutations, so we have ⌊u ∗ s′⌋ = ⌊σu ∗ σs′⌋
for all s′, hence ⌊u ‖ s⌋ = µ (s)

∑

s′∈G(s) ⌊σu ∗ σs′⌋. Since σ acts as a permutation on the orbit
G (s), σs′ and s′ range over the same set, so we have ⌊u ‖ s⌋ = ⌊σu ‖ s⌋, and finally u ≈ σu.

The fact that observational equivalence is preserved by linear combinations is immediate from
the definition, since synchronisation and outcome are linear. As a consequence, in each orbit
G (s), we can choose a representant s such that each vector in C(X) is equivalent to a linear
combination of representants.

9

22 Definition. Let X be an arena. A choice of representants for X is a pair of an idempotent
map A 7→ A over Pf (|X |) and an idempotent map r 7→ r over S(X) such that for all r ∈ S(X)
|r| = |r|, and for all r, s ∈ S(X), r = s if and only if r = σs for some σ ∈ GX .

So a choice of representants picks one play in each orbit under GX in such a way that
representants have the same support if it is possible. There always exists such choices, and in
the sequel we assume that each arena comes with a particular choice, written r 7→ rX . The
choice function over S(X) induces a projection in C(X) by linearity, and for all u ∈ C(X) we
have u ≈ uX by Lemma 21.

23 Definition. Let X be an arena. Saturation in X is the linear map satX : C(X) → C(X) such
that for each play r,

satX r :=
∑

σ∈G|r|

σr where GA :=
{

σ|A
∣

∣ σ ∈ GX , σA = A
}

.

The set GA is the group of permutations of A induced by G, it is isomorphic to the quotient
G{A}/GA where G{A} is the setwise stabilizer of A in G and GA is its pointwise stabilizer (it is
easy to check that the latter is a normal subgroup of the former).

24 Example. Again using the conventions of Example 6, we have

sat

a

b

c1
c2 c3

 = 2

a

b

c1
c2 c3

+ 2

a

b

c2
c1 c3

+ 2

a

b

c3
c1 c2

 ,

where the factor 2 comes from the fact that exchanging c2 and c3 in the original play does not
change it. Indeed, the multiplicity of this play is 2.

25 Lemma. Let X be an arena. For all r, s ∈ S(X) such that |r| = |s| we have s ‖ r = s ∗̄ sat r.

Proof. We use the notations of Definition 23. As σ ranges over G|r|, σr ranges over all the
elements of the orbit of r under G that have the same support as r. Moreover, each play in the
orbit is hit a number of times equal to µ (r), so for any play s we have the expected equality.

In particular, this implies the equivalence u ‖ v ≈ u ∗̄ sat v for all u and v. We will use this
fact in Proposition 29 to get a representation of arbitrary order algebras in static ones.

26 Proposition. Permuted synchronisation is compatible with observational equivalence. Up to
observational equivalence, it is associative and commutative.

Proof. We first prove that permuted synchronisation is strictly associative. Consider three plays
r, s, t. For all σ ∈ GX we have r ‖ σs = r ‖ s, so we can assume that r, s, t have equal support (if
no permutation can let them have the same support, then synchronisation in any order is zero).
Then we have r ‖ (s ‖ t) = r ∗ sat(s ∗ sat t) by Lemma 25, hence

r ‖ (s ‖ t) =
∑

σ,τ∈G|r|

r ∗ σ(s ∗ τt) =
∑

σ,τ∈G|r|

(r ∗ σs) ∗ στt =
∑

σ,τ∈G|r|

(r ∗ σs) ∗ τt = (r ‖ s) ‖ t

using associativity of strict synchronisation and the fact that, for a fixed σ, the permutations στ
and τ range over the same set. This extends to all vectors by linearity.

Associativity implies compatibility with observational equivalence: for two equivalent vectors
u ≈ u′ and an arbitrary v ∈ C(X), for all w ∈ C(X) we have ⌊(u ‖ v) ‖ w⌋ = ⌊u ‖ (v ‖ w)⌋ =
⌊u′ ‖ (v ‖ w)⌋ = ⌊(u′ ‖ v) ‖ w⌋ so u ‖ v ≈ u′ ‖ v.

10

Since observational equivalence is preserved by permutations, using commutativity of strict
synchronisation we have

s ‖ r =
∑

σ∈G|r|

s ∗ σr =
∑

σ∈G|r|

σ(σ−1s ∗ r) ≈
∑

σ∈G|r|

σ−1s ∗ r =
∑

σ∈G|r|

r ∗ σ−1s = r ‖ s.

which proves commutativity of permuted synchronisation up to observational equivalence.

27 Lemma. Let X be an arena and let (ui)i∈I be a finite family of vectors in C(X). There exists
a vector e and an integer n > 0 such that for all i ∈ I, ui ‖ e = nui.

Proof. Observe that for all finite subset A of X , every setwise stabilizer of A is a stabilizer of
the A-neutral play eA, so we have sat eA = µ (eA) eA, and subsequently for all play s ∈ S(X)
such that |s| = A we get s ‖ eA = µ (eA) (s ∗ eA) = µ (eA) s. Call P the set of all |r| such that
the play r has a non-zero coefficient in some ui, then P is finite since each ui is a finite linear
combination of plays. Let n be the least common multiple of the µ (eA) for A in P , then the
vector

e :=
∑

A∈P

n

µ (eA)
eA

satisfies e‖ui = nui for each i by construction. Note that the coefficients n/µ (eA) are all natural
numbers, by construction.

28 Corollary. If S is regular then outcome is preserved by observational equivalence.

Proof. Let u ≈ v be a pair of equivalent vectors in C(X). By Lemma 27 there is a vector e and
an integer n 6= 0 such that u‖e = nu and v‖e = nv, so we have n ⌊u⌋ = ⌊u ‖ e⌋ = ⌊v ‖ e⌋ = n ⌊v⌋.
By regularity, we can deduce ⌊u⌋ = ⌊v⌋.

As a consequence, the order algebra A(X), which is defined as the quotient of C(X) by
observational equivalence, is a commutative semialgebra over S with synchronisation ‖ as the
product, and outcome ⌊·⌋ is a linear form over it. The choice of representants for orbits of finite
sets and plays induces the following representation property of A(X) in the static algebra A(|X |).

29 Proposition. Let X be an arena. Define the linear map ∆X : C(X) → C(X) as

∆X(u) := satX uX .

For all u, v ∈ C(X),

u ≈X v if and only if ∆X(u) ≈|X| ∆X(v).

Hence ∆X is an injective map from A(X) into A(|X |). For all u, v ∈ A(X),

∆X(u ‖ v) = ∆X(u) ∗ ∆X(v).

Proof. For compatibility with observational equivalences, first suppose that u and v are such that
satu ≈|X| sat v. Consider a play r ∈ S(X), then we have ⌊u ‖ r⌋ = ⌊satu ∗ r⌋ = ⌊sat v ∗ r⌋ =
⌊v ‖ r⌋ using Lemma 25, so we have u ≈X v.

Reciprocally suppose u ≈X v, then by definition for all play r ∈ S(X) we have ⌊u ‖ r⌋ =
⌊v ‖ r⌋. By the remarks above, the outcome ⌊u ‖ r⌋ is equal to ⌊r ‖ u⌋ = ⌊r ∗ satu⌋, so we
have ⌊r ∗ satu⌋ = ⌊r ∗ sat v⌋ for all r. Let s be an arbitrary play in S(X). Writing u as a linear
combination

∑

i∈I λiri, we get ⌊satu ∗ s⌋ =
∑

i∈I λi
⌊

sat ri ∗ s
⌋

. If |s| is not a representant subset
of |X |, then this sum is zero since sat ri is a combination of plays whose supports are representant

11

subsets. The same applies to v so we have ⌊satu ∗ s⌋ = ⌊sat v ∗ s⌋ = 0. Now suppose that |s| is a
representant subset of |X |, then the representant s of s has the same support as s by definition,
so there is a permutation σ such that σs = s and σ|s| = |s|. For all i ∈ I, if

∣

∣ri
∣

∣ = |s|,
then by definition of saturation we have σ sat ri = sat ri, so we get

⌊

sat ri ∗ s
⌋

=
⌊

sat ri ∗ s
⌋

. If
∣

∣ri
∣

∣ 6= |s|, then the equality holds trivially since both sides are 0. By linearity, we can deduce
⌊satu ∗ s⌋ = ⌊satu ∗ s⌋, and applying the same reasoning to v, from our initial remarks we deduce
⌊satu ∗ s⌋ = ⌊sat v ∗ s⌋. Hence we get satu ≈|X| sat v.

For the commutation property with synchronisation, consider two plays r, s ∈ S(X). If the
supports |r| and |s| are distinct, then clearly ∆X(r ‖ s) = ∆X(r) ∗ ∆X(s) = 0. Otherwise, let
A be this support. If ρ is a permutation in GX such that ρr = r, we have r ‖ s = ρ(r ‖ s) =
ρr ‖ s = r ‖ s. Moreover, r ‖ s = r ∗ sat s so all terms in r ‖ s have support A, and since for all
play t with |t| = A we have sat t = sat t, we get

sat r ‖ s = sat(r ‖ s) =
∑

σ∈GA

σ(r ‖ s) =
∑

σ∈GA

σr ‖ s =
∑

σ∈GA

∑

τ∈GA

σr ∗ τs = sat r ∗ sat s

which concludes the proof.

The commutation property could actually be written ∆X(u ‖ v) = ∆X(u) ‖ ∆X(v) since
permuted and static synchronisations coincide in the static order algebra A(|X |), but we keep
the notations distinct to stress the fact that the second is static. This establishes an injective
morphism of S-semialgebras, however this morphism does not preserve outcomes: for a play s,
we have ⌊∆s⌋ = ♯(G|s|) ⌊s⌋; since this factor depends on |s|, the outcome of ∆(u) is not even
proportional to that of u in general.

30 Proposition. Let X be an arena. Assume S is rational. Then the S-semialgebra A(X) has a
unit element if and only if the web |X | is finite.

Proof. Suppose |X | is finite, then the set of plays S(X) is finite, so we can apply Lemma 27 to
the whole set S(X), which provides a vector e and a non-zero integer n such that e ‖ s = ns
for all s ∈ S(X); then e/n is a neutral element for synchronisation. Now suppose that |X | is
infinite. Let u be an arbitrary vector in C(X). Since u is a finite linear combination of plays
with finite support, there is an integer n such that all non-zero components of u are plays with
supports of cardinal strictly less than n. Let A be a subset of |X | of cardinal n, then we must
have u ‖ eA = 0 6= eA. This implies that no finite linear combination of plays can be neutral.

2.3 Bases

In this section, we describe the S-semimodule A(X) by providing a subset of plays whose equiv-
alence classes forms a basis. Linear independence does not have a unique definition for modules
over arbitrary semirings [3], so we state the appropriate definition for our needs, which clearly
extends the standard one for vector spaces:

31 Definition. Let S be a semiring and E a semimodule over S. A family (ui)i∈I in E is linearly
independent if, for any two families (λi)i∈I and (µi)i∈I in S with finite support, if

∑

i∈I λiui =
∑

i∈I µiui then for all i, λi = µi. A basis of E is a linearly independent generating family.

We first concentrate on the case of static order algebras. The first thing we can remark
about observational equivalence is that plays of different supports are always independent, since
compatibility explicitly requires having the same support, so we have the following decomposition:

12

32 Proposition. For a finite static arena X, let Cs(X) be the submodule of C(X) generated by
plays of support X. Define the strict order algebra over X as the submodule As(X) of A(X)
made of equivalence classes of elements of Cs(X). Then for all static arena X we have

A(X) =
⊕

Y ∈Pf (X)

As(Y).

Proof. Clearly C(X) is the direct sum of the Cs(Y), since this decomposition amounts to par-
titioning the basis S(X) according to the supports Y of its elements. As a consequence, A(X)
is the sum of the As(Y), and we have to prove that this sum is direct. Consider two vectors
u =

∑

Y ∈Pf (X) uY and v =
∑

Y ∈Pf (X) vY such that u ≈ v and for all Y ∈ Pf (X), uY , vY ∈ Cs(Y)
(necessarily, only finitely many of the uY and vY are not 0). For each Y ∈ Pf (X), we have
u ∗ eY = uY and v ∗ eY = vY , so uY ≈ vY since ∗ is compatible with ≈. As a consequence, the
decomposition of a vector in A(X) on the submodules As(Y) is unique.

We can thus focus on the study of strict order algebras. These have the definite advantage
of being finitely generated, since there are finitely many different binary relations over a given
finite set. We will now provide explicit bases for them, depending on the structure of S.

Let X be a finite static arena. Clearly, for all inconsistent plays r we have r ≈ 0, so we can
consider only consistent plays, i.e. plays r such that 6r is an order relation. In the following
statements, as a slight abuse of notations, a play r with |r| = X is identified with its order
relation 6r, and also with its equivalence class in As(X). Let O(X) be the set of all partial
order relations over X .

