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Disordered quantum gases under control

Laurent Sanchez-Palencia ! and Maciej Lewenstein ?

When attempting to understand the role of disorder in condensed-matte r physics, one faces severe experimental
and theoretical difficulties and many questions are still open. Two of the most challenging ones, which have been
debated for decades, concern the effect of disorder on supercon ductivity and quantum magnetism. Recent progress

in ultracold atomic gases paves the way towards realization of ver satile quantum simulators which will be useful

to solve these questions. In addition, ultracold gases offer origi nal situations and viewpoints, which open new
perspectives to the field of disordered systems.

Phase coherence and interferencffeets underlie many dimensional Al**45.

basic phenomena in mesoscopic physics, for instance prjmg facie, the discovery of this ‘Holy Grail’ might mean the

electronic  conductiohy magnetist, - superfluidity and g of 4 quest. On the contrary, it is just a beginning as tizeey
superconductivity, or the propagation of light and sound waves 'Beriments of refs. 44, 45 open unprecedented paths to ponsng
inhomogeneous mediaBoth also play central roles in high-precisiory tanding challenges in the field of disordered systenigecDex-
devices such as interferometers, accelerometers andogp®s In yonsions include studies of metal-insulator transitionslimensions
this respect, an important issue concems theces of disorder, i.e. of |5 ger than one, and of thefect of weak interactions on localiza-
small random impurities, which cannot be completely awdittereal- o tor which many questions are debated. For strongerastions,
life systems. A p_r|0r|, one may expect that we_ak dlsordegjmlg_/ single-particle localization is usually destroyed, buvrm®ncepts such
affects most physical systems and that averaging over thedéiSob,q yany-hody Anderson localizatfrt® and Bose glad&? provide
smoothens possibleffects. One may also expect that, in quantuiginal paradigms, which renew our understanding of thsees.
systems, the spatial extension of wavefunctions leadsein @eaker gyneriments on ultracold atoms with controlled disorded @on-
effects, via a kind O,f self-averaging. In fact, thesg naive sd.r'emn trolled interactions can also be extended to other systehesendis-
out to be wrong. Disorder often leads to subtle situation®/ich ey plays important roles. For instance, combining spithange
strong dfects survive averaging over the disoftién particular in the o mentatiof® and disorder opens the route towards random

quantum world. One of the most celebrated examples is Aoderﬁeld-induced ordé?55 and spin glassé&®?. These few examples il-
localizatior? (AL). It is now understood that AL results from interfery strate all the promises of an emerging field, i.e. quantaseg in

ence of the many paths associated to coherent multipleesicatfrom
random impurities, yielding wavefunctions with exponafyi decay-
ing tails and absence offlisiorf. This strongly contrasts with the
Drude-Boltzmann theory of classical transport, which presdhat in-
coherent scattering inducedfdisiort.

controlled disorder. In this paper, we review theoretiaad @xper-
imental progress in this area and discuss perspectivesatbahow
within our grasp.

o o o The nature of Anderson localization
Anderson. localization was first introduced for r?on-lr)tem?g: Localization, as introduced by P.W. Anderson in 1958, isctiyr
quantum particles to explain the absence of electronic wcti@h in speaking a single-particlefecf. Consider the wavefunction(r) of
& free particle of mass and energyE, in ad-dimensional quenched

alized later that it is actually ubiquitous in wave physSjgsaving the isorjered potentiaV (r), which is solution of the Schrodinger equa-

way for the first observations of AL, using classical waveg, kght in

tion
diffusive medi&® and photonic crystals®, microwaved' and sound
waved?. In condensed-matter physics, AL is now considered a fun- 2y2
damental phenomenon underlying certain metal-insulagsttions, By(r) = () + V(Ou(r). )

but complete theory of disordered solids should incorgo@aulomb
interaction, the underlying crystal structure, interagtiith phonons,
and magneticfects. Unfortunately, understanding the physics of ev
the simplest models including all ingredients poses sedifieulties
and many issues are still unsolved or even controversiak mbst
challenging ones concern the interplay of disorder and-ipaticle
interactions, and spin-exchange couplings.

