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Numerical analysis of nodal sets for eigenvalues of

Aharonov-Bohm Hamiltonians on the square

and application to minimal partitions

V. Bonnaillie-Noël∗ and B. Helffer†

October 29, 2009

Abstract

Using the double covering approach introduced by B. Helffer, M. and T. Hoffmann-
Ostenhof and M. Owen and further developed for questions of isospectrality by the
authors in collaboration with T. Hoffmann-Ostenhof, we analyze the variation of the
eigenvalues of the one pole Aharonov-Bohm Hamiltonian on the square and the nodal
picture of the associated eigenfunctions as a function of the pole. This leads us to
discover new candidates for minimal k-partitions of the square with a specific topolog-
ical type. This illustrates also recent results of B. Noris and S. Terracini. This finally
supports or disproves conjectures for the minimal 3 and 5-partitions on the square.

1 Introduction

The recent papers [12] and [3] have shown the strong links between the analysis of nodal
sets of some eigenfunctions of Aharonov-Bohm Hamiltonians and the question of minimal
partitions. In connection with recent papers of B. Noris and S. Terracini [18, 19], we
analyze the dependence of the nodal picture of the eigenvalues of the Aharonov-Bohm
Hamiltonian on the square as a function of the pole and propose new candidates for
minimal k-partitions of a specific topological type for the square.

1.1 Aharonov-Bohm Hamiltonian

Let us recall some definitions and results about the Aharonov-Bohm Hamiltonian (for
short ABX-Hamiltonian) with a singularity at X introduced in [3, 10] and motivated by
the work of Berger-Rubinstein [2]. We denote by X = (x0, y0) the coordinates of the pole
and consider the magnetic potential with flux Φ = 1/2 :

AX(x, y) = (AX
1 (x, y), AX

2 (x, y)) =
1

2

(

−
y − y0

r2
,
x − x0

r2

)

. (1.1)
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We know that the magnetic field vanishes identically in Ω̇X . The ABX-Hamiltonian is
defined by considering the Friedrichs extension starting from C∞

0 (Ω̇X) and the associated
differential operator is

−∆AX := (Dx − AX
1 )2 + (Dy − AX

2 )2 , (1.2)

with Dx = −i∂x and Dy = −i∂y.

This operator is preserving the KX -real functions in the following sense. We say that
a function u is KX -real, if it satisfies KXu = u, where KX is the antilinear operator

KX = eiθX Γ ,

with (x − x0) + i(y − y0) =
√

|x − x0|2 + |y − y0|2 eiθX , and where Γ is the complex
conjugation operator Γu = ū.

Then −∆AX preserves KX -real functions and we can consider a basis of KX -real
eigenfunctions. Hence we only analyze the restriction of the ABX-Hamiltonian to the
KX -real space L2

KX
where

L2
KX

(Ω̇X) = {u ∈ L2(Ω̇X) , KX u = u } .

When no ambiguity exists, we omit sometimes the reference to X and write more simply
θ, K, L2

K , −∆A.

1.2 Minimal partitions

For a given partition D of an open set Ω by k disjoint open subsets Di, we consider

Λ(D) = max
i=1,...,k

λ(Di) , (1.3)

where λ(Di) is the groundstate energy of the Dirichlet Laplacian on Di . We denote the
infimum of Λ over all k-partitions of Ω by

Lk(Ω) = inf
D∈Ok

Λ(D) . (1.4)

We look for minimal k-partitions, that are partitions D = (D1, . . . , Dk), such that

Lk(Ω) = Λ(D) .

We recall that these minimal k-partitions, whose existence was proven in [6, 8, 7], share
with nodal domains many properties of regularity, except that the number of half-lines
meeting (with equal angle) at critical points of their boundary set can be odd [12]. Here
by critical points we mean points which are at the intersection of at least three ∂Di’s.

1.3 Main goals

In [4], we have combined results of [12] and [13] with efficient numerical computations to
exhibit some candidates to be minimal 3-partitions for the square, the disk, . . . . This
approach was based on an assumption of symmetry permitting the reduction to a more
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standard spectral analysis and consequently only gave symmetric candidates. Using two
different symmetries of the square, we get the surprise of finding two candidates D1 and
D2 with Λ(D1) = Λ(D2) (≃ 66.581) and give numerical evidence that the critical point
for these partitions is at the center of the square. These candidates are represented in
Figure 1. This leads naturally to questions of isospectrality which were solved using the

Figure 1: Two candidates with different symmetries for the minimal 3-partition of the
square.