The notations <r, >r, >r are defined as expected. We denote by |r the incomparability
relation: x |r y if and only if neither x 6r y nor y 6r x. We write x ‖r y if x = y or x |r y. If
there is no ambiguity, we may omit the subscript r in these notations. The notation [a < b]X ,
for a, b ∈ X , represents the smallest partial order over X for which a < b, that is idX ∪ {(a, b)}.
The notation extends to more complicated formulas, for instance [a < b, c < d] is the smallest
partial order for which a < b and c < d. We write r ` s to denote that two partial orders r and
s are compatible.

33 Proposition. Let T (X) be the set of total orders over X, then T (X) is a linearly independent
family in As(X).

Proof. We prove the equivalent statement that two observationally equivalent combinations of
total orders are necessarily equal. Let u =

∑

t∈T (X) λtt and v =
∑

t∈T (X) µtt be two combi-
nations such that u ≈ v. If r and s are two distinct total orders over X , there exists a pair
(a, b) ∈ X2 such that a <r b and b <s a, hence r and s are not compatible, so ⌊r ∗ s⌋ = 0.
Besides, it always holds that ⌊r ∗ r⌋ = 1, so for all t ∈ T (X), ⌊u ∗ t⌋ = λt and ⌊v ∗ t⌋ = µt, so
u ≈ v implies λt = µt for all t, hence u = v.

However, in general, T (X) is not a generating family for As(X). The simplest counter-
example can be found if X has two points. Write X = {a, b}, then O(X) has three elements:

O({a, b}) =
{

[a | b], [a < b], [a > b]
}

.

Then in the canonical basis ([a | b], [a < b], [a > b]) of Cs(X), the matrix of (u, v) 7→ ⌊u ∗ v⌋ is

1 1 1
1 1 0
1 0 1

13

If S is the field of reals, for instance, then this matrix is invertible, which means that the three
orders are linearly independent, hence As(X) is isomorphic to SO(X) (this isomorphism holds if
and only if the cardinal of X is at most 2, as we shall see below). There is one case where [a < b]
and [b < a] do generate As({a, b}), namely when addition in S is idempotent, i.e. when 1+1 = 1.

34 Proposition. T (X) is a basis of As(X) for all X if and only if addition in S is idempotent.

Proof. By Proposition 33, we know that T (X) is always a linearly independent family, so all we
have to prove is that it generates As(X) if and only if 1 + 1 = 1 in S.

Firstly, assume that T (X) generates As(X) for all X . Then, for X = {a, b}, there are two
scalars λ, µ ∈ S such that [a | b] ≈ λ[a < b] + µ[a > b]. Then we have

⌊[a | b] ∗ [a < b]⌋ = λ ⌊[a < b] ∗ [a < b]⌋ + µ ⌊[a > b] ∗ [a < b]⌋ = λ

but by definition we have ⌊[a | b] ∗ [a < b]⌋ = 1, so λ = 1. Similarly, we get µ = 1, and so
[a | b] = [a < b] + [a > b]. As a consequence, we have

1 = ⌊[a | b] ∗ [a | b]⌋ = ⌊[a < b] ∗ [a | b]⌋ + ⌊[a > b] ∗ [a | b]⌋ = 1 + 1.

Reciprocally, assume S satisfies 1 + 1 = 1. Let X be an arbitrary finite set and let r ∈ O(X).
Let u =

∑k
i=1 ti be the sum of all total orders that are compatible with r. Consider an arbitrary

order s ∈ O(X). Then we have ⌊u ∗ s⌋ =
∑k
i=1 ⌊ti ∗ s⌋ and each term of this sum is 0 or 1. If s

is compatible with r, then there is a total order t that extends both r and s, so t is one of the
ti; since s and t are compatible, the sum contains at least one 1 so ⌊u ∗ s⌋ = 1 = ⌊r ∗ s⌋. If s is
incompatible with r, then it is incompatible with any order that contains r, and in particular it
is incompatible with all the ti, so ⌊u ∗ s⌋ = 0 = ⌊r ∗ s⌋. As a consequence we have r ≈ u, which
proves that T (X) generates As(X).

In the general case, without any hypothesis on the semiring S, it happens that the family of
all orders over X is not linearly independent, as soon as X has at least three points.

35 Proposition. For all semiring S, in CsS({x, y, z}) we have

x

y

z

+

x

y

z

=

x

y

z

+

x

y

z

Proof. We use the following notations: a := [x < y], b := [x < z < y], c := [x < y, x < z],
d := [x < y, z < y], so that the equation we prove is a+ b = c+ d. Let s be a partial order over
{x, y, z}. First remark that s ` a if and only if s ` c or s ` d. Indeed, assume s ` a, then
there is a total order t that contains a and s. If x <t z then [x < z] ⊆ t so a ∗ [x < z] ⊆ t,
hence s ` a ∗ [x < z] = c. Otherwise z <t x <t y so z <t y then s ` d. Reciprocally, if s ` c
or s ` d then s ` a since a is included in c and d. Secondly, remark that s ` b if and only
if s ` c and s ` d. Indeed, assume that s ` c and s ` d. Let s′ = s ∗ c = s ∗ a ∗ [x < z].
Suppose s′ 6` [z < y], then y <s′ z. By hypothesis we cannot have y <a∗s z, so (y, z) occurs in
s′ but not in (s ∗ a) ∪ [x < z], which implies y <s∗a x. This contradicts the hypothesis x <a y,
hence s′ ` [z < y], so s ` a ∗ [x < z] ∗ [z < y] = b. The reciprocal implication is immediate
since a ⊆ b and d ⊆ b. As a consequence of the two remarks above, we have ⌊a ∗ s⌋ = 1 if
and only if ⌊c ∗ s⌋ = 1 or ⌊d ∗ s⌋ = 1, which is equivalent to ⌊(c+ d) ∗ s⌋ ∈ {1, 2}. Moreover,
⌊(c+ d) ∗ s⌋ = 2 if and only if ⌊c ∗ s⌋ = 1 and ⌊d ∗ s⌋ = 1, which is equivalent to ⌊b ∗ s⌋ = 1.
Therefore ⌊(a+ b) ∗ s⌋ = ⌊(c+ d) ∗ s⌋.

14

This proposition applies to orders on three points, but the exact same argument applies in
any larger context, since the proof never uses the fact that there are no other points than x, y, z.
So for any play r and points x, y, z ∈ |r| such that x <r y, x |r z and y |r z we have

r + (r ∗ [x < z < y]) ≈ (r ∗ [x < z]) + (r ∗ [z < y]).

This can also be deduced from Proposition 35 using the partial composition operators defined
in Section 3.1. When S is a ring, it allows us to express each of the patterns of the equation in
Proposition 35 as a linear combination of the others with coefficients 1 and −1. This implies
that for each of these patterns, the set of all orders over X that do not contain the considered
pattern generates As(X). In each case, the forbidden pattern defines a particular class of orders,
respectively weak total orders (as of Proposition 36 below), orders of height at most 2 and forests
with roots up or down.

36 Proposition. Let (X,6) be a partially ordered set. The following conditions are equivalent:

• For all x, y, z ∈ X, if x < y then x < z or z < y.

• The relation ‖ is an equivalence.

• There is a totally ordered set (Y,6) and a function f : X → Y such that, for all x, y ∈ X,
x < y if and only if f(x) < f(y).

Let W(X) be the set of orders that satisfy these conditions, called weak total orders over X.

Proof. Firstly, assume that for all x, y, z ∈ X , if x < y then x < z or z < y. It is clear that ‖
is always reflexive and symmetric. Let x, y, z ∈ X such that x ‖ z and z ‖ y. If x < y, then by
hypothesis we must have x < z or z < y, which contradicts the hypothesis on x, y, z. Similarly
we cannot have y < x, so x ‖ y. Therefore ‖ is transitive and it is an equivalence relation.

Secondly, assume ‖ is an equivalence relation. Let Y be the set of equivalence classes of ‖.
Define the relation ⊑ on Y as A ⊑ B if a 6 b for some a ∈ A and b ∈ B. The relation ⊑ is
reflexive since for all A ∈ Y , for any a ∈ A we have a 6 a so A ⊑ A. Assume A ⊑ B and
B ⊑ A for some A,B ∈ Y , then there are a, a′ ∈ A and b, b′ ∈ B such that a 6 b and b′ 6 a′;
if a < b′ then a < a′ which contradicts a ‖ a′, similarly if b′ < a then b′ < b which contradicts
b′ ‖ b, so a ‖ b′, which implies that A and B are the same class, therefore ⊑ is antisymmetric.
Assume A ⊑ B and B ⊑ C for some A,B,C ∈ Y , then there are a ∈ A, b, b′ ∈ B and c ∈ C
such that a 6 b and b′ 6 c; if a ‖ c then A = C hence A ⊑ C, otherwise we must have a < c or
c < a, but the second case implies b′ 6 c < a 6 b which contradicts b ‖ b′, so a < c and A ⊑ C,
hence ⊑ is transitive. Totality is immediate: if A and B are two distinct classes, then every pair
(a, b) ∈ A × B is comparable. Let f be the function that maps each element of X to its class.
If x < y then f(x) ⊏ f(y) by definition. Reciprocally, if f(x) ⊏ f(y), then x and y must be
comparable (since they are in distinct classes), and y < x would imply f(y) ⊏ f(x), so x < y.

Finally, assume there is f : X → Y where Y is totally ordered such that x < y if and only if
f(x) < f(y). Let x, y, z be such that x < y, then f(x) < f(y). Since the order on Y is total, we
must have either f(x) < f(z) or f(z) < f(y) (or both), hence x < z or z < y.

In other words, a weak total order is a total order over sets of mutually incomparable points.
Interestingly, this kind of order was considered long ago in scheduling theory [22] as the possibility
to label events with time stamps in a possibly non-injective manner. It turns out that weak total
orders form a basis.

37 Definition. Let r ∈ O(X). Two elements a, b ∈ X are equivalent in r, written a ∼r b, if for all
c ∈ X \ {a, b}, a <r c if and only if b <r c, and c <r a if and only if c <r b. For a pair a ∼r b
with a 6= b, let r/(a ∼ b) be the order r ∩ (X \ {b})2 over X \ {b}.

15

38 Definition. Let a, b ∈ X with a 6= b. For each r ∈ O(X \ {b}), define the relations

ra∼b := r ∪ {(x, b) | (x, a) ∈ r} ∪ {(b, x) | (a, x) ∈ r},
ra<b := ra∼b ∪ {(a, b)}, ra>b := ra∼b ∪ {(b, a)}.

Clearly, ra∼b, ra<b and ra>b are partial orders over X in which a and b are equivalent.

39 Lemma. Let a, b be two distinct elements of X. For all r ∈ W(X) and s ∈ O(X \ {b}),

• if a <r b then r ` sa∼b if and only if r ` sa<b, moreover r 6` sa>b,

• if a >r b then r ` sa∼b if and only if r ` sa>b, moreover r 6` sa<b,

• if a |r b then r ` sa∼b if and only if r ` sa<b if and only if r ` sa>b.

Proof. If a <r b, we have r ∪ sa∼b = r ∪ sa<b, since sa∼b and sa<b only differ on (a, b), so the
compatibility of the two pairs is equivalent to this union being acyclic. The same argument
applies to the case a >r b. For the case a |r b, first assume r ` sa∼b and let t = r ∗ sa∼b. By
definition of weak orders, we have a ∼r b. If a <t b then there exists a sequence a = a0, . . . , an = b
such that for each i < n, ai <r ai+1 or ai <sa∼b

ai+1, but since a and b are equivalent in both
r and sa∼b, we can replace b with a in this sequence, which leads to the contradiction a <t a.
By the same argument we cannot have b <t a, so a |t b. We thus have t ` [a < b] hence
sa<b = sa∼b ∗ [a < b] ` r, and similarly r ` sa>b. The reverse implications are immediate since
sa∼b is included in both sa<b and sa>b.

40 Proposition. If S is a ring, then for all finite set X, W(X) is a basis of As(X).

Proof. Let Z(X) be the submodule of all the u ∈ Cs(X) such that for all order r over X ,
⌊u ∗ r⌋ = 0. We actually prove the fact that Cs(X) is isomorphic to the direct sum SW(X)⊕Z(X),
which is equivalent since by definition As(X) is Cs(X)/Z(X) when the semiring S is a ring.

We first prove that for all order r over X there is an s ∈ SW(X) such that r − s ∈ Z(X).
Let N(r) =

{

(a, b, c) ∈ X3
∣

∣ a <r b, a |r c, b |r c
}

, we proceed by induction on ♯N(r). If r = ∅,
then by Proposition 36 we have r ∈ W(X), so we can set s = r. Otherwise, consider a triple
(a, b, c) ∈ N(r). Define the orders r1 := r ∗ [a < c], r2 := r ∗ [c < b] and r3 := r ∗ [a < c < b].
By Proposition 35, we have r1 + r2 − r3 − r ∈ Z(X). Besides, for each i ∈ {1, 2, 3}, clearly
N(ri) ⊂ N(r) and (a, b, c) ∈ N(r) \N(ri), so ♯N(ri) < ♯N(r). We can then apply the induction
hypothesis to get an si ∈ SW(X) such that ri − si ∈ Z(X). We can then conclude by setting
s := s1 + s2 − s3.