While in free spacey(r) is an extended plane wave, it can be shown
%orousl)ﬁovslthat, in the presence of disorder, any solution with arbi-
trary E is exponentially localized in 1D, i.e. lg{(2)]) ~ 12/Lioc, With
localization lengthLoc(E) o< g, wherelg is the transport (Boltzmann)
mean-free path. Eventhoudl,. often increases witk, it is striking
that interference féects of multiply scattered waves is strong enough
Surprisingly enough, atomic physicdfers new approaches toto profoundly d@ect(z), even for very high energies. In 2D, the
these issues. The field of ultracold atoms has been deveglogpidly situation is similaf?, but interference féects are weaker, anld,. o«
in the past decades, making it possible to produce, proberamd Iz expirklg/2) wherek = vV2mE/# would be the particle wavevector
nipulate Bos&'* and Fermi® 1 gases with unprecedented versatiin free space. Hencde, increases exponentially fér> 1/1g, induc-
ity, tunability and measurement possibilities (Box 1). @ohin ing a crossover from extended to localized states in finite-systems.
these systems is now such that ultracold atoms can realiae- gqurhe situation diers dramatically in 3D where a proper phase tran-
tum simulators™*, i.e. platforms to investigate various fundamentaiition occurs at the so-called mobility edggo,: While low-energy
modeld®?2 Landmark results have already been obtained, e.g. sbates withk < kqop are exponentially localized, those wikh> Kiop
servation of Mott insulatofé-25 Tonks-Girardeai®?’, Berezinskii- are extended. The exact features of the mobility edge araawrk
Kosterlitz-Thoules® physics, and magnetic-like exchaf&. In- but approximately captured by theflle-Regel criteriof?, which ba-
vestigation of Bose-Einstein condensates (BECs) in desed sically states that localization requires the coherendenve contain
potential§'*2 has also emerged in a quest for direct signatures of Akeveral scattering processes. In other words, coherensesunyvive
of matter-waves. Joint theoretié&®® and experimental fiorts’*3  on longer distances than the memory of the initial parti¢teation,
made it possible and two groups succeeded recently in dhgesme- thus yieldingknon ~ 1/1g.

Laboratoire Charles Fabry de I'Institut d’Optique, CNRS and Univ. Paris-Sud, Campus Polytechnique, RD 128, F-91127 Palaiseau cedex,
France; 2ICREA-Instituci6 Catalana de Recerca i Estudis Avancats and ICFO-Institut de Ciéncies Fotoniques, Parc Mediterrani de la Tecnologia,
E-08860 Castelldefels (Barcelona)
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Direct observation of Anderson localization of matter-
waves
Observing AL of matter-waves requires several challengiogdi-
tions. First, one must use weak-enough disorder so thaténémce
effects at the origin of AL dominate over classical trapping @ p
tential minima. Second, one must eliminate all perturlvetisuch
as time-dependent fluctuations of the medium, or interigarinter-
actions. Finally, one must demonstrate exponential Ipatibn, not
only suppression of transport as it can also arise from iclalssap-
ping. While these conditions are very demanding in condinsatter
physics, they can be accurately fulfilled with ultracoldrasy using
i) controlled disorder, ii) negligible interactions, iigtrong isolation
from the environment, and iv) direct imaging of atomic dgngiro-
files. This way, direct signatures of AL of non-interactingtter-
waves were reported in refs. 44,45. As we shall see, thesetwo
periments are complementary rather than similar becaesestbnifi-
cantly difer as regards both observation scheme and class of disor¢
In ref. 44, a weakly interacting BEC is created in a trap, Whi
abruptly switched f§ at timet = 0. Then, the condensate expands ir
a guide and in the presence of disorder (Iﬁg. 1la), creatdu apiti-
cal speckle (Box 2). This physics is captured by the GrotmeR$kii
equation
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which corresponds to Box 1 Hamiltonian (1) in meanfield regyiffihe
dynamics of the BEC can be understood in a two-stage scliefhe
First, it is dominated by interactions and the BEC expandsate 1
ing a coherent wavefunction with a stationary momentunridistion, L
D(K) o 1 - (k&)?, whereé = 7/ A[4mu is the initial healing length, 1
which measures the initial interaction strength Second, once the
expansion has strongly lowered the atomic denigiy)?, the inter-
action term vanishes and we are left with a superpositioralofi@st)
non.interacting wavedy, the popu|ati0n of each |§(k) Then each Figure 1 | Experimental observation of Anderson localization of mat-
¥ eventually localizes by interacting with the disorderedeptial, tenNayes with Bose-Einstein condensates. a) Exp_erimen?s o} f Institut
so that INEx@)l) ~ 12/Lec(K), and the total BEC density reduceg’Opnque (coutesy of V. Josse and P. Bouyer): An interacting BEC expands

a

103536 Nagc(2) ~ fdk D(k)(lu,[/k(z)|2>. Direct imaging of the localized in a tight 1D guide (in red) in the presence of a speckle potential (in blue).
matter-wave reveals exponentially decaying f4jiith a localization
length equal to that of a non-interacting particle wkte 1/¢ (Inset of
Fig. ﬂa). Hence, this experiment corresponds to a ‘trangotieme’,
which probes AL of non-interacting particles with a waveeecon-
trolled by the initial interaction, vig.