ABX-Hamiltonians in [3] with X = C, the center of the square. It was also sketched
there an alternative proof using the construction of a double covering of the punctured
square; this approach seems more adequate for performing the numerical analysis because
of possible numerical difficulties in treating the singularities due to the Aharonov-Bohm
potential and the fact that the eigenfunctions would have been complex-valued. This kind
of arguments also appears in a similar context in [16] and [15].
We will push this numerical analysis with several goals:

• Illustrate the fact that these two symmetric candidates for minimal 3-partitions
on the square belong actually to a continuous family of non necessarily symmetric
candidates (see Figure 2 and Figure 9).

Figure 2: An asymmetric candidate for the minimal 3-partition of the square.

• Check, by moving the pole X of the ABX-Hamiltonian, the conjecture that the
singular point of the minimal 3-partition is at the center.

• Understand and illustrate the mechanism of deformation of the nodal set, and hence
extend or guess, in connection with recent papers of B. Noris and S. Terracini [18, 19],
some of the properties described in Berger-Rubinstein [2] and Helffer–M.-and-T.
Hoffmann-Ostenhof–Owen [10] for the ground state energy (see also [1]).
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1.4 Organization of the paper

In Section 2, we explain how we implement the computations on the double covering of the
punctured square. In Section 3, we apply Courant’s theory for comparing the Aharonov-
Bohm eigenvalues associated to this puncturing to the eigenvalues of the square.

Section 4 analyzes the dependence of the eigenfunctions of the Dirichlet Laplacian on
the puncturing point appearing in the construction of the double covering.

Sections 5, 6 are more specifically devoted to the analysis of the behavior of the nodal
sets and eigenvalues when the poles belong respectively to the perpendicular bisector
y = 1

2 , the diagonal y = x, which correspond to cases when some symmetry of the square
is respected in the puncturing. We treat also the case of the axis y = 1

4 + x
2 as an example

of a generic situation.

Section 7 describes the possible applications of our analysis of nodal sets to the research
of minimal partitions with a given topological type.

Acknowledgements.
The authors would like to thank Thomas Hoffmann-Ostenhof, Luc Hillairet and Susanna
Terracini for useful discussions around this topics. We have been in particular stimulated
by successive versions of [18]. Discussions about numerics with François Alouges and
Grégory Vial were very fruitful. G. Vial helps us also by realizing numerous meshes for
the computations and also for the detection of the nodal lines.
This paper has been partially written during the stay of the authors at the Erwin Schrödinger
Institute from May to July 2009 and the authors are grateful for the very good working
conditions and also for the fruitful discussions with other participants of the workshop on
Topics in Spectral Theory.

2 Numerical implementation

The ABX-Hamiltonian has a singularity at the pole X and the eigenfunctions are complex-
valued. For these reasons, we prefer to deal with the Dirichlet Laplacian on the double-
covering Ω̇R

X whose eigenfunctions are real-valued. Some of these eigenfunctions, which
will be described below, are directly related with the KX -real eigenfunctions of the ABX-
Hamiltonian.

The numerical results were realized by using the Finite Element Library Mélina (see
[17]). The computations consist only of the determination of the eigenfunctions of a
Dirichlet Laplacian. Nevertheless, since we are interested in the nodal lines of these eigen-
functions, computations have to be quite accurate and we choose the package Mélina

permitting the implementation of high order elements. In our computations, we use for
the approximation polynomials of degree 6 in each triangle of the discretization.

The main point of the numerical part consists in meshing the double covering Ω̇R
X of

the punctured domain Ω \ {X}. To do this, we use the two-dimensional mesh generator
Triangle (see [20]). Let us explain in more details how we proceed.
Let Ω be the square [0 , 1] × [0 , 1] and X be a point in [0 , 1

2 ] × [0 , 1
2 ]. We start with

meshing the Ω so that (see Fig. 3):

• the segment joining (0, 0) to the pole X does not go through any element of the
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mesh,

• the segment [(0, 0);X] is the union of edges of an even number of triangles,

• the pole X is the vertex of some triangles.

Figure 3: Mesh of the double covering Ω̇R
X .

This first mesh is essentially done for the first sheet and we repeat this mesh for the second
sheet. To obtain a mesh of the double covering Ω̇R

X , we have to exchange the vertex along
the segment [(0, 0);X] between the first and second sheet: we choose an orientation and
we decide, for example to exchange the vertices between the first and second sheet of the
triangles which are at the left of the segment. Then we remove the point X of the second
sheet by equaling it to the vertex X of the first sheet.

In this paper X is an element of the lattice of the first quarter of the square [0 , 1
2 ] ×

[0 , 1
2 ] with step size 1

100 .