As a consequence we have Cs(X) = SW(X) +Z(X), and we now prove that this sum is direct
by proving SW(X) ∩ Z(X) = {0}. We proceed by recurrence on the size of X . If X has 0 or 1
element, then the only order over X is the trivial order t, and ⌊t ∗ t⌋ = 1 6= 0, so Z(X) = {0}
and the result trivially holds. Now let n > 2, suppose the result holds for all X with at most
n− 1 points, and let u ∈ SW(X) ∩ Z(X). We now prove that u is the zero function.

Let r be a weak total order that is not a total order, let a, b ∈ X such that a |r b. Let X ′ =
X \ {b}. Define u′ ∈ SW(X′) by u′(t) = u(ta∼b) for all t ∈ O(X ′), so that u(r) = u′(r/(a ∼ b)).
For any orders s ∈ W(X) and t ∈ O(X ′), by Lemma 39 we have that ⌊s ∗ (ta<b + ta>b − ta∼b)⌋
is 0 if a and b are comparable in s, otherwise it is equal to ⌊s ∗ ta∼b⌋, which is itself equal to
⌊s/(a ∼ b) ∗ t⌋ by restriction to X ′. Let s′ = s/(a ∼ b), we have

⌊u ∗ (ta<b + ta>b − ta∼b)⌋ =
∑

s∈W(X),a|sb

u(s) ⌊s ∗ ta∼b⌋ =
∑

s∈W(X),a|sb

u′(s′) ⌊s′ ∗ t⌋

The mapping s 7→ s/(a ∼ b) is a bijection from weak total orders over X such that a | b to weak
total orders over X ′, so the latter sum is equal to

∑

s′∈W(X′) u
′(s′) ⌊s′ ∗ t⌋ = ⌊u′ ∗ t⌋. Besides, u

16

is in Z(X) so ⌊u ∗ (ta<b + ta>b − ta∼b)⌋ = 0, which implies ⌊u′ ∗ t⌋ = 0. This holds for all t, so
u′ ∈ Z(X ′). By construction we have u′ ∈ SW(X′) so u′ is in SW(X′) ∩ Z(X ′). By the induction
hypothesis this is {0}, so u′ = 0 and as a consequence we have u(r) = u′(r/(a ∼ b)) = 0.

By the argument above, we thus know that u(r) = 0 as soon as r is not a total order. In
other words, u is a linear combination of total orders. From Proposition 33 we know that total
orders are linearly independent in As(X), so we can conclude that u = 0.

As a consequence, weak total orders on subsets of |X | form a basis of the static order algebra
A(X). We can extend this property to arbitrary order algebras using the representation property.

41 Theorem. Let X be an arena. Then A(X) has a basis (bi)i∈I made of plays if

• S is idempotent, then the bi are the orbits of totally ordered plays under GX , or

• S is a regular ring, then the bi are the orbits of weakly totally ordered plays under GX .

In both cases, if S is rational, then there exists a family of vectors (b∗
i)i∈I such that for all i, j ∈ I,

⌊

bi ‖ b∗
j

⌋

is 1 if i = j and 0 otherwise.

Proof. Propositions 34 and 40 provide bases of the appropriate kinds for strict static order
algebras. By Proposition 32, these yield bases for static order algebras. In each case, call the
elements of these bases base plays. A permutation of a (weak) total order is always an order
of the same kind, so from the fact that base plays generate A(|X |), we deduce that they also
generate A(X). Now consider two linear combinations u =

∑

i∈I λiri and v =
∑

i∈I µiri, where
the ri are distinct base plays for |X | and representants (as of Definition 22), and suppose u ≈ v.
By Proposition 29, we can deduce

∑

i∈I λi sat ri ≈|X|

∑

i∈I µi sat ri, and this equivalence is
an equality since both sides are linear combinations of base plays. Now consider any i ∈ I. In
∑

i∈I λi sat ri, the coefficient of ri is µX (ri), so the equality above implies µX (ri) λi = µX (ri)µi,
and subsequently λi = µi since µX (ri) is a non-zero integer and S is regular. Hence representants
of base plays form a basis of A(X).

If S is an idempotent semiring, then by Proposition 34 the family (bi)i∈I is made of total
orders, so if we set b∗

i = bi for each i we have the expected property.
Now suppose S is a rational ring. Let A be a representant finite subset of |X |. Call a1, . . . , an

the subset of the basis whose plays have support A, and let M = (mij) be the n×n matrix such
that mij = ⌊ai ‖ aj⌋. M has coefficients in natural numbers, and since the family (ai) is linearly
independent by hypothesis, M is invertible in Q. Since S is a regular ring, it is an algebra over
Q, so M is also invertible in S. Let M−1 = (m′

ij) and let a∗
i :=

∑n
j=1 m

′
ijai, then by construction

⌊

ai ‖ a∗
j

⌋

is 1 if i = j and 0 otherwise.

Observe that if S is a rational ring, then in particular it is an algebra over Q, then AS(X) =
S⊗AQ(X) as Q-algebras, since all plays decompose uniquely as linear combinations of base plays
with integer coefficients. The outcome in AS(X) then appears as the tensor of the identity over S
and the outcome over AQ(X). The algebra AQ(X) further decomposes into the direct sum of the
strict order algebras As

Q(Y) for all representant subset Y with the permutation group induced
over it. This is particularly useful since the As

Q(Y) are finite dimensional vector spaces over Q.
On the other hand, if S is neither idempotent nor a regular ring, it is possible that there is no

base. For instance, if S = N, then clearly a play s cannot be decomposed as a non-trivial sum of
vectors, so any generating family must contain all plays, but then the equation of proposition 35
states that they are not linearly independent.

17

3 Logical structure

In this section, we describe constructions on order algebras. Although order algebras themselves
have some interesting structure, the actual objects we are interested in are submodules of such
algebras, hereafter called types, which enjoy better properties.

42 Definition. A type over an arena X is a submodule of A(X) generated by a family of plays in
S(X). A type is strict if it does not contain the empty play. The notation A : X is used to
represent the fact that A is a type over X . A morphism between types A : X and B : Y is a
linear map f from A(X) to A(Y) such that f(A) ⊂ B.

The requirement that types are generated by plays is justified by the idea that a type should
be a constraint on the behaviours of processes, and that such a constraint should boil down to a
constraint on the shape of plays that a process can exhibit. We could also define a type over X
simply as a subset S of S(X), but the definition as submodules makes it clear that observationally
equivalent vectors should belong to the same types, even if one is a combination of plays in S
while the other is not (this can happen even if S is closed under permutations, because of the
equation of Proposition 35).

43 Example. The intended meaning of order algebras is that vectors, that is linear combinations of
plays, represent processes. Then types impose constraints on the possible behaviours of processes,
based on the possible interactions scenarii they may exhibit. For instance, we can define the type
of processes that perform three actions of label a, as the submodule generated by the plays that
contain three points in the orbit a. Similarly, we could define the type of all plays that include
as many a’s as b’s.

Typed may also used in particular to impose well-formedness conditions. For instance, when
modelling a calculus like π that includes communication of bound names, one wants to impose
that any play that contains an event on a bound name also contains the event that communicates
this name.

44 Example. Note that the condition of being a submodule of A(X) imposes non-trivial conditions.
For instance, consider the CCS algebra, as of Example 3, with S idempotent. We can define the
type of processes in which all actions a are causally independent of all actions b, as generated by
the plays where all occurrences of a are incomparable with all occurrences of b. This type does
not contain the processes a.b and b.a, obviously, but it does contain their sum a.b+ b.a, which is
observationally equivalent to the parallel composition a | b.

45 Proposition. If S is a rational ring, then for all type A : X there is a family of plays (ci)i∈I
and a family of vectors (c∗

i)i∈I in A(X) such that (ci)i∈I is a basis of A and for all i, j ∈ I,
⌊

ci ‖ c∗
j

⌋

is 1 if i = j and 0 otherwise.

Proof. Recall that if S is a rational ring, then it is an algebra over Q and AS(X) can be seen as
the Q-algebra S ⊗ AQ(X). Since A is generated by plays, we can then decompose it as S ⊗ A′

for a type A′ in AQ(X), so it is enough to prove the result in the case S = Q. In this case A is
a subspace of the vector space AQ(X), so it is a standard result that from the generating family
we can extract a basis.

Now assume that (ci)i∈I is a basis of A, and consider a particular base play cn. Set J :=
{i ∈ I | |ci| = |cn|}. Then (ci)i∈J is a basis of the intersection of A and As(|cn|,G|cn|), the strict
order algebra over |cn| with the induced permutation group, which is a finite-dimensional Q-
vector space. Let f be a linear form over this algebra such that f(cn) = 1 and for all j ∈ J \ {i},
f(cj) = 0. Using the bases (bn) and (b∗

n) from Theorem 41 we can define c∗
n =

∑

|bk|=|cn| f(bk)b∗
k

and check that for all vector x with |x| = |cn| we have f(x) = ⌊c∗
n ‖ x⌋. Then c∗

n satisfies the
expected condition.

18

3.1 Products and linear maps

When combining order algebras, we need a notion of combination of arenas. Disjoint union is
the simplest way, and also the most sensible one:

46 Definition. Let (Xi)i∈I be a family of arenas with pairwise disjoint webs. Define the sum of
the family (Xi) as

∑

i∈I

Xi :=
(

⊎

i∈I

Xi,
∏

i∈I

GXi

)

with σ · x := σj · x for all σ ∈
∏

i∈I

GXi and x ∈ |Xj |.

We use equivalently the infix notation X1 +X2 + · · · +Xn for finite sums.

47 Example. Following on our first examples, if XA and XB are the arenas used for modelling CSP
processes over alphabets A and B respectively (see Example 2), then assuming A and B are
disjoint the webs |XA| and |XB| are disjoint too and XA+XB is actually the arena for processes
in the alphabet A ⊎B.

This sum can be seen as a coproduct in a suitable category of arenas. At the level of order
algebras, however, this operation is not a Cartesian product or coproduct, and not even a tensor
product in the sense of S-algebras, because the algebra A(X+Y) contains more plays than those
that appear as disjoint unions of a play in |X | and one in |Y |. However, A(X + Y) contains
products and tensors as submodules, hence our definition of types. In all statements below,
unless explicitly stated, different arenas are always supposed to be disjoint.

48 Proposition. For all types A : X and B : Y , A+B is a type over X + Y that is isomorphic to
the direct sum and Cartesian product of A and B.

Proof. A is a submodule of A(X), which is itself obviously a submodule of A(X +Y). Similarly,
B is a submodule of A(X + Y), and since X and Y are disjoint, so are A and B, since no
permutation in X +Y can map a point of |X | to a point of |Y |. Hence the submodule generated
by A+B = 〈A ∪B〉 in A(X + Y) is a direct sum of A and B.

49 Definition. Let X be an arena, let Y be a subset of |X | closed under permutations in GX .
Restriction to Y is the linear map resY over C(X) such that for all r ∈ S(X),

resY r := ⌊r⌋ · (|r| ∩ Y,6r ∩ Y 2)

Restriction of a play r to a given subset Y ⊂ |X | amounts to ignore the part of r that
happens outside Y , considering that events in |X | \ Y are private, hence unobservable. The fact
that Y must be closed under permutations is in accordance with the intuition that two plays are
indistinguishable when they are permutations of each other.

50 Example. Following on example 47, resXA
: C(XA + XB) → C(XA) precisely represents CSP’s

restriction operator that maps a trace t to the restricted trace t ↾ A.

Hence, as we shall see (in detail in Section 4.3), restriction does not correspond to the
hiding operator (ν) of the π-calculus and related languages. Indeed, the externally observable
behaviours of (νu)P are those of P that do not involve an event on u, which to mapping to 0
all plays in P that contain an event on u, before actually restricting to the arena that does not
contain events on u.

51 Note that in the definition we impose a coefficient ⌊r⌋ on the restricted play. Since the outcome
⌊r⌋ is 0 or 1 for any play r, this amounts to imposing that resY r be 0 if r is inconsistent. This
condition is necessary because we want outcomes to be preserved by restriction: if a play is
inconsistent, it means that it contains some deadlock, and hiding the place where this occurs

19

surely should not resolve the deadlock. For instance, an inconsistent play like (a b), when
restricted to {a}, would yield the consistent play (a).

Incidentally, this implies that resX : C(X) → C(X) is not the identity, because it collapses all
inconsistent plays to 0. However, up to observational equivalence, it is the identity.

52 Proposition. Restriction is compatible with observational equivalence.

Proof. First observe that, since Y is supposed to be closed by permutations, restriction commutes
with permutations, hence ∆(resY u) = resY ∆(u). Then by the representation property (Propo-
sition 29), if u ≈ v then ∆(u) ≈|X| ∆(v), so it suffices to prove that restriction is compatible
with observational equivalence in static arenas.

Let Z be a finite subset of |X | \ Y , define extZ as the linear map such that for all t ∈ S(X),
extZ t is the play on |t| ∪ Z, whose preorder relation is 6t extended as the identity relation on
Z. Let r be a play in S(X) such that |r| \ Y = Z. Suppose r is acyclic, then for all play s with
|s| ∪ Z = |r| the relation 6r ∪ 6s is acyclic if and only if (6r ∩ Y 2) ∪ 6s is acyclic, so we have
⌊r ∗ extZ s⌋ = ⌊resY r ∗ s⌋. If r is not acyclic, then the equality holds too since both sides are 0.
The equality extends trivially to all plays s such that |s| ⊂ Y .