The expansion stops in less than 500ms and the density profile of the con-
densate is directly imaged (shown in orange-green; from the data of ref. 44).
The column density, plotted in semi-logarithmic scale in the inset, shows a
clear exponential decay characteristic of Anderson localization. The localiza-
tion length Loc, extracted by fitting an exponential exp(-2|z|/Lioc) to the exper-
imental profiles**, shows a good agreement with theoretical calculations3> 36,
b) Experiments of LENS (adapted from ref. 45 with permission of the au-

lr,] contrqst, the eXp_e“mem of ref. ,45 uses to,a static Sﬁhenkhors): A non-interacting BEC is created in a combination of a harmonic trap
The interactions are switchedf@lready in the trap via Feshbach ressng a 1D bichromatic lattice. The plot shows the exponent  of a fit of a

onances, so that the gas is created in a superposition of@figieally  function exp(-|(x — X)/I|*) to the tails of the condensate at equilibrium in the

1 to 3) low-energy, single-particle eigenstates. They abssquently combined potential, versus the ratio of the disorder strength (A) to the site-to-

imagedin situ, revealing exponentially decaying tails (F[b 1b). It jgite tunnelling rate (J). The onset of localization corresponds to the crossover

worth noting that ref. 45 uses a 1D quasi-periodic, incomsueate to @ — 1lfor A/J > 9. The inset shows a plot of the density profile of the
. .. ' , h ith the fit for A/J = 15.

lattice (Box 2), thus realizing the celebrated Aubry-Aadnoded* % condensate together with the fit for A/J = 15

H=- Z J(aa +hc)+ Z Acos(Bj + ¢) &3, 3)
Cly j in 3D. It is however known that it is not fully exact. Theredoa ma-
i.e. Box 1 Eq. (2) withU = 0, V; = Acos(Z] + ¢), andg an irra- jor challenge for disordered, ultracold atoms is to extdretorks of

tional number. Diferently from the case of truly disordered potentialé,efs' 44,45 to tw8 ™ and thre€ dimensions. Definitely, observing

there is a metal-insulator transition (mobility edge) in, Mihich is
theoretically expected at/J = 2.

the 3D mobility edge would be a landmark result, which maynsti
ulate further theoretical developments and drive new agpres by

These works open new horizons to further deepen our knoR[©Viding precise measurements of the mobility ellgg and the cor-
edge of AL in various directions. In 1D, although all statee a'®SPonding critical exponents, which are unknown.
localized, subtle @ects arise in correlated disorder, for instance in

speckle potentiaf8. To lowest order in the disorder amplitudé; =
V(V(2)?), the Lyapunov exponenf(k) = 1/Lc(k), can be calculated
analytically’® and one findsy(k) o« (V(2K)V(-2K))/K?, enlightening
the role of coherent second-order back-scatteriig> —k — +Kk,
in the localization process. Since the power spectrum afldpgo-
tentials has a cutfbkc, such thatC,(2k) = (V(2k)V(-2k)) = 0 for
k > ke (Box 2), one finds an abrupt changeféetive mobility edge)
in the k-dependence of for weak disorde¥’-®% While y(K) ~ V2 for
k < ke, higher-order scattering processes dominatekfor ke and
7(K) ~ V4.

In dimensions higher than one, the self-consistent thedry
localizatior?® allows one to calculatk,. and exhibits a mobility edge

Interactions versus Anderson localization
Another outstanding challenge is to understand how intierss dfect
localization, a question that has proved puzzling from tréest times

of AL73, and which is still debated. Common belief is that even weak

interactions destoy localization. férent approaches however provide
apparently contradicting answers irffdrent transport schemes. For
instance, recent numerical calculatiéh® suggest that for expand-
ing BECs, repulsive interactions destroy AL beyond a giveesh-
old. Conversely, other recent restftgredict that localization should
persist even in the presence of interactions. Finally, amgmission
axperiments (which amount to throw a mono-kinetic wavepatk a
disordered region and measure transmission), pertuebediculations



Box 1 | Ultracold quantum gases.

Creating and manipulating ultracold gases

Ultracold quantum gases are dilute atomic systems thatcmied down to temperatures of the order of a few tens of nagloihs and
confined in immaterial traps using combinations of magnatid optic field" 6. Owing to strong dilution, the prominent inter-particle
interactions are two-body interactions while many-bodgiactions can often be ignored. At ultra-low temperatusesave scattering
dominates and the interaction is accurately described byngact pseudo-potenttdl’®. In the general case of mixtures of atoms in
different species (or flerent internal states), the physics is thus governed by #meiltbnian