Theoretically, the eigenvalues and eigenfunctions depend only on the pole and are inde-
pendent of the cut chosen for our construction. The introduction of the segment [(0, 0);X]
is only a technical point and we have verified that the numerical computations of the
eigenfunctions and eigenvalues are (with a rather good accuracy ∼ 10−3) independent of
the choice of the line joining the pole to the boundary, that is the line between the first and
second sheet. This is illustrated in Table 1 where we give the first fourteen eigenvalues of
the Dirichlet Laplacian on the double covering of the square Ω̇R

C realized with two different
cutting lines: the half-diagonal and the half-perpendicular bisector.
Many computations are available on the web page (see [5]):

http://w3.bretagne.ens-cachan.fr/math/simulations/MinimalPartitions

The eigenvalues given all along this paper provide from our computations with an approx-
imation at 5 · 10−4 of the computed eigenvalues.

We observe that the eigenvalues of the square are numerically computed with a good
accuracy whereas it is more difficult to be accurate for the ABX-eigenvalues, particularly
in the case of multiplicity 2. In the following, we use a P

6 approximation with at least
6000 elements.

To detect the nodal lines, we use a program realized by G. Vial. The idea is that it is
very easy to compute the zero set of linear functions. In our case, we deal with a function
which is piecewise P

k and given by a finite element method. We know the values of this
function at some points. As soon as we have these values, we can replace this function by
a new function which is piecewise linear. For this, we introduce some new points by an
interpolation method. Then we detect the zero set of this new function.
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# elements 3110 4410 6194 3102 4362 6254

1 19.739 19.739 19.739 19.739 19.739 19.739
2 33.518 33.509 33.510 33.517 33.511 33.510
3 33.521 33.512 33.512 33.519 33.514 33.510
4 49.348 49.348 49.348 49.348 49.348 49.348
5 49.348 49.348 49.348 49.348 49.348 49.348
6 66.581 66.581 66.581 66.581 66.581 66.581
7 66.581 66.581 66.581 66.581 66.581 66.581
8 78.957 78.957 78.957 78.957 78.957 78.957
9 98.696 98.696 98.696 98.696 98.696 98.696

10 98.696 98.696 98.696 98.696 98.696 98.696
11 111.910 111.910 111.910 111.910 111.910 111.910
12 111.910 111.910 111.910 111.910 111.910 111.910
13 122.231 122.209 122.210 122.229 122.212 122.209
14 122.240 122.215 122.217 122.235 122.220 122.211

Table 1: Eigenvalues of the Dirichlet Laplacian on Ω̇R
C for two meshes.

3 A few theoretical comparison theorems

3.1 Notation

We denote by Ω the square [0 , 1]× [0 , 1] and by C = (1
2 , 1

2) the center of the square. We

compute the eigenfunctions of the Laplacian on the double covering Ω̇R
X of Ω̇X = Ω \ {X}.

By a symmetry argument, it is enough to consider X = (x0, y0) in the quarter square
[0 , 1

2 ] × [0 , 1
2 ].

There are two ways of labelling the eigenvalues.

We can label it in the standard way and this is the way we get the eigenvalues in our
numerical program. With this in mind, we denote by λk(Ω̇

R
X) the k-th eigenvalue of the

Dirichlet Laplacian on Ω̇R
X .

We can also take account of the symmetry relative to the deck map DR
X associating to

a given point in the covering the distinct point with same projection by the covering map
πR

X of Ω̇R
X onto Ω̇X . This splits the spectrum into two independent spectra relative to two

orthogonal spaces in the L2 space of our covering square.
The eigenvalues correspond

• either to eigenfunctions lifted from the eigenfunctions (of the Dirichlet Laplacian)1

on the square by the covering map (sometimes called DR
X -symmetric because they

are symmetric with respect to the deck map),

1We sometimes speak more shortly of spectrum of the square.
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• or to eigenfunctions which are DR
X -antisymmetric with respect to the deck map.

We also call the second ones ABX-eigenvalues because they can be seen as eigenvalues of
an AB-Hamiltonian with a pole X creating a (renormalized) flux equal to 1

2 . We shortly
write ABX-Hamiltonian, if we want to make explicit the reference to the pole. We de-
note by λABX

k = λAB

k (Ω̇X) = λAS
k (Ω̇R

X) the k-th eigenvalue of the AB-Hamiltonian with
pole at X. We denote by λS

k (Ω̇R
X) = λk(Ω) the k-th eigenvalue corresponding to the DR

X -
symmetric eigenvalues.