Consider a pair u ≈|X| v and a play s ∈ S(X) with |s| ⊂ Y . By Proposition 32 we can
decompose u as

∑

C∈Pf (|X|) uC with uC ∈ Cs(C) and similarly for v so that for each C we have
uC ≈|X| vC . For a given C, let Z = C \ Y , then by linearity of the equation in the previous
paragraph we get ⌊resY uZ ∗ s⌋ = ⌊uZ ∗ extZ s⌋ for all play s with |s| ⊂ Y , and by the equivalence
of uZ and vZ we get ⌊resY uZ ∗ s⌋ = ⌊resY vZ ∗ s⌋. This trivially holds too if |s| 6⊂ Z, so we get
the equivalence resY uZ ≈ resY vZ , and we deduce resY u ≈ resY v by linearity.

53 Definition. Let X,Y, Z be three arenas with pairwise disjoint supports. Define partial static
synchronisation along X as the bilinear map ∗X from C(X + Y) × C(X + Z) to C(X + Y + Z)
such that for all r ∈ S(X + Y) and s ∈ S(X + Z),

r ∗X s :=

{

(

|r| ∪ |s|, (6r ∪ 6s)∗
)

if |r| ∩ |X | = |s| ∩ |X |

0 otherwise

Deduce partial permuted synchronisation as

r ‖X s := µX (resX s)
∑

s′∈GX(s)

r ∗X s′

54 Example. Consider an arena X containing at least two interchangeable actions labelled a1, a2

and arenas Y and Z containing events b and c respectively. Then we have the partial static
synchronisation

(

b

a1

a2

)

∗X

(

a1

c

a2

)

=

b

a1

c

a2

and the partial permuted synchronisation

(

b

a1

a2

)

‖X

(

a1

c

a2

)

=

b

a1

c

a2

+

(

b

a1
a2

c
)

.

The factor µX (resX s) (which is 1 in this example) plays the same role as in full synchronisation
(Definition 16), remarking that we only apply permutations on the X part.

20

55 Proposition. Let X,Y, Z be three arenas with pairwise disjoint supports. Partial synchronisa-
tion along X is associative as

(u ‖X v) ‖X+Y+Z w = u ‖X+Y (v ‖X+Z w)

for all u ∈ C(X + Y), v ∈ C(X + Z) and w ∈ C(X + Y +Z). It is compatible with observational
equivalence and commutative up to equivalence.

Proof. Let X,Y, Z be three disjoint arenas. Consider three plays r ∈ S(X + Y), s ∈ S(X + Z)
and t ∈ S(X + Y + Z). The partial synchronisations (r ∗X s) ∗X+Y+Z t and r ∗X+Y (s ∗X+Z t)
are non-zero if and only if we can define

A = |r| ∩ |X | = |s| ∩ |X | = |t| ∩ |X |, B = |r| ∩ |Y | = |t| ∩ |Y |, C = |s| ∩ |Z| = |t| ∩ |Z|,

and in this case the result is the play on A ∪B ∪ C whose preorder relation is (6r ∪ 6s ∪ 6t)∗,
so we have

(r ∗X s) ∗X+Y+Z t = r ∗X+Y (s ∗X+Z t).

Assume representants are chosen in each arena in such a way that for D ⊂ |X | and E ⊂ |Y |,
D ∪E = D ∪ E, and similarly for X + Z and X + Y + Z. Choosing representants this way is
always possible since permutations of X , Y and Z are independent in the sum arenas. Suppose
r, s, t and A,B,C are representants. GA is the same in all sums of arenas that involve X , and
similarly for GB and GC . Moreover we have GA∪B∪C = GA × GB × GC , and similarly for other
unions, so by similar considerations as for permuted synchronisation, we get

(r ‖X s) ‖X+Y+Z t =
∑

(r ∗X σAs) ∗X+Y+Z σ
′
AσBσCt =

∑

r ∗X+Y (σAs ∗X+Z σ
′
AσBσCt)

=
∑

r ∗X+Y σAσB(s ∗X+Z σ
′
AσC t) = r ‖X+Y (s ‖X+Z t)

where the sums are indexed on (σA, σ′
A, σB, σC) ∈ GA × GA× GB × GC . Partial synchronisation

commutes with permutations so this equality extends to plays that are not representants, and
by linearity is extends to arbitrary vectors.

Now consider u, u′ ∈ C(X+Y), v ∈ C(X+Z) and w ∈ C(X+Y +Z), and suppose u ≈ u′. By
the same arguments as in the proof of Proposition 52, we get the equality

⌊

u ‖X+Y (v ‖X+Z w)
⌋

=
⌊

u ‖ resX+Y (v ‖X+Z w)
⌋

, then u ≈ u′ implies that these are equal to
⌊

u′ ‖X+Y (v ‖X+Z w)
⌋

,
and applying associativity on this we can deduce u ‖X v ≈ u′ ‖X v. Commutativity of partial
synchronisation is obvious, and it yields the compatibility with observational equivalence on the
right.

By similar arguments, we prove other “localized” associativities, the general case being

(u ‖A+B v) ‖A+C+D w = u ‖A+B+C (v ‖A+D w)

for u ∈ A(A + B + C + E), v ∈ A(A + B + D + F) and w ∈ A(A + C + D + G), where
A,B,C,D,E, F,G are seven (!) pairwise disjoint arenas. Although this formulation is fright-
eningly heavy, the point is rather simple: when partially synchronising two vectors u and v,
synchronise them along the arenas they have in common, and the result will be on the union of
the arenas of u and v.

The simplest case of partial synchronisation is when “synchronising” two vectors u ∈ A(X)
and v ∈ A(Y) along the empty arena, yielding u ‖∅ v ∈ A(X + Y). In this case, u and v are
essentially kept independent, which in particular implies

⌊

u ‖∅ v
⌋

= ⌊u⌋ ⌊v⌋ .

21

This is deduced by linearity from the case of plays, remarking that for r ∈ S(X) and s ∈ S(Y),
r ‖∅ s is the disjoint union of r and s, which is consistent if and only if r and s are consistent.

56 Definition. Let X and Y be two arenas. Define the bilinear map ⊗ from A(X) × A(Y) to
A(X + Y) as u⊗ v := u ‖∅ v. For two types A : X and B : Y , define A⊗B as the submodule of
A(X + Y) generated by the image of A×B by ⊗.

Simply put, A⊗B is the S-module consisting of processes that can be written as juxtapositions
of a process in A and a process in B with no scheduling constraint between them, or as a sums of
such things, up to observational equivalence. As illustrated in Example 44, this does not imply
that any vector

∑

i∈I λiri ∈ A⊗B is syntactically a sum of ui ‖∅ vi with ui ∈ A and vi ∈ B.

57 Proposition. If S is a rational ring, then for all types A : X and B : Y , A ⊗ B is the tensor
product of A and B in the sense of S-algebras.

Proof. By Proposition 45 the types A and B have bases (bi)i∈I and (cj)j∈J , and there are families
of vectors (b∗

i)i∈I and (c∗
j)j∈J such that each b∗

n identifies bn among the elements of (bi)i∈I , and
similarly for c∗

n. We prove that the vectors bi ‖∅ cj are linearly independent. Consider a linear
combination u =

∑

(i,j)∈I×J λij(bi ‖ cj) in A(X + Y). For each (m,n) ∈ I × J we have

⌊

u ‖X+Y (b∗
m ‖∅ c

∗
n)
⌋

=
∑

(i,j)∈I×J

λmn
⌊

(bi ‖∅ cj) ‖X+Y (b∗
m ‖∅ c

∗
n)
⌋

=
∑

(i,j)∈I×J

λmn
⌊

(bi ‖X b∗
m) ‖∅ (cj ‖Y c

∗
n)
⌋

=
∑

(i,j)∈I×J

λmn ⌊bi ‖X b∗
m⌋ ⌊cj ‖Y c

∗
n⌋

using the associativity properties stated above. By definition of b∗
m and c∗

n, the only non-zero
term in the final sum is for (i, j) = (m,n), and this term is λmn. Applying this on every (m,n)
implies the unicity of the decomposition of u on the bm ⊗ cn. So the bm ⊗ cn form a linearly
independent family, which proves that A⊗B is isomorphic to the tensor product of A and B, as
S-modules. The associativity property ensures that they are also isomorphic as S-algebras.

58 Definition. Let X , Y and Z be three arenas. Let u ∈ A(X+Y) and v ∈ A(Y +Z). Composition
of u and v through Y is the vector u ◦Y v := resX+Z(u ‖Y v) ∈ A(X + Z).

Let A : X and B : Y be two types. The type A⊸ B : X + Y is the submodule of A(X + Y)
generated by all plays r such that for all u ∈ A, r ◦X u ∈ B.

By the remarks above, we get associativity of composition. In the special case where X is
the empty arena, A(X + Y) is equal to A(Y) and u ◦Y v is a vector in Z, so v induces a linear
map from A(Y) to A(Z). However, this mapping from vectors of A(X +Y) to linear maps from
A(X) to A(Y) is neither injective nor surjective.

It is easy to check the standard adjunction A ⊸ (B ⊸ C) = (A ⊗ B) ⊸ C for all types
A,B,C of pairwise disjoint supports. Moreover, if we call 1 the non-trivial type over the empty
arena, which is isomorphic to S, we have for all type A that A⊗ 1 = 1 ⊗A = 1 ⊸ A = A.

3.2 Bialgebraic structure

59 Definition. Let X and Y be two arenas. Define the indexing of Y by X as the arena

X ⊲ Y :=
(

|X | × |Y |,GX × (GY)|X|
)

where permutations act as
(σ, ϕ)(x, y) := (σx, ϕ(x) y)

22

We interpret indexing as follows: |X ⊲ Y | consists of copies of Y indexed by points of X .
A permutation in X ⊲ Y consists in permuting each copy independently, using the function
ϕ : |X | → GY that provides a permutation for each copy, and then permuting the copies
themselves using a permutation in X .

Note that we easily get the equality (X+Y) ⊲Z = (X ⊲Z) + (Y ⊲Z), however X ⊲ (Y +Z) is
not equal to (X ⊲Y) + (X ⊲Z), since permutations of copies in the former operate the same way
on the copies of X and those of Y , while in the latter they may not. There is also an isomorphism
between (X ⊲ Y) ⊲ Z and X ⊲ (Y ⊲ Z), and these appear as (|X | × |Y | × |Z|,GX × (GY)|X| ×
(GZ)|X|×|Y |).

The structure of the indexing arena is used only for identifying and permuting copies, in
particular we will not consider plays on this arena. The primary purpose of indexing is to build
an arena in which the symmetric algebra over a given type will fit. It also generalises the direct
sum when the indexing arena is static.

60 Definition. Let S(N) be the arena with |S(N)| = N, the set of natural numbers, and GS(N) =
S(N), the group of all permutations of N. For all arena X , define ♯X := S(N) ⊲ X .

So the arena S(N) ⊲X contains a countable number of interchangeable copies of X . Another
useful construct is the following: identifying each integer n with the set {0, . . . , n− 1}, which is
in turn identified with the static arena with this set as the web, the arena n ⊲X is isomorphic to
the sum X + · · · + X with n independent copies of X . If n = 0, this yields the empty arena ∅.
Then n⊲ ♯X = n⊲S(N)⊲X contains a countable set of copies of X , partitioned into n countable
classes of interchangeable copies.

61 Definition. Let n be a strictly positive integer, let ϕ be a bijection from n × N to N. For all
arena X , define the function γnϕ : S(n ⊲ ♯X) → S(♯X) as

∣

∣γnϕs
∣

∣ :=
{

(ϕ(i), x)
∣

∣ (i, x) ∈ |s|
}

and (ϕ(i), x) 6γn
ϕs

(ϕ(j), y) iff (i, x) 6s (j, y).

Define the linear map δn : C(♯X) → C(n ⊲ ♯X) as

δns :=
∑

c :π1(|s|)→n

c • s with
|c • s| :=

{

((c(i), i), x)
∣

∣ (i, x) ∈ |s|, i ∈ A
}

((c(i), i), x) 6c•s ((c(j), j), y) iff (i, x) 6s (j, y)

where π1 is the first projection, so π1(|s|) = {i | (i, x) ∈ |s|}.

The function γnϕ is a simple renaming of the copies of X using the function ϕ, which extends
the bijection ϕ : n × N → N to a bijection between S(n ⊲ ♯X) and S(♯X). As explained below,
this bijection is compatible with observational equivalence, but its quotient is not injective.
Instead, it fuses the n independent copies of ♯X into one, which makes events from different
copies interchangeable.

The linear map δn acts as a non-deterministic inverse operation. Given a play s in S(♯X),
it enumerates all possible ways of partitioning the events of s into n identified subsets. The
function c represents such a choice, and c • r applies this choice to the play r.

As we shall see, the operators γnϕ and δn are very similar to a multiplication and comultipli-
cation in a bialgebra. They are analogous to concatenation and deconcatenation, which give a
bialgebraic structure to tensor algebras [24].