A 2y2 A ’ A ~ A A
A= [arto|-Go +vu| 0 + 3% (o onobobo o

otoud

where¥, andm, are the field operator and the mass of an atom of speci€khe first integral in Box 1 Eg. (1) represents the single-
particle Hamiltonian where the potentidl(r) is controlled by the configuration of the magnetic amadptic fields (Box 1 Fig 1a). In
most cases, it is nearly a harmonic taff (V,(x,y,2) = 2 teixy) m(,a):‘;’{gz/Z), the anisotropy of which can be adjusted in experiments.
For instance, making it strongly anisotropiffers the possibility to produce o7 or two-*® dimensional gases. Another useful
possibility is to create a guide for the atoms using a styofigtused laser bea?f. The second integral in Box 1 Eq. (1) represents
the interaction operator whetg - is the coupling constant for interacting atoms of same fiedint speciesy,,» > 0 andg,.,» < 0
correspond to repulsive and attractive interactions,getbgely). Interestingly, the value and the signygf can be controlled in quantum
gases using Feshbach resonaffces

Optical lattices

Considering dierent limits of Hamiltonian (1) allows one to design varioagdels initially introduced in the context of condensedisra
physics, but here in a controlled way. One important exangdleat of optical lattices, which are produced from therif@ence pattern

of several laser beart’%s?2 The matter-light interaction creates a periodic potémitzose geometry and amplitude are determined by the
laser configuration and intensity. Both can be controlledxperiments. For instance, using pairs of counter-prapagéaser beams
(Box 1 Fig 1b), the lattice potential reatf§"(x, y,2) = V2 ¥ x5 COS(ZL (), whereV? is the lattice depth ank|. the laser wavevector.

In deep lattices, the atoms get trapped at the periodieatyrged minima of the lattice potential (so-called latSites). They can jump
from site to site via quantum tunnelling (with a rallg and two atoms interact only in the same site (with an enefgyThis physics is
governed by the Hubbard Hamiltonian, i.e. the discreteiorraf Hamiltonian (1):

H=-> 0 (8 & +hc) + > V.8 4, + % DU - (g St @)
(i 0. ]

o0,

where the sum ovefj,|) covers all siteg and their nearest-neighbour silesindd,.; is the annihilation operator of an atom in sjte
Hence, ultracold atoms (bosons or fermions) in opticaldast mimic the Hubbard model, which is widely considered andensed-
matter physics, for instance to capture the essential phiydielectrons in solids. However, in contrast to condemsatier systems,
Hamiltonian (2) can be shown to be exact in the limit of deéfickes, low temperature and low interactiéhsThe parameters,, V..
andU,..; in Box 1 Eq. (2) can be calculateab initio from the potentiaV,(r) — V,(r) + V/a%(r) and the coupling constagt,, in
Box 1 Eg. (1) and are thus controllable in experiments.

a)

quantum
degenerat

thermal laser

magnetic
coils waveguide

atoms

potential

Box 1 Figure 1| Confining ultracold atoms in magnetic and optic traps. a) Hamonic trapping and laser waveguide(coutesy of

V. Josse and P. Bouyer). Magnetic coils create a nearly hamt@apping potential at the bottom of which a degenerantum gas,
surrounded by a cloud of thermal atoms, is formed. A focussdrlbeam which creates an almost one-dimensional waeegualso
representedd) Optical lattice. The interference pattern of pairs of counter-propagatsgi beams form a periodic potential (represented
here in two dimensions). The atoms are trapped in the latiies, but they can tunnel from site to site with a tunnelfiaig J and interact
when placed in the same site with an eneldgy

and numerical results indicate that repulsive interastidecrease the ments with interacting condensates are particularly psorgito ad-
localization length before completely destroying locatian’’. Since dress this question.

anon-linear term is naturally present in BECs (see last &1y, ﬂ)),_ A different approach to the interplay of interactions and local-
and can be controlled via Feshbach resondficésansport experi- jzation consists in considering a Bose gas at equilibriuna id-
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Figure 2 | Effect of interactions in disordered Bose and Fermi gases.
The gas is described using the single-particle (non-interacting) states |y, ). In
the presence of disorder, these states, which are localized and distributed
around in a given volume, are represented by the spheres (in red when they
are populated). Bose gas: For non-interacting bosons (top, central panel),
the ground state, |yo), only is populated. Then, attractive interactions (top,
left panel) tend to contract this state, thus favoring localization. Conversely,
repulsive interactions (top, right panel) work against localization by populating
more and more |y, ) states. Fermigas: In the absence of interactions, a gas of
N fermions populates the N lowest-energy |y, ) states (bottom, central panel).
Then, each state tends to extend under the action of attractive interactions
as for maximizing the overlap between different populated |y, ) states (bottom,
left panel). Conversely, for repulsive interactions, they tend to minimize their
mutual overlap, then favoring localization (bottom, right panel).