We will also observe that, when puncturing on the perpendicular bisectors or the
diagonals of the square, additional symmetries will be important for explaining effective
crossings of eigenvalues.

3.2 Eigenvalues of the square

The eigenvalues of the square are well known and given by the double sequence π2(m2+n2)
with m ∈ N \ {0}, n ∈ N \ {0}, with corresponding basis of eigenfunctions given by

Ω ∋ (x, y) 7→ φmn(x, y) := sin(mπx) sin(nπy) .

Labelling the eigenvalues in increasing order leads to the sequence denoted by λk(Ω) , k ∈
N
∗. Table 2 gives the first thirteen eigenvalues and the nodal set of the associated eigen-

functions belonging to the above basis. The second, fifth, seventh, ninth and twelfth
eigenvalues are double and consequently, it is also natural to look at the nodal sets of
linear combinations in order to determine all the possible nodal configurations associated
with this eigenvalue.

Eigenvalues of the square (m, n)-labelling Nodal sets for φmn

λ1(Ω) = 2π2 ≃ 19.739 (1, 1)

λ2(Ω) = λ3(Ω) = 5π2 ≃ 49.348 (2, 1) , (1, 2)

λ4(Ω) = 8π2 ≃ 78.957 (2, 2)

λ5(Ω) = λ6(Ω) = 10π2 ≃ 98.696 (3, 1) , (1, 3)

λ7(Ω) = λ8(Ω) = 13π2 ≃ 128.305 (3, 2) , (2, 3)

λ9(Ω) = λ10(Ω) = 17π2 ≃ 167.783 (4, 1) , (1, 4)

λ11(Ω) = 18π2 ≃ 177.653 (3, 3)

λ12(Ω) = λ13(Ω) = 20π2 ≃ 197.392 (4, 2) , (2, 4)

Table 2: First thirteen eigenvalues of the Dirichlet Laplacian on Ω and nodal set for the
associated basis φmn.

We notice that the DR
X -symmetric spectrum of the Dirichlet Laplacian on the double

covering Ω̇R
X is the spectrum of the square and is independent of the pole. This is a

consequence of the fact that the spectra of the Dirichlet Laplacian in Ω and Ω̇X are the
same, the puncturing point being of capacity 0. So it is more the ABX-spectrum which
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is of interest because depending on the position of the pole. Nevertheless, the standard
labelling of all the eigenvalues on Ω̇R

X can play a role when applying Courant’s theorem.
Of course we have λ1(Ω̇

R
X) = λ1(Ω).

3.3 Theoretical estimates of the eigenvalues

This subsection is concerned with the comparison between the spectrum on the square, the
spectrum on the double covering Ω̇R

X and the ABX-spectrum. We propose some equalities
and upper-bounds between the eigenvalues essentially based on the minimax principle and
on the Courant’s nodal theorem which is recalled now.

Theorem 3.1
Let k ≥ 1, λk(Ω) be the k-th eigenvalue for the Dirichlet Laplacian on Ω. Then the number
of nodal domains of any associated eigenfunction is bounded from above by k.

We would also apply this theorem for the KX -real eigenfunctions of the ABX-Hamiltonian
on Ω̇X . Equivalently, this corresponds to a Courant nodal theorem for the DR

X -antisymme-
tric eigenfunctions on Ω̇R

X , already discussed in [3]. Combination of the Courant nodal
theorem and Max-Min principle for the ABX-Hamiltonian leads to the following propo-
sition.

Proposition 3.2
Let X ∈ [0, 1

2 ] × [0, 1
2 ], then

λ1(Ω) = λ1(Ω̇
R
X) , λABX

1 = λ2(Ω̇
R
X) , λABX

2 = λ3(Ω̇
R
X) , (3.1)

and

λABX
2 < λ2(Ω) = λℓ2(Ω̇

R
X) with ℓ2 ≥ 4 (with multiplicity at least 2) , (3.2)

λABX
3 ≤ λ4(Ω) = λℓ4(Ω̇

R
X) with ℓ4 ≥ 7 , (3.3)

λ5(Ω) = λℓ5(Ω̇
R
X) with ℓ5 ≥ 8, (3.4)

λABX
5 ≤ λ7(Ω) = λℓ7(Ω̇

R
X) with ℓ7 ≥ 12 , (3.5)

λ9(Ω) = λℓ9(Ω̇
R
X) with ℓ9 ≥ 14 , (3.6)

λABX
8 ≤ λ11(Ω) = λℓ11(Ω̇

R
X) with ℓ11 ≥ 19 . (3.7)

If X belongs to the perpendicular bisectors of the square, we have more accurately:

ℓ4 = ℓ4(X) ≥ 