62 Proposition. Let X be an arena and let n be a strictly positive integer. The maps γnϕ and δ are
compatible with observational equivalence and the quotient map of γnϕ is independent of ϕ. For
all vectors u ∈ A(n ⊲ ♯X) and v ∈ A(♯X) we have

γn(u) ‖♯X v ≈♯X u ‖n⊲♯X δn(v).

23

Proof. Observe that for any permutation σ ∈ Gn⊲N⊲♯X (i.e. a family of independent permutations
on each copy of X in n⊲♯X) there is a permutation σ′ ∈ GN⊲♯X such that γnϕ ◦σ = σ′ ◦γnϕ, and the
other way around for δn. As a consequence, by Proposition 29, we can deduce the expected result
from the case where X is static. Then all considered permutations are in S(n× N) and S(N).

The map γnϕ decomposes as the injection of C((n ⊲ S(N)) ⊲ X) into C(S(n × N) ⊲ X) and
the renaming of S(n × N) ⊲ X into S(N) ⊲ X through ϕ. The former consists in growing the
permutation group on a fixed web and the latter is an isomorphism, so both are compatible
with observational equivalence. For δn, given a permutation σ ∈ S(N) and a play s, for all
choice function c for σs we have c • σs = σ′(c′ • s) with c′ = c ◦ σ and σ′(i, j) = (i, σ(j)), which
establishes a bijection between the choices of s and those of σs. From this we can conclude that
δn is compatible with observational equivalence.

Let r ∈ S(n ⊲ ♯X), let s ∈ S(♯X) and let ϕ be a bijection from n × N to N. Assume s is a
representant. First suppose

∣

∣γnϕ(r)
∣

∣ 6= |s|, then γn(r) ‖ s is zero. Suppose that there is a choice c

such that |c • s| = |r|, then we get a permutation σ ∈ Gn⊲♯X that induces a bijection from |c • s|
to |r|. By definition σ is a bijection between the pairs (c(i), i) and π1(|r|), which can be extended
into a bijection ψ from n × N to N, such that

∣

∣γnϕ(r)
∣

∣ = |s|. This contradicts the hypothesis
∣

∣γnϕ(r)
∣

∣ 6= |s| since γnϕ(r) and γnψ(r) are necessarily permutations of each other, from the remarks
above. Hence for all c we have |c • s| 6= |r|, so r ‖ δn(s) = 0, and the equality holds.

Now suppose
∣

∣γnϕ(r)
∣

∣ = |s|. Applying a suitable permutation to r and choosing ϕ appropri-
ately (we know from the above remarks that these operations are allowed) we can assume that
γnϕ(r) is a representant, so

∣

∣γnϕ(r)
∣

∣ = |s|, and γnϕ(r) ‖ s =
∑

σ∈G ϕr ∗σs ≈
∑

σ∈G r ∗ϕ−1σs, where
G is the group of permutations of |s| induced by G♯X , that is the symmetric group of π1(|s|). For
each σ ∈ G, the function π1ϕ

−1σ is a choice function cσ over π1(|s|), and σ∗(i, j) := (i, σ−1ϕ(i, j))
is a permutation in Gn⊲N such that σ∗ϕ−1σ(i) = (cτ (i), i), hence σ∗ϕ−1σ(s) = cσ • s. By par-
titioning the sum for τ ∈ G according to choice functions, we get γnϕ(r) ‖ s ≈

∑

c

∑

σ∈G,cσ=c r ∗

σ∗−1(cσ • s). By construction, for a fixed c, we have
{

σ′∗−1
∣

∣ σ′ ∈ G, cσ′ = c
}

= Gn⊲Nσ∗−1, so
we get γnϕ(r) ‖ s ≈♯X

∑

c r ‖n⊲♯X (c • s) = r ‖n⊲♯X δ
n(s), from which we conclude by linearity.

As a consequence, A(♯X) has the structure of a commutative algebra with γ2 as the multipli-
cation and the empty play as the unit. The δ2 does not make it a bialgebra in general, because
for an arbitrary u ∈ A(♯X), δ2(u) ∈ A(♯X + ♯X) has no reason to be in the tensor product
A(♯X) ⊗ A(♯X). The reason is that a given play in S(♯X), the components of δ2(r) are not
disjoint unions of plays on the two copies of ♯X , but they may contain scheduling constraints
that involve both copies. We do get a bialgebra if we restrict to the case of plays in which all
copies stay independent.

63 Definition. LetX be an arena. For all integer n and play r ∈ S(X), define the play n•r ∈ S(♯X)
as in Definition 61 for the constant function n. This obviously induces an isomorphism between
A(X) and A({n} ⊲ X), which maps each type A : X to an isomorphic type n • A : {n} ⊲ X .
However, the {n} ⊲ X for distinct n are disjoint.

The arena {n} ⊲ X is included in ♯X , let εn : C(X) → C(♯X) be the inclusion map. Clearly
all the εn are compatible with observational equivalence and their quotients are all equal. Name
ε : A(X) → A(♯X) the quotient map.

For all type A : X , define the type !A : ♯X as

!A :=
∑

n∈N

γn(An) where (An : n ⊲ X) :=
n−1
⊗

i=0

(i • ε(A))

24

Define the degree of a vector u ∈ !A as the smallest integer d(u) such that u is in the partial sum
∑

n6d(u) γ
n(An).

For all type A : X , the type !A : ♯X is again a commutative algebra with γ2 as the product
and the empty play as the unit. The degree function makes it a graded algebra, intuitively the
degree of a vector u is the maximum number of different copies of A that u uses. If the type
A is strict (i.e. if it does not contain the empty play) and S is rational, then !A is isomorphic
to the symmetric algebra of A. The strictness condition means that each copy of A is actually
used, without this hypothesis the isomorphism fails because all powers of the empty play are
necessarily equal to the empty play in !A.

The linear map δ2 also makes !A a cocommutative coalgebra whose counit is the linear form
that maps the empty play to 1 and non-empty plays to 0. It is routine to check that the algebra
and coalgebra structure are compatible, making !A a bialgebra. Interestingly, if A is the unique
strict type on the singleton arena (which is isomorphic to S), then !A is isomorphic to the
bialgebra of polynomials in one variable over S.

3.3 Towards differential linear logic

The mapping A 7→ !A is a functor in the category of types and linear maps. The map ε from
the definition above is a natural transformation from A to !A, and by choosing a bijection from
N × N into N we get a natural transformation from !!A to !A which makes !A into a monad
(the choice of a particular bijection is unimportant, for the same reasons as in Proposition 62).
The quotient of the linear map that sends each play n • r to r and all other plays to zero is a
natural transformation from !A to A, and using any bijection from N to N × N we get a natural
transformation from !A to !!A, which also makes A a comonad.

We can also check the isomorphism !(A⊕B) ≃ !A⊗ !B for any strict types A : X and B : Y
over disjoint arenas. The first type is in the arena S(N) ⊲ (X + Y) and the second one is in
(S(N) ⊲ X) + (S(N) ⊲ Y); these arenas are not isomorphic but the types themselves are thanks
to the definition of the direct sum.

All these considerations show that the structure of our types supports most constructs of
differential linear logic [17], including additives, multiplicatives and exponentials with structural
and costructural rules. However, the construction is not yet a model of differential logic, for
several reasons:

• One crucial thing that lacks in our framework is the axioms. They do not fit in the present
work because our objects are too finitary: all vectors are finite linear combinations of finite
plays, hence there can be no vector in A ⊸ A that is neutral for composition as soon as
A is not finite dimensional. The reason is similar to the case of units for synchronisation
in Proposition 30, and solving this defect requires a radical extension of this work, as
explained in the introduction.

• The proper notion of duality needed to interpret logic, or equivalently the definition of the
type ⊥, is not clear at first sight. This type must be defined on the empty arena, and our
notion of type only leaves two choices: 1 = A(∅) and {0}. The first one is degenerate given
our definition of A ⊸ B, the second one yields orthogonality with respect to the bilinear
form (u, v) 7→ ⌊u ‖ v⌋ (note however that this bilinear form is not a scalar product, because
it is not positive). We will not explore this case here because it exceeds the scope of the
present work.

• Of course, building a model of linear logic requires to prove that the interpretation of proofs
is preserved by cut-elimination. Most tools are present for this, assuming we restrict to

25

an ill-structured logical system without the axiom rule. Here again, we defer this task to
further work, as the questions of axioms and duality obviously have to be answered first
for this to be of interest.

4 Interpretation of process calculi

In this section, we detail how process calculi can be interpreted in order algebras. As a particular
case to work on, we use the π-calculus with internal mobility [32], that is the fragment of the
π-calculus where output actions can only send fresh names. Most development here could be
carried out in other similar calculi. Had we used CCS, essentially everything would have been
the same up to section 4.3, in which the definition of arenas would have been simpler because
of the mostly trivial name structure of CCS. The full π-calculus, on the other hand, would have
required the handling of equality tests between names, which is perfectly doable at the cost of
trickier definitions; this exceeds the scope of the present work.

4.1 Quantitative testing

We consider the π-calculus with internal mobility, or πI-calculus, extended with outcomes from
a commutative semiring S. We consider the monadic variant of the calculus for simplicity, but
using the polyadic form would not pose any significant problem. More importantly, we restrict
to finite processes.

64 Definition. We assume a countable set N of names. Polarities are elements of P = {´, ˆ}.
Terms are generated by the following grammar:

branchings S, T := uει (x).P action, with u, x ∈ N , ε ∈ P and ι ∈ N

S + T external choice
processes P,Q := λ outcome, with λ ∈ S

S branching
P |Q parallel composition
(νx)P hiding, with x ∈ N

In an action uει (x).P , ι is the location, u is the subject, x is the object and P is the continuation.
The name x is bound in P by the action, independently of the polarity ε.

Terms are considered up to injective renaming of bound names and commutation of restric-
tions, i.e. (νx)(νy)P = (νy)(νx)P , with the standard convention that all bound names are
distinct from all other names. We also impose that in a given term all locations are always
distinct. The set of locations occurring in a term P is written |P |.

Actions (without continuations) will be ranged over by Greek letters α, β, so that we can
write expressions like α.P or α.(β.Q | R). By convention, an action u´(x) is called positive and
is also written u(x), an action uˆ(x) is called negative and is also written ū(x). More generally,
if α is an action, we write ᾱ for the action with the same subject and the opposite polarity, in
particular ūε(x) is the action of the opposite polarity as uε(x).

Locations are simply a way to give different identities to different occurrences of a given chan-
nel name in a term, so we can talk about “the action ι” in an unambiguous manner. Renamings
of these locations are of course unobservable by the processes, so the distinctness condition is
not a restrictions on the terms we can write. Terms with locations can be seen as decorations
on standard terms of the πI-calculus.

We want to define an operational semantics in which commutation of independent transitions
is allowed. To make this possible by only looking at transition labels, we enrich the labels

26

αι.P
α:ι
−−→ P

P
uε(x):ι
−−−−→ P ′ Q

ūε(y):κ
−−−−−→ Q′

P |Q
{ι,κ}
−−−→ (νx)(P ′ |Q′[x/y])

P
a
−→ P ′ x /∈ a

(νx)P a
−→ (νx)P ′

S
a
−→ S′

S + T
a
−→ S′

S
a
−→ S′

T + S
a
−→ S′

P
a
−→ P ′

P |Q
a
−→ P ′ |Q

P
a
−→ P ′

Q | P
a
−→ Q | P ′

Table 1: Decorated labelled transition system for the πI-calculus

using locations so that different occurrences of a given action are distinguishable at the level of
operational semantics.

65 Definition. Transition labels can be of one of two kinds:

a, b := uε(x):ι visible action
{ι, κ} internal transition

Transitions are derived by the rules of Table 1. The notation x /∈ a means that the name x does
not occur (free or bound) in the label a.

An interaction is a finite sequence of transition labels. A path is a finite sequence of internal
transition labels. An interaction p = a1a2 . . . an is valid for P , written p ∈ P , if there are valid
transitions P a1−→ P1

a2−→ · · ·
an−−→ Pn.

The use of decorations to define a parallel operational semantics was first proposed by Boudol
and Castellani as “proved transitions” [9, 12], and the technique we use here can be seen as a
simplification for our purpose. It is clear that for all term P and interaction p, there is at most
one term P/p (exactly one if p ∈ P) such that there is a transition sequence P

p
−→ P/p (up to

renaming of revealed bound names). Note that by removing all locations from labels (replacing
{ι, κ} by τ) one gets the standard labeled transition system for the πI-calculus. For this reason,
we allow ourselves to keep locations implicit when they are not important.

66 Definition. Prefixing in a term P is the partial order 6P over |P | such that ι <P κ when in
P the action at location κ occurs in the continuation of the action at location ι. Two labels
a and b are independent, written a �P b, if all locations occurring in a or b are distinct and
pairwise incomparable for prefixing. Homotopy in a term P is the smallest equivalence ≈P over
interactions of P such that pabq ≈P pbaq when a �P b.

Two execution paths of a given term are homotopic if it is possible to transform one into the
other by exchanging consecutive transitions if they are independent. Prefixing generates local
constraints which propagate to paths by this relation.