dimensional box of volume& in the presence of interactions and di
order (Fig.|R). For vanishing interactions and zero tentpeea all

bosons populate the single-particle ground stigtp, Very weak at-
tractive interactions are expected to favor localizatigrcbntracting
the Bose gas, but also induce instabilities for moderateraations,

pretty much like for trapped BEES Conversely, weak to moder-

ate repulsive interactions do noffect much the stability, but work
against localization, by populating an increasing numkfesingle-

particle statesy,
lowest-energy states. Since they are strongly bound inlaveenergy
modulations of the potential, their mutual overlap is smdlhe gas
then forms a Fock statéf) « [T,(b})\"|0), whereb! is the creation

operator in statgy,). The populatiorN, of each is determined by the

competition between single-particle energyand interaction within

each statéy,). This results in the characteristic equation of State
Ng = f” de Do (€)(u—€)P(e), whereDq(€) is the density of states and

P, = 1/ [dr |y, (r)* is the participation volume df,). This state is
an insulator with finite compressibilitg, = dN/du, and can thus be

refered to as a Bose gld8sC. It attains particularly interesting fea-

tures in disordered potentials bounded below (i.e. Wié1) > Vnin
everywhere), for which Lifshits has shofrthat the relevant single-
particle states are determined by large-scale modulatibrike po-
tential. Since they are exponentially far apart, the dgnsitstate
is exponentially smallDq(e) ~ exp [-c(e — Vimin) ¥?]. As one can
see, the equation of state is determined by both the denk#tate

%

vant states are not the single-particle eigenstates, buifarollective
nature. For interacting BECs, they are Bogolyubov quasigiest.
One then finds that, although the ground state is extendedBadh
golyubov quasiparticles are localiZéd®®2 Their localization prop-
erties however dier from those of Schrodinger particles, owing to
a strong screening of disord®r In 1D, the Lyapunov exponent of
a Bogolyubov quasiparticle read$k) = [S(K)]?y(K), wherey(K) is
the single-particle Lyapunov exponent afitk) = 2(k&)?/(1 + 2(k£)?)

is the screening function. One thus finds that in the phongmre
(k < 1/¢), the screening is strong ailigk) < y(k). Conversely, in the
free-particle regimel(>> 1/£), the screening vanishes ank) ~ y(k).
Hence, surprisingly, localization can survive in the preseof strong
mean-field interactions. This poses new challenges tocaliizatoms:
Not only direct observation of many-body AL, but also poksimnse-
guences on quantum coherence, sound-wave propagatiorrorah
ization process.

Fermi systems and ‘dirty’ superconductors
Consider now a Fermi gas, and focus again on the ground state p
erties (Fig.l]z). In the absence of interactions, the gaN érmions
populates theN lowest single-particle states. For low density, short-
range interactions do not play a significant role as the @ipdistates
are spatially separated. However, for large-enough dertbiey do
overlap. Then, for repulsive interactions, each populatate tends to
contract to minimize its overlap with other populated statieus favor-
ing localization. Conversely, for attractive interacsoihe populated
states tend to extend to maximize their overlap, thus fagodelocal-
ization. Hence strikingly, interactions have oppositesaguences for
fermions and bosons.

Perhaps even more fascinating is the possibility to studyy'd
Fermi liquids. Experiments with two-component Fermi gages.
Li or “°K), with interactions controlled by Feshbach resonances,
have already significantly advanced our understandingeo$thcalled
BEC-BCS crossovér 6. On the attractive side of the resonance and
for weak interactions, the Fermi superfluid is well desdtiliy the
Bardeen-Schriger-Cooper (BCS) theory and formation of spatially
extended Cooper pairs consisting of two fermions of oppasjtins
and momenta. On the repulsive side, pairs of fermions foreohic

). Weak interactions populate significantly only thénolecules, which undergo Bose-Einstein condensatiomo@gh dis-

order should not significantlyfiect pairing, BCS superfluidity and
BEC superfluidity are expected to readfeiently to disordéf-84. The
famous Anderson theoréfindicates that disorder should nafect
very much the BCS superfluid owing to the long-range and aperl
ping nature of the Cooper pairs. Conversely, disorder sheerfiously
affect the molecular BEC, enhancing phase fluctuations.

Strongly-correlated gases in disordered lattices

Strong interactions are also very important in various rdisted sys-
tems, e.g. superfluids in porous media or ‘dirty’ supercahohs.

Metal-insulator transitions attain a particularly intsieg, but not
fully understood character in lattice systems. In this eespthe Bose-
Hubbard model,

H o= -> 3(&a+hc)+ > Vvaa+ %Z Uaaaa (4)
b i ]