67 Proposition. Let p and q be two interactions of a term P such that p and q are reorderings of
each other, then p ≈P q and P/p = P/q.

Proof. We first prove that for any interaction a1 . . . anb ∈ P such that b ∈ P we have a1 . . . anb ≈P

ba1 . . . an and P/(a1 . . . anb) = P/(ba1 . . . an), by induction on n. The case n = 0 is trivial. For
the case n > 1, remark that the hypothesis implies a1 � b: if some location in a1 was less than a
location in b then b could only occur after a1, which contradicts b ∈ P , and a1 ∈ P also implies
that no location in b is less than a location in a1. Therefore we have ba1 ∈ P and ba1 ≈P a1b.
The equality P/a1b = P/ba1 is a simple check on the transition rules. Applying the induction
hypothesis on P/a1 yields ba2 . . . an ≈P a2 . . . anb and P/a1ba2 . . . an = P/ba1a2 . . . an from
which we conclude. The case of arbitrary reorderings follows by recurrence on the length of p
and q.

27

68 Definition. A pre-trace is a homotopy class of interactions. A run is a homotopy class of
maximal paths. The sets of pre-traces and runs of a term P are written P(P) and R(P)
respectively. The unique reduct of a term P by a pre-trace ρ is written P/ρ.

Runs are the intended operational semantics: they are complete executions of a given system,
forgetting unimportant interleaving of actions and remembering only actual ordering constraints.
A pre-trace can be seen as a Mazurkiewicz trace [14] on the infinite language of transition labels,
with the independence relation from Definition 66, except that, because of our transition rules,
each label occurs at most once in any interaction.

We now define a form of interactive observation, in the style of testing equivalences, that
takes this notion of homotopy in account. Standard testing leads to interleaving semantics, so
we have to refine our notion of test, and that is what outcomes are for. The set S is a semiring
in order to represent two ways of combining results: multiplication is parallel composition of
independent results and addition is combination of results from distinct runs.

69 Definition. The state s(P) ∈ S of a term P is defined inductively as

s(λ) := λ, s(S) := 1, s((νx)P) := s(P), s(P |Q) := s(P) s(Q).

The outcome of a term P is ⌊P ⌋ =
∑

ρ∈R(P) s(P/ρ). Two terms P and Q are observationally
equivalent, written P ≃ Q, if ⌊P |R⌋ = ⌊Q | R⌋ for all R.

In other words, the outcome of testing P against Q is the sum of the final states of all
different runs of P |Q. Note that this sum is always finite since we only consider terms without
replication or recursion, hence all terms have finitely many runs. Classic forms of test intuitively
correspond to the case where S is the set of booleans for the two outcomes success and failure,
with operations defined appropriately. This particular case is detailed at the end of Section 4.4.

4.2 Decomposition of processes

In this section, we prove several properties of terms up to observational equivalence. The purpose
is to decompose arbitrary terms into simpler terms from which we will be able to easily extract
a semantics in order algebras.

70 Definition. Let P be a term and let ρ ∈ P(P) be a pre-trace of P . By Proposition 67, ρ is
identified with the set of its labels.

• The causal order in ρ is the partial order 6ρ on labels in ρ such that a 6ρ b if a = b or a
occurs before b in all interactions in ρ.

• The outcome of a pre-trace ρ is defined as ⌊ρ⌋ := s(P/ρ).

This presentation is much simpler to handle than explicit sets of runs, so this is the one we will
mainly use. Interactions that constitute a given pre-trace are simply the topological orderings of
this partially ordered set of transitions. Traces in our sense are a further quotient of pre-traces,
defined and studied in Section 4.3.

71 Proposition. Observational equivalence is a congruence.

Proof. Consider a family of equivalent processes (Pi ≃ Qi)16i6n, and let (αi)16i6n be a family
of actions on fresh locations κi. Let P =

∑n
i=1 αi.Pi and Q =

∑n
i=1 αi.Qi, we prove P ≃ Q.

Let R be an arbitrary process. The set R(P | R) can be split into n + 1 parts: the set R0 of
runs where no action αi is triggered and the sets Ri of runs in which αi is triggered, for each i.
Then for each run ρ ∈ Ri, there is a position ι such that {κi, ι} ∈ ρ. Let ρ1 be the partial run
{a | a ∈ ρ, a 6ρ {κi, ι}}, that is the minimal run that triggers αi; we have (P |R)/ρ1 = (νx)(Pi|R′)

28

commutativity P |Q ≃ Q | P S + T ≃ T + S
associativity (P |Q) |R ≃ P | (Q |R) (S + T) + U ≃ S + (T + U)
neutrality P | 1 ≃ P

scope commutation (νx)(νy)P ≃ (νy)(νx)P
scope extrusion (νx)(P |Q) ≃ P | (νx)Q with x /∈ fn(P)
scope neutrality (νx)λ ≃ λ

inaction (νu)uε(x).P ≃ 1
non-interference (νu)(u(x).P | ū(x).Q) ≃ (νux)(P |Q)

Table 2: Basic equivalences.

for some x and R′; let ρ2 = ρ \ ρ1, so that ρ2 is a run of Pi |R′ and (P |R)/ρ = (νx)(Pi |R′)/ρ2.
Let Si be the set of triples (ρ1, R

′, ρ2) for all ρ ∈ Ri. Obviously R(P | R) is in bijection with
R0 ⊎

⊎n
i=1 Si and

⌊P |R⌋ =
∑

ρ∈R0

s(R/ρ) +
n
∑

i=1

∑

(ρ1,R′,ρ2)∈Si

s((Pi | R′)/ρ2)

Now let Li = {(ρ1, R
′) | ∃ρ2, (ρ1, R

′, ρ2) ∈ Si}, and let (ρ1, R
′) ∈ Li. Since Ri contains all the

runs of P | R that trigger αi, it contains all the runs of Pi | R′ since Pi | R′ can be reached from
P | R, so we have {ρ2 | (ρ1, R

′, ρ2) ∈ Si} = R(Pi | R′), hence
∑

(ρ1,R′,ρ2)∈Si

s((Pi |R′)/ρ2) =
∑

(ρ1,R′)∈Li

∑

ρ2∈R(Pi|R′)

s((Pi | R′)/ρ) =
∑

(ρ1,R′)∈Li

⌊Pi | R′⌋

By hypothesis, for all R′ we have ⌊Pi |R′⌋ = ⌊Qi | R′⌋ so

⌊P | R⌋ =
∑

ρ∈R0

s(R/ρ) +
n
∑

i=1

∑

(ρ1,R′)∈Li

⌊Qi | R′⌋ = ⌊Q | R⌋

since the reasoning above equally applies to Q. Therefore we get P ≃ Q.
For parallel composition, let R and S be arbitrary terms. It is clear that (P | R) | S and

P | (R | S) have the same runs and that their reducts by a given run are the same up to the
same associativity, so for all run ρ we have s(((P | R) | S)/ρ) = s((P | (R | S))/ρ) and therefore
⌊(P |R) | S⌋ = ⌊P | (R | S)⌋. Similarly we get ⌊(Q |R) | S⌋ = ⌊Q | (R | S)⌋, and by hypothesis we
have P ≃ Q so ⌊P | (R | S)⌋ = ⌊Q | (R | S)⌋, from which we conclude.

The equality ⌊(νx)P | R⌋ = ⌊(νx)Q |R⌋ is justified by the fact that ⌊(νx)P |R⌋ and ⌊P | R⌋
are equal if the name x is fresh with respect to R.

72 Proposition. The equivalences of Table 2 hold.

Proof. For every equation A ≃ B in the list except non-interference, it is clear that for all term T
we have R(A|T) = R(B |T) and that the reducts by any run ρ differ in the same way. Since these
rules preserve states, in each case we get ⌊A | T ⌋ = ⌊A | T ⌋, hence the expected equivalence. For
the non-interference rule, remark that all runs of (νu)(uι(x).P |ūκ(x).Q)|R contain the transition
{ι, κ}, because of maximality and the fact that R cannot provide actions on u. The reduct by
this transition is (νux)(P |Q) | R, and its runs are those of the original term without {ι, κ}, so
it has the same outcome.

29

commutative monoid: P ⊕Q ≃ Q⊕ P (P ⊕Q) ⊕R ≃ P ⊕ (Q ⊕R) P ⊕ 0 ≃ P

scalar multiplication: 0 · P ≃ 0 1 · P ≃ P λ1λ2 · P ≃ λ1 · (λ2 · P)
(λ1 + λ2) · P ≃ (λ1 · P) ⊕ (λ2 · P) λ · (P ⊕Q) ≃ λ · P ⊕ λ ·Q

linearity of operators: P | (Q⊕R) ≃ (P |Q) ⊕ (P |R) P | (λ ·Q) ≃ λ · (P |Q)
(νx)(P ⊕Q) ≃ (νx)P ⊕ (νx)Q (νx)(λ · P) ≃ λ · (νx)P

Table 3: Module laws over processes.

Thanks to these properties, when considering processes up to observational equivalence, we
can consider parallel composition to be associative and commutative. In this case we use the
notation

∏

i∈I Pi to denote the parallel composition without interaction of the Pi in any order
(assuming only that I is finite).

In order to study processes up to observational equivalence, we will now describe some of
the structure of the space of equivalence classes. The first ingredient is to identify an additive
structure that represents pure non-determinism.

73 Proposition. Let ΠS be the set of equivalence classes of processes over the semiring of outcomes
S. For all terms P and Q and all outcome λ, define

P ⊕Q := (νu)((u.P | u.Q) | ū.1) where u is a fresh name,
λ · P := λ | P

Then (ΠS,⊕, 0, ·) is a S-module, parallel compositions are bilinear operators and hiding is linear,
i.e. the equivalences of Table 3 hold.

Proof. We first show that, for all terms P , Q and R, ⌊(P ⊕Q) | R⌋ = ⌊P | R⌋+⌊Q | R⌋. Consider
R((P⊕Q)|R) = R((νu)((uι1 .P |uι2.Q)|ūκ.1)|R). It is clear that any run contains an interaction
of ū.1 with either u.P or u.Q, since none of these may interact with anything else. We can thus
write R((P ⊕ Q) | R) = R1 ⊎ R2 where R1 is the set of runs that contain (ι1, κ) and R2 is the
set of runs that contain (ι2, κ). The runs in R1 are the runs of (νu)(uι1 .P | ū) | R and each of
these runs has the same outcome in both terms, so

∑

ρ∈R1

s
(

((P ⊕Q) |R)/ρ
)

= ⌊(νu)(uι1 .P | ū) | R⌋ = ⌊P | R⌋

by the non-interference rule of Table 2. By a similar argument, we get the same for R2 and
⌊Q | R⌋, so we finally get ⌊(P ⊕Q) | R⌋ = ⌊P |R⌋ + ⌊Q |R⌋. This equality and the fact that
(S,+, 0) is a commutative monoid implies that (ΠS,⊕, 0) is a commutative monoid (where 0 is
the atomic term with outcome 0).

For any terms P and Q and any outcome λ, it is clear that ⌊(λ | P) |Q⌋ = λ ⌊P |Q⌋, since
the term λ has no transition and contributes λ multiplicatively to all outcomes of the term. This
directly implies that the operation λ · P has all required properties.

For the bilinearity of compositions, using the equation ⌊(P ⊕Q) |R⌋ = ⌊P | R⌋ + ⌊Q | R⌋
and associativity and commutativity of parallel composition we get that parallel composition
distributes over ⊕, and the fact that 0 is absorbing is equivalent to the rule 0 · P ≃ 0. Linearity
of hiding is immediate from the scoping rules and the fact that ⌊(νx)P ⌋ = ⌊P ⌋ always holds.

Observe that all syntactic constructions induce linear constructions on equivalence classes,
except for the action prefix, which is not linear but actually affine. Indeed, for an action α,
the term α.0 is not equivalent to 0: it will be neutral in executions that do not trigger α, and

30

Linearity: α̂.(P ⊕Q) ≃ α̂.P ⊕ α̂.Q α̂.(λ · P) ≃ λ · α̂.P (νu)ûε(x).P ≃ 0

Asynchrony of inactions: α̂.(β.0 | P) ≃ β.0 | α̂.P if the subject of β is not bound by α

Composition of inactions:
∑

i∈I αi.0 |
∑

i∈J αi.0 ≃ 0 if αi = ᾱj for some i ∈ I, j ∈ J
∑

i∈I∪J αi.0 otherwise
α.0 + α.0 ≃ α.0

Table 4: Laws of linear actions and inactions.

multiply the outcome by 0 (thus annihilating it) in runs that do. It can be understood as a
statement “I could have performed α but I will not do it” so that any run that contradicts this
statement has outcome 0. The purely linear part of actions is the opposite: the linear action
α̂.P will act as α.P if its environment actually triggers the action, but will turn to 0 if it is never
activated.

74 Definition. For all action α and term P , the linear action of α on P is

α̂.P := (νw)(α.(P | w.1) | w.0 | w̄.1) where w is a fresh name.

An interaction is said to trigger the linear action if it triggers the action w.1. Terms of the form
α.0 are called inactions.

This definition has the expected behaviour because of the maximality of runs. If α̂.P is in
active position, then any run that does not trigger α must instead trigger w.0, hence any such
run has outcome 0. A run in which the term α̂.P does not produce 0 must activate α, so that
w.1 acts instead of w.0.

In this respect the action α̂ is linear, in the sense of a linear resource: it must be used exactly
once, otherwise the process must evolve to 0, as stated by the third equation of Table 4. As
proved below, it is also linear as an operator P 7→ α̂.P . These two features are deeply related:
internal choice and outcomes may commute with the action prefix only if we know for sure that
the prefix will eventually be used.

75 Proposition. For all families of actions (αi)i∈I and processes (Pi)i∈I ,
∑

i∈I

αi.Pi ≃
⊕

i∈I

α̂i.Pi ⊕
∑

i∈I

αi.0.

The function P 7→ α̂.P is linear and the equivalences of Table 4 hold.

Proof. For linearity, we use the fact that ⌊α̂.P |Q⌋ is the sum of the s((α̂.P | Q)/ρ) for the
runs ρ that actually trigger α (and the witness action w.1). If P = λ | P ′ for some λ ∈ S,
these runs are the same in α̂.(λ | P ′) | Q and α̂.P ′ | Q, but the outcomes are multiplied by λ
in the first case, so ⌊α̂.(λ | P ′) |Q⌋ = λ · ⌊α̂.P ′ |Q⌋ and α̂.(λ | P ′) ≃ λ | α̂.P ′. If P = P1 ⊕ P2,
the choice is eventually active in all relevant runs, so each of these runs triggers either P1 or
P2. We can thus establish a bijection between R(α̂.(P1 ⊕ P2) | Q) and the disjoint union of
R(α̂.P1 | Q) and R(α̂.P2 | Q). Since outcomes are preserved by this bijection, we finally get
⌊α̂.(P1 ⊕ P2) |Q⌋ = ⌊α̂.P1 |Q⌋ + ⌊α̂.P2 |Q⌋ and (P1 ⊕ P2) |Q ≃ (P1 |Q) ⊕ (P2 |Q).

The equivalence (νu)uε(x).P ≃ 0 can be deduced from previous equations:

(νu)ûε(x).P = (νuw)(uε(x).(P | w.1) | (w.0 | w̄.1))

≃ (νw)((νu)uε(x).(P | w.1) | (w.0 | w̄.1))

≃ (νw)(1 | (w.0 | w̄.1)) ≃ (νw)(w.0 | w̄.1) ≃ (νw)(0 | 1) ≃ 0

31

For the decomposition, let f and g be the functions from ΠS to S such that f(Q) =
⌊

(
∑

i∈I αi.Pi) |Q
⌋

and g(Q) =
⌊

(
⊕

i∈I α̂i.Pi ⊕
∑

i∈I αi.0) |Q
⌋

=
∑

i∈I gi(Q) + g0(Q), we prove
f = g. By previous remarks we have g(Q) =

∑

i∈I ⌊α̂i.Pi |Q⌋ +
⌊
∑

i∈I αi.0 |Q
⌋

. Given a term
Q, R((

∑

i∈I αi.Pi) |Q) decomposes into R0 for the runs that trigger none of the αi and a Ri for
all runs that trigger αi, for each i. Clearly, R0 contains the runs of

∑

i∈I αi.0 | Q that do not
trigger any αi, and all other runs of this term have outcome 0, so the sum of the outcomes of
runs in R0 is g0(Q). For each i, the runs of Ri are in bijection with runs of α̂i.Pi |Q that trigger
αi and they have the same outcomes, and all other runs of this term have outcome 0, so the sum
out the outcomes of these runs is gi(Q). As a consequence, we get the expected decomposition
f = g0 +

∑

i∈I gi.
For the equivalence α̂.(β.0 |P) ≃ β.0 | α̂.P , assuming the subject of β is not the bound name

of action α, let Q be an arbitrary term and consider R(α̂.(β.0 | P) | Q). Any run that does not
trigger α̂ or that triggers both α̂ and β has outcome 0, so the only relevant runs are those that
trigger α̂ but not β. Clearly these runs are the same as the runs of (β.0 | α̂.P) |Q that trigger α̂
and not β, and they have the same outcomes.

For the composition of inactions, the relevant runs of a term (
∑

i∈I αi.0 |
∑

i∈J α.0) | P are
those that do not trigger any of the αi, so the number of occurrences of each αi does not matter,
and the fact that they are in a branching or in parallel does not matter either, as long as the
branchings cannot interact. The only special case is when there are i ∈ I and j ∈ J such that
αi = ᾱj , then each run must trigger one branching or the other, if nothing else by letting αi and
αj interact. As a consequence, all runs of this term have outcome 0, so the composition of the
two branchings is indistinguishable from 0.

76 Definition. A term is simple if it is generated by the following grammar

simple term P,Q := 1, N, α̂.P, (P |Q), (νx)P
inaction set N :=

∑

i∈I αi.0

A pre-trace ρ ∈ P(P) is exhaustive if it triggers all linear actions and no inaction, and no sub-
term of P/ρ has the form Q | R with Q containing some α.0 and R containing ᾱ.0. The set of
such pre-traces is written Pe(P).

Simple terms have the property that the outcome of any run is either 1 or 0. More precisely,
it is easy to see that the outcome of a run is 1 if and only if it triggers all linear actions and no
inaction. The notion of exhaustive pre-trace is the correct extension of this notion to pre-traces,
indeed every run of a simple term P | Q with outcome 1 is made of an exhaustive pre-trace of
P and an exhaustive pre-trace of Q. The condition on P/ρ simply rules out interactions of P
that lead to a term P ′ where there are dual inactions that may interact, since that would imply
P ′ ≃ 0, as a generalization of the equation α.0 | ᾱ.0 ≃ 0. Observe that, by the decomposition of
Proposition 75 and the linearity of all constructions of simple terms, we immediately prove that
every term is equivalent to a linear combination of simple terms. As a consequence, two terms
P and Q are equivalent if and only if for all simple term R, ⌊P | R⌋ = ⌊Q | R⌋.

4.3 An order algebraic model

Thanks to the decomposition into simple terms, we are now ready to describe our order algebraic
semantics. Following the initial intuition, we define a web whose points are action occurrences,
with a group action that permutes actions of the same name and polarity while making sure that
bound names are properly updated. We need an extra bit of information to represent inactions,
and these will be represented as extra actions (somehow “potential” actions) with particular
treatment.

32

77 Definition. The set C of abstract channels is defined as C := N × (P × N)∗. We write u ·
ε1n1 · · · εknk instead of (u, ((ε1, n1), . . . , (εk, nk))).

The arena E for the πI-calculus is such that |E| = C×P × (N∪{⊥,⊤}) and GE is generated
by permutations of the form (x, ε, σ) ∈ C × P × S(N), acting as

(x, ε, σ)(y) =

{

x · εσ(n) · z if y = x · εn · z for some n ∈ N and z ∈ (P × N)∗

y otherwise

Abstract channels represent names in a way that allows us to avoid any renamings. Intuitively,
u (that is (u, ())) represents the free name u itself, u · εn represents the bound name x in the
action uεn(x), then u · εn · ε′n′ represents the bound name y in xε

′

n′(y), and so on. So an abstract
channel is the path to find a given name, free or bound. In a sense, this notion is an analogous
for names in πI-terms of De Bruijn indices.

We can assume, without loss of generality, that all names in processes we use respect this
intuition, so that we can mention any name without ambiguity and with no need of renaming.
Under this hypothesis, given a term P and a pre-trace ρ ∈ P(P), the term P/ρ is uniquely
defined, not up to renaming. Note however that P/ρ does not respect the intuition on free
names if bound names were revealed, i.e. if ρ contains a visible action. With this discipline on
names, we can assume without loss of generality that the set of free names N is finite.

Points in the web |E| are of two kinds. The first kind is x · εn for the occurrence of polarity
ε at location n of the name x. The second kind is x · ε⊥ or x · ε⊤ for the inaction of polarity ε
with name x; the use of ⊥ and ⊤ is a tool used to encode the behaviour of inactions, with the
convention that x · ε⊥ < x · ε⊤ if xε.0 is present, and the points are incomparable otherwise.

A permutation (x, ε, σ) permutes the locations of the actions of polarity ε of the name x
according to σ : N → N. By definition, the n-th occurrence of polarity ε of x, namely x · εn,
is renamed into x · εσ(n), the m-th occurrence of polarity η of the name bound by it, namely
x · εn · ηm, gets renamed as x · εσ(n) · ηm, i.e. its location is unchanged but its name is changed
to reflect the change of its binder, and so on for other bound names. The inactions at x · ε are
unchanged since x is unchanged, but those on names bound by x are renamed accordingly. A more
explicit (but equivalent) construction of the permutation group consists in setting GE := S(N)C

and defining the action of σ ∈ GE as

σ(u · ε1n1 · · · εknk) := u · ε1σ(u)(n1) · ε2σ(u · ε1n1)(n2) · · · εkσ(u · ε1n1 · · · εk−1nk−1)(nk)

except if nk ∈ {⊥,⊤} in which case the last pair remains as εknk.

78 Definition. A trace is a play t on the web E such that

• for all x · εn · ε′n′ ∈ |t|, x · εn ∈ |t| and x · εn <t x · εn · ε′n′,

• for all x ∈ N and all x = y · ε′n ∈ |t|, x · ε⊥ and x · ε⊤ are in |t|, and for all y ∈
|t| \ {x · ε⊥, x · ε⊤}, x · ε⊥ and x · ε⊤ are incomparable with y.

The first condition is a kind of “justification” condition in the style of game semantics [21].
It means that for an action x · εn ∈ |t|, if the subject x is a bound name, then its binder (the
action also named x) is also in |t| and it is inferior in the scheduling order, i.e. it was revealed
earlier. The second condition means that inactions information must be present for each known
name and that inactions are not involved in scheduling.

79 Definition. Let P be a simple term and let ρ be an exhaustive pre-trace of P . The trace induced
by ρ is the trace ρ∗ such that

33

• |ρ∗| = {x · εn | xε:n ∈ ρ} ∪ Nρ, where Nρ contains x · ε⊥ and x · ε⊤ for all polarity ε and
all name x such that x ∈ N or x = y · εn for some yε:n ∈ ρ,

• 6 is the causal order (as of Definition 70) restricted to visible transitions, augmented with
x · ε⊥ < x · ε⊤ for each xε.0 that occurs in P/ρ.

Note that the justification condition is satisfied by ρ∗, because in the πI-calculus the action
prefixes are synchronous: in an action u(x).P , the action u(x) that binds x is automatically a
prefix of all actions on x. However, synchrony is not necessary for this property to hold, the fact
that the name is bound is the important point: even if internal transitions can occur on a bound
name, visible transitions are possible only after the name has been revealed by the action it is
bound to.

80 Proposition. To each simple term P , associate the function JP K : S(E) → S such that for all
t ∈ S(E), JP K(t) := ♯{ρ ∈ Pe(P) | ρ∗ = t}. This function clearly has finite support, so JP K ∈
C(E). Let u 7→ ū be the linear map over C(E) that inverts polarities and exchanges ⊥ and ⊤.

Then for all simple terms P,Q, ⌊P |Q⌋ =
⌊

JP K ‖ JQK
⌋

.

Proof. By construction, if P and Q are simple terms, then so is P | Q, so all its runs have
outcome 0 or 1, thus ⌊P |Q⌋ is the number of non-zero runs of P |Q. Every run ρ ∈ R(P | Q)
can be uniquely decomposed as a pre-trace ρ1 ∈ P(P) and a pre-trace ρ2 ∈ P(Q). Moreover,
by definition of exhaustive pre-traces, if the outcome of ρ is 1 then ρ1 and ρ2 are exhaustive
pre-traces.

Now let ρ1 and ρ2 be any exhaustive pre-traces of P , we want to compute how many runs with
outcome 1 they generate. A run ρ ∈ R(P |Q) projects to ρ1 and ρ2 if and only if it establishes a
bijection from visible actions of ρ1 to dual visible actions of ρ2, such that scheduling constraints
are respected and no opposite inactions exist between ρ1 and ρ2. Formulated in traces, this
means a bijection ϕ : |ρ∗

1| → |ρ∗
2| such that:

• For all a = x ·εn ∈ |ρ∗
1|, ϕ(a) = y ·¬εm for some y and m (i.e. actions of opposite polarities

are matched), and if x ∈ |ρ∗
1| then y ∈ |ρ∗

2| and ϕ(x) = y. This means that an action on
a bound name must be matched with an action on another bound name and that these
names are revealed by actions that were matched together (this is a typical property of the
πI-calculus).

• The union of the orders ϕ(6ρ∗
1
) and 6ρ∗

2
is acyclic, which means that ϕ respects prefixing

constraints so that we get an actual execution path.

Such a bijection ϕ establishes an identification between names revealed in the interactions ρ1 and
ρ2, and the last thing to check is that under this bijection, there are no dual inactions between
ρ1 and ρ2. By construction, that there are such inactions if and only if for some name x in N

or |ρ∗
1| and polarity ε we have x · ε⊥ <ρ∗

1
x · ε⊤ and ϕ(x) · ¬ε⊤ <ρ∗

2
x · ¬ε⊥, which exactly

corresponds to a cycle in the union ϕ(6ρ∗
1
) ∪ 6ρ∗

2
.