Da(e) and the localization vi&@(e) in the Lifshits tail, which leads Us j5 central in condensed-matter phy&fc& for it forms a tractable
to name this state the Lifshits-Anderson gfdss$n the opposite limit model, which captures the elementary physics of strongbrating
of strong interactions, there are very many populdfel which thus - gystems. Hamiltoniar[4) describes bosons, in a lattick inttomo-
overlap, and the above description breaks down. In turng@isorms  geneous on-site energi¥s, which can tunnel between the sites, with
an extended, connected (quasi-)BEC of dens{ty = [u - V(r)]/9, rateJ, and interact when placed in the same site, with interaaion
which is well described in meanfield appro&thThis state is a su- ergyU. Interestingly, this model contains the most fundamental t
perfluid. Finally, the intermediate region interpolatesween the phenomena underlying metal-insulator transitions. Thayespond
Lifshits-Anderson glass and the BEC regime. Then, the Basesgp- g the Anderson transitiéif in the absence of interactions (& 0) as
arates in fragmented, forming a compressible insulatos€Bgiass). giscussed above, and to the Mott transitfin the absence of disor-
The chara_cteristic features of the fragments can then l@asd in o, (V = 0). In systems dominated by repulsive interactions, dgnsit
the meanfield framewofk fluctuations, which are energetically costy, are suppressaad a Mott
The above description is consistent with the idea that eveakw insulator (M) state[¥y ) « [T; (a})“|o>, is formed. Then, the number
interactions destroy single-particle localization. Imlerto gain fur- of bosons per siten = [u/U + 1], where [] represents the integer part,
ther insight, it is worth noting that in interacting systentise rele- is determined and phase coherence between the latticesaitehes.



Box 2 | Creating controlled disordered potentials.

In atomic gases, disorder can be created in a controlled Way.instance, the so-called speckle potentials are forrsefolmws .

A coherent laser beam isftfiacted through a ground-glass plate and focused by a cangelens (Box 2 Fig. 1a). The ground-glass
plate transmits the laser light without altering the intgnsut imprinting a random phase profile on the emergingtligThen, the
complex electric fieldS(r) on the focal plane results from the coherent superpost@fomany waves with equally-distributed random
phases, and is thus a Gaussian random process. In such fidighttoms with a resonance slightly detuned with respethé laser
light experience a disordered potenti&l) which, up to a shift introduced to ensure that the statistiwerageV) of V(r) vanishes, is
proportional to the light intensity/(r) o« £(&(r)|? — (&%), an example of which in shown in Box 2 Fig. 1b. Hence, the lafvsptics
allows us to precisely determine all statistical propsrtiéspeckle potentials. First, although the electric &g is a complex Gaussian
random process, the disordered potenfi@l) is not Gaussian itself, and its single-point probabilitstdbution is a truncated, exponential
decaying functionP (V(r)) = e VeIt expV(r)/Vr)® (V(r)/Vr + 1), where y(V2) = |Vg| is the disorder amplitude ar@ is the
Heaviside function. Both modulus and sign\¢f can be controlled experimentally The modulus is proportional to the incident laser
intensity while the sign is determined by the detuning ofl&ser relative to the atomic resonant& (s positive for ‘blue-detuned’ laser
light3%:38.41.44 and negative for ‘red-detuned’ laser light®“). Second, the two-point correlation function of the disetl potential,
Co(r) = (V(r)V(0)), is determined by the overall shape of the ground-glase platt not by the details of its asperitiés It is thus also
controllable experimental®y. There is however a fundamental constraint: Since spedtknfials result from interference between light
waves of wavelengti, coming from a finite-size aperture of angular width (Box 2 Fig. 1a) they do not contain Fourier components
beyond a valuek, wherekc = (2r/14.) sin(@). In other wordsC,(2k) = 0 for |k| > ke.

Speckle potentials can be used directly to investigaterdmesport of matter-waves in disordered potentiaté They can also be
superimposed to deep optical lattiedn the latter case, the physics is described by Box 1 Hanidto(2) withV,.; a random variable
whose statistical properties are determined by those dffibekle potential. In particulav,.; is non-symmetric and correlated from site
to site. Yet another possibility to create disorder in degtical lattices is to superimpose a shallow optical lattigih an incommensurate
period® 434587 |n this caseV,; = A cos(2B]j + ¢), whereA and¢ are determined by the amplitude and the phase of the secttice la
andp = ky/k, is the (irrational) ratio of the wavevectors of the two le¢s. Although the quantity,.; is deterministic, it mimics disorder
in finite-size systent$:348%.%0 |n contrast to speckle potentials, these bichromatiickdtform a pseudo-random potential, which is
bounded [/ | < A) and symmetrically distributed.

a)

converging

lens ,
incident A/ - potential
laser ] o cut-off

2k,

ground
glass plate

random focal plane

phases

Box 2 Figure 1| Optical speckle potentials. a)Optical configurationb) Two-dimensional representation of a speckle potential.

Mis are insulating, incompressible, and gapped as the ficstagion voted to understand these results, using quantum Monte®and
corresponds to transfer one atom from a given site to anottiéch Density Matrix Renormalization Gro@htechniques. The results of
costs the finite energy. At the other extreme, when tunneling domref. 89 suggest that, in the conditions of ref. 87, one sheuioect

inates, the bosons form a superfluid stég) « (Zj é})N |0y, with @ complex phase diagram with competing regions of gappedyin

normal density fluctuations and perfect coherence betwesfattice Pressible band-insulator, and compressible Bose glaseph@learly,
sites. This state is gapless and compressible. novel and more precise detection schemes are needed tctehza

this kind of physics, such as direct measurements of corsiitity>*

In the presence of disorder, a glassy phase is formed, whichar condensate fraction in superfluid, or coexisting supieréund Ml
terpolates between Lifshits-Anderson glass for weak autigons, to phases. The latter has been approached experimentallyf.i8&e
Bose glass for strong interacticfs The latter can be representedavhere disorder-induced suppression of the condensatéofrac a lat-
as|¥eg) o [I; (é})”i |0y with n; = [(« — V;)/U + 1]. This phase is tice with super-imposed speckle was observed.
thus insulating but compressible and gapless since thendretate One can also investigate the corresponding Fermi coumtsrpa
is quasi-degenerated, like in many other glassy systefds With with ultracold atoms. These systems are particularly @sténg as
the possibility of realizing experimentally systems ekadescribed they would mimic superconductors, even better than bostmshis
by Hubbard models (Box1), ultracold atoms in optical lasiaffer respect, an outstanding challenge is definitely to undedstegh-Tc
also here unprecedented opportunities to investigat@Hyisics in de- superconductors, and possibly importaffeets of disorder in these
tail, and to directly observe the Bose glass, which has neh lp@s- systems. Consider the two-component € {7, |}) Fermi-Hubbard
sible in any system so far. Two experimental groups have niaele Hamiltonian
first steps in this directictt The experiment of ref. 87 applied a

bichromatic, incommensurate lattice to 1D Mott insulatolrscreas- H = - Z Jr (é;jé@ + h-C-) + vaj éfr,jé(r,j (5)
ing disorder, a broadening of Mott resonances was obsesuegiest- i o
ing vanishing of the gap and transition to an insulatingestaith a At at a8 &
g g gap g I
J

flat density of excitations. Intensive theoretical studiese been de-



For weak interactions, we have a Fermi liquid similar to diatussed
above. For strong interactions and low temperattirg, U, the Fermi
gas enters a Ml state, pretty much like for bosons, but witingle
(n = 1) fermion per site (eithet or |). Evidence of vanishing double
occupancy and incompressibility have been reported riycarfEermi
MIs?425 Then, in the presence of disorder, various phases could
searched for, such as Fermi glasses. At even lower tempesagpin
exchange starts to play a role, and a transition from paraetagto
antiferromagnetic insulator phases is predictedfpr 4J2/U in non-
disordered systerfs Interestingly, the interplay of interactions and
disorder might lead to appearance of novel ‘metallic’ pkasetween
the Fermi glass and the MI. Hence, dynamical mean-field yiéat
half-filling predicts that disorder tends to stabilize paegnetic and
antiferromagnetic metallic phases for weak interactioRsr strong
interactions however, only the paramagnetic AndersontMstlator
(for strong disorder) and antiferromagnetic insulator (feak disor-
der) phases survive.

Simulating disordered spin systems . _ _
In condensed-matter physics, other important paradigmetsazhere Figure 3 | The spin glass problem.  An assembly of spins located at the

disorder induces subtleffects are spin systems, described by tHEdes of a cubic Iattlcg interacts acc_ordmg to Hamiltonian (| .where the ex-
Hamiltonian change term Jj; only is randomly distributed, and can be either ferromag-

netic (blue bonds) or anti-ferromagnetic (red bonds). The ground state of the
system corresponds to the spin configuration that minimizes the total energy.

H=-> (98-8 + 3,818+ 382 8) - >'h;-§;, (6)
Gy i

with either random spin exchangd,, or random magnetic fieldy;.

Ultracold gases can also simulate this class of systenheah not as
straightforwardly as for Hubbard models. Consider a twoygonent
(Bose-Bose or Fermi-Bose) ultracold gas in an opticaldaftas de-
scribed by Box 1 Hamiltonian (2). In the strongly-correthtegime,

The inherent complexity of spin glasses results from frustration which appears
when the topography of ferromagnetic and anti-ferromagnetic bonds make im-
possible to fulfil the local constraints all together. In some plaquetes of four
sites, local minimization is easy, for instance when all bonds are ferromagnetic
(left disk) or anti-ferromagnetic (central disk). In some others, it leads to frus-
tration, for instance for odd numbers of ferromagnetic and anti-ferromagnetic
bonds (right disk). In the latter case, at least one spin is frustrated, that is its
spin orientation is not unique. Hence, frustration is at the origin of a manifold of
metastable states which corresponds to configurations with similar energies.