It is routine to check that bijections that satisfy the above conditions are exactly the bijections
induced by elements of GE such that ϕ(ρ∗

1) ∗ ρ∗
2 = 1: the structure of GE is made to ensure that

the justification condition is satisfied, and the rest is ordering conditions. As a consequence, the
number we seek is exactly ρ∗

1 ‖ ρ∗
2. By summing this on all pairs of exhaustive pre-traces of P

and Q, we finally get ⌊P |Q⌋ =
⌊

JP K ‖ JQK
⌋

.

The translation function P 7→ JP K defined above applies to simple terms, but using the results
of Section 4.2 we can extend it to all terms by linear combinations. The decomposition of terms

34

as linear combinations of simple terms is not unique syntactically, however all decompositions
are observationally equivalent by definition, and it is easy to check that the traces induced by
all possible translations of a given term are the same, so the translation is actually a function
from terms to vectors in C(E). The space of linear combinations of plays C(E) is larger than
the set of translations of terms, so by Proposition 80 if translations of two terms P and Q are
observationally equivalent in the sense of order algebras then these terms are equivalent in the
sense of quantitative testing. Hence our final theorem:

81 Theorem. Two terms of the πI-calculus are observationally equivalent for quantitative testing
in a semiring S if and only if their translations in AS(E) are equal.

4.4 Consequences

The first consequence of this model is that Theorem 41 provides a basis for the set of processes
in two particular cases:

• If S is idempotent, then each term is equivalent to a linear combination of totally ordered
traces. It is the case when S represents standard may or must testing. Then we lose
the “quantitative” aspect since multiplicities are ignored, and we fall back to standard
semantics as a special case. We get full abstraction in this case by showing that any base
play can be implemented as a term of the calculus [5].

• If S is a regular ring, terms are combinations of weakly totally ordered traces. We can
get full abstraction again if we slightly extend the calculus to allow parallel composition
without interaction [6], this is needed only for the case of traces that contain concurrent
dual actions. Actually the only needed feature is a multiple prefix {α1, . . . , αk}.P , which is
enough to represent weakly ordered traces as terms. Simpler modifications of the calculus
could lead to full abstraction, for instance by imposing a more structured naming discipline.

Although we will not write the proofs here in full detail, the interpretation of processes is
compositional, and we can use the constructs of Section 3 to represent syntactic constructs as
operators on order algebras. Define the arena Ch of channel ends as |Ch| = (N × P)∗ × (N ∪ I)
with I = {⊥,⊤}, with permutations of the same kind as in E, then the definition of E from
Definition 77 reformulates as

E = (N × P) ⊲ Ch and Ch = I + ♯({∗} + P ⊲ Ch)

up to a simple isomorphism. These equations mean that a process appears as a family of channel
ends indexed by free names and polarities, and that a channel end contains inaction information
(the I part) and an arbitrary number of interchangeable occurrences (the ∗) each associated with
a new channel end per polarity (the P ⊲ Ch).

The explicit mention of the ♯ operator for the action occurrences allows us to use the γ and
δ operators from Definition 61 as a systematic way of treating the inherent non-determinism in
the multiple occurrences of each name. We can thus define parallel composition of vectors p | q
in the order algebra as follows:

• For each channel end x·ε in P , apply δ2 : A(♯Oc) → A(♯Oc+♯Oc), where Oc = {∗}+P ⊲Ch
is the arena for an action occurrence. This splits the occurrences of x · ε into those that
will interact with Q and those that will not. Extend this to Ch by keeping the inaction
part unchanged, and apply the same operator independently to each channel end, giving
an operator δ′ : A(E) → A(E + (N × P) ⊲ ♯Oc). The ♯Oc part contains actions that will
not interact.

35

may and must may testing must testing
· 0 1 ω
0 0 0 0
1 0 1 ω
ω 0 ω ω

+ 0 1 ω
0 0 1 ω
1 1 1 ω
ω ω ω ω

+ 0 1 ω
0 0 1 ω
1 1 1 1
ω ω 1 ω

Table 5: Observation semirings for may and must testing.

• Do the same for Q, and compose the result with the involution u 7→ ū from Proposition 80.

• Partially synchronize δ′(p) and δ′(q) on the E part, to represent the actual interaction for
the occurrences that must interact, which yields a vector u ∈ A(E + (N × P) ⊲ (♯Oc +
♯Oc)). This partial synchronisation handles the conditions on inactions the same way as
in Proposition 80.

• In the result, for each channel end x · ε in the E part, forget the actions on x · ε since
they have interacted, then normalise the inaction part by mapping any y · ε⊤ < y · ε⊥
to the reverse order (this is a linear operator since it acts on plays) and inverting again
the remaining part of Q to get back the original polarities on visible actions. Call n :
A(E + (N × P) ⊲ (♯Oc+ ♯Oc)) → A((N × P) ⊲ (I + ♯Oc+ ♯Oc)) this operator.

• Finally, contract the action occurrences on each channel end in the result with the operator
γ2 : A(♯Oc + ♯Oc) → A(♯Oc) applied on each channel end in N × P , which defines an
operator γ′ : A((N × P) ⊲ (I + ♯Oc+ ♯Oc)) → A(E).

With this definitions, we finally get p | q := γ′(n(δ′(p) ‖E δ
′(q))).

The other operators are easy to define. An outcome λ is translated as λ.∅, where ∅ is the
empty run. Branchings are decomposed as in Proposition 75, and the linear action is a linear
operator that consists in introducing in each play an extra point for the new action, minimal for
the scheduling order. Hiding a name x consists in mapping to 0 all plays that contain an action
on x and forgetting the inaction information on x.

By choosing appropriate structures for S, we can recover the standard may and must test-
ing [13]. In both cases we have S = {0, 1, ω}, where ω represents success. Table 5 shows the
rules for addition and multiplication for may and must. Using this definition it is clear that P
and Q are equivalent for may or must testing if and only if, for all R, ⌊P |R⌋ = ω if and only
if ⌊Q | R⌋ = ω. Taking for S the minimal semiring {0, 1} with 1 + 1 = 1 gives the framework
studied by the author in a previous work [5], which also leads to must testing semantics. In
these semirings, all elements are idempotent for addition, so by Theorem 41 the model we get is
actually interleaving.

References

[1] Samy Abbes and Albert Benveniste. True-concurrency probabilistic models: branch-
ing cells and distributed probabilities for event structures. Information and Computation,
204(2):231–274, 2006.

[2] Samson Abramsky, Radha Jagadeesan and Pasquale Malacaria. Full abstraction for
PCF. In International Symposium on Theoretical Aspects of Computer Science (TACS),
pages 1–15, 1994.

36

[3] Marianne Akian, Stéphane Gaubert and Alexander Guterman. Linear independence
over tropical semirings and beyond. In Grigorii Lazarevich Litvinov and Sergei N.
Sergeev, editors, Proceedings of the International Conference on Tropical and Idempo-
tent Mathematics, Contemporary Mathematics, volume 495, pages 1–38. AMS, 2009.

[4] Patrick Baillot, Vincent Danos, Thomas Ehrhard and Laurent Regnier. Believe it or
not, AJM’s games model is a model of classical linear logic. In LICS, pages 68–75, 1997.

[5] Emmanuel Beffara. An algebraic process calculus. In Proceedings of the twenty-third
annual IEEE symposium on logic in computer science (LICS), pages 130–141, 2008.

[6] Emmanuel Beffara. Quantitative testing semantics for non-interleaving. Technical re-
port hal-00397551, Institut de Mathématiques de Luminy, April 2009. Available online at
http://hal.archives-ouvertes.fr/hal-00397551/.

[7] Michele Boreale and Fabio Gadducci. Denotational testing semantics in coinductive
form. In Branislav Rovan and Peter Vojtáš, editors, Mathematical Foundations of Com-
puter Science 2003, Lecture Notes in Computer Science, volume 2747, pages 279–289.
Springer, 2003.

[8] Michele Boreale and Fabio Gadducci. Processes as formal power series: a coinductive
approach to denotational semantics. Theoretical Computer Science, 360:440–458, 2006.

[9] Gérard Boudol and Ilaria Castellani. A non-interleaving semantics for CCS based on
proved transitions. Fundamenta Informaticae, XI:433–453, 1988.

[10] Vincenzo Ciancia and Ugo Montanari. Symmetries, local names and dynamic (de)-
allocation of names. Information and Computation, 208(12):1349–1367, 2010.

[11] Silvia Crafa, Daniele Varacca and Nobuko Yoshida. Compositional event structure
semantics for the π-calculus. In Proceedings of the 18th international conference on concur-
rency theory (CONCUR), Lecture Notes in Computer Science, volume 4703, pages 317–332.
Springer, 2007.

[12] Philippe Darondeau and Pierpaolo Degano. Causal trees. In Giorgio Ausiello, Marian-
giola Dezani-Ciancaglini and Simonetta Della Rocca, editors, International Confer-
ence Automata, Languages and Programming, Lecture Notes in Computer Science, volume
372, pages 234–248. Springer, 1989.

[13] Rocco de Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

[14] Volker Diekert and Grzegorz Rozenberg. The Book of Traces. World Scientific Publishing
Co., Inc., River Edge, NJ, USA, 1995.

[15] Thomas Ehrhard and Olivier Laurent. Interpreting a finitary π-calculus in differential
interaction nets. In Luís Caires and Vasco T. Vasconcelos, editors, 18th International
Conference on Concurrency Theory (Concur), LNCS, volume 4703, pages 333–348. Springer,
September 2007.

[16] Thomas Ehrhard and Laurent Regnier. The differential λ-calculus. Theoretical Computer
Science, 309(1):1–41, 2003.

[17] Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theoretical Com-
puter Science, 364(2):166–195, 2006.

37

[18] Claudia Faggian and Mauro Piccolo. Partial orders, event structures and linear strategies.
In Typed Lambda Calculi and Applications, Lecture Notes in Computer Science, volume
5608, pages 95–111. Springer, 2009.

[19] Murdoch J. Gabbay. Foundations of nominal techniques: logic and semantics of variables
in abstract syntax. Bulletin of Symbolic Logic, 2011. In press.

[20] C. Anthony R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[21] J. Martin E. Hyland and Chih-Hao Luke Ong. On full abstraction for pcf (parts i, ii and
iii). Information and Computation, 163(2):285–408, 2000.

[22] Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, July 1978.

[23] Serge Lang. Algebra. Addison-Wesley, 1965.

[24] Jean-Louis Loday. Generalized bialgebras and triples of operads. Astérisque, 320, 2008.

[25] Paul-André Melliès and Samuel Mimram. From asynchronous games to concurrent games.
Submitted, September 2008.

[26] Robin Milner. Communication and concurrency. Prentice Hall, 1989.

[27] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge University
Press, may 1999.

[28] Ugo Montanari and Marco Pistore. Structured coalgebras and minimal HD-automata
for the π-calculus. Theoretical Computer Science, 340(3):539–576, 2005.

[29] Ernst-Rüdiger Olderog and C. Anthony R. Hoare. Specification-oriented semantics for
communicating processes. Acta Informatica, 23(1):9–66, 1986.

[30] Jean-Éric Pin. Tropical semirings. In Jeremy Gunawardena, editor, Idempotency (Bristol,
1994), Publications of the Newton Institute, volume 11, pages 50–69. Cambridge University
Press, 1994.

[31] Jan J. M. M. Rutten. Automata, power series, and coinduction: Taking input derivatives
seriously. In Jirí Wiedermann, Peter van Emde Boas and Mogens Nielsen, editors,
Internatioanl Conference on Automata, Languages and Programming (ICALP), Lecture
Notes in Computer Science, volume 1644, pages 707–707. Springer, 1999.

[32] Davide Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theoretical
Computer Science, 167(2):235–274, 1996.

[33] Sam Staton and Glynn Winskel. On the expressivity of symmetry in event structures.
In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS
2010, pages 392–401. IEEE Computer Society, 2010.

[34] Daniele Varacca, Hagen Völzer and Glynn Winskel. Probabilistic event structures and
domains. Theoretical Computer Science, 358(2–3):173–199, 2006.

[35] Glynn Winskel. Event structure semantics for CCS and related languages. In Proceedings
of the 9th international colloquium on automata, languages and programming (ICALP),
Lecture Notes in Computer Science, volume 140, pages 561–576. Springer, July 1982.

38

[36] Glynn Winskel. Event structures. In Advances in Petri nets: applications and relationships
to other models of concurrency, pages 325–392. Springer Verlag, 1987.

[37] Glynn Winskel. Event structures with symmetry. Electronic Notes in Theoretical Com-
puter Science, 172:611–652, 2007. Computation, Meaning, and Logic: Articles dedicated to
Gordon Plotkin.

39

	1 Introduction
	2 Order algebras
	2.1 Arenas and plays
	2.2 Linear combinations
	2.3 Bases

	3 Logical structure
	3.1 Products and linear maps
	3.2 Bialgebraic structure
	3.3 Towards differential linear logic

	4 Interpretation of process calculi
	4.1 Quantitative testing
	4.2 Decomposition of processes
	4.3 An order algebraic model
	4.4 Consequences