the couplings between the particles can be understood &samrge-
mediated interactions between composite (bosonic or erit) par-
ticles. One can then map Box 1 Hamiltonian (2) onto Hamihor@)
with fictitious spins encoded in combinations of the anaiidn and | order to break the continuous symmetry, one uses a Raman co
creation operators of the composite particléix = (Aj + A))/2, pling with constant phase, but random strength. In lattigstesns,
Sjy = (Aj - A))/2i, andS;, = 1/2 — ATA, which indeed have com- RFIO shows up but is limited by finite-sizéfects, even in very large
mutation relations of spifisand complicated but analytical functionaBystems’. In this respect, ultracold atomser an alternative and fruit-
dependence df;; andh; on the parameters of Box 1 Hamiltonian (2)ful route. Indeed, RFIO turns out to be particularijigent in two (or
In the presence of disorder, these parameters are r&htddend one multi-) component BECs in meanfield regime, where the en&ngy-
can reach various limiting cases corresponding to Fernsisglguan- tional read\E = dr n[(7?/4m)(V6)?+7Q(r) cos@)], with nthe atomic
tum spin glass and quantum percolatfon density andi(r) = 61(r) — 6x(r), the phase dierence between the two
Particularly promising is the possibility of simulating isp BECs. This is the continuous counterpart of the 2D-XY modéken,
glasse¥ (Fig_B), for which only the exchange terdy,, is randomly RFIO manifests itself as a fixefr) = + n/2, and thus allows to con-
distributed. The phase diagram of (even classical) spissgks which trol the relative phase between the comporntdhis is a striking
is not known vyet, is an outstanding challenge in condensaiiem example where ultracold atoms can be used not only to sigualas-
physics. The nature of spin glasses is still debated anak tbeist Sic models, but alsofter new and fruitful viewpoints to fundamental
competing theories: The Parisi replica symmetry breaRiagd the issues.
Nelson-Huse droplet mod®d| Ultracold atoms might contribute to the
resolution of this issue, not only on the classical leveldlsb on the Further directions
quantum level since theyffer original ways of performing quenchedAs the reader has probably noticed, we both are very enttisia
averages. Importantly with a view towards testing the ogptheory, about the future development of the field of disordered quargases,
overlap between two spin configurations between two (or jmeq@i- and probably would like that any interesting direction carporsued.
cas can be measured directly by preparing a pair of 2D lattidth the Limited size of the present review has not allowed us to disthem
same realization of disord&r Quenched averages for systems with ball, but let us briefly mention another.
nary disorder can also be simulated by replacing the clalssisorder Two-component (Bose-Bose or Bose-Fermi) mixtureraan al-
variables by quantum/2-spins, and preparing them in a superpositidlernative method to create disorder in optical latticeanels by
staté?, guenching one component in random sites, so as to form a mackd)
Yet another fascinating possibility is to simulate varieaadom of randomly-distributed impuriti$°. Theoretical analysis using
field-induced order (RFIO) phenomena in systems with cootis Gutzwiller method confirms the appearance of incompress$idland
symmetry, such as BECs or XY-spin models witlil) symmetry, or partially compressible Bose glass phdéedhe idea of freezing the
Heisenberg models witBU(2) symmetry*>°. A prototype modéP, motion of the second species to form random impurities ¢lassical
is the 2D-XY version of Hamiltonianfe) with fixed exchangg disorder) can be generalized to freezing of any quanture®$tan this
but random fieldch;. In the absence of disorder, symmetry leads tase the system does not involve any classical disordenedwatrthe-
strong fluctuations, which suppress long-range order,rdowpto the less localization occurs owing to quantum fluctuations i fitozen
Mermin-Wagner-Hohenberg theorem. Disorder distributed sym- state of the second species.
metric way suppresses ordering even more. Surprisinghekierydis- One can even relax the freezing condition and consider say tw
order that breaks symmetry might actually favor orderinigisThodel bosonic species, one of which tunnels much slower than ther,ot
can be implemented within Bose-Bose mixtdfe§ where random forming a quasi-static disorder. In a large region of paranse(for re-
uniaxialh;j can be implemented using two internal states of the samdsive inter-species forces), the ground state correfsptnfull phase

atom, coupled via a random Raman field)(r)¥.(r)"¥2(r) + h.c.



segregation. In practice it is marked by a large number ofstable 27.

states in which microscopic phase separation occurs, reeeint of

emulsions in immiscible fluid. Such quantum emulsions are pre-28-

dicted to have very similar properties to the Bose glass eghis.

compressibility and absence of superfluidity. Such quiiesor even og.

time-dependent disordeiffects have been suggested to underlie the
quite large shift of the SF-MI transition in Bose-Fetffi!®*and Bose-

Bosé% mixtures. This issue was quite controversial and the mest r&-

cent work suggests that, while indeed the fermions tenddalitee the
bosons for attractive boson-fermion interactions, higdleich bands
play a significant ro3-195
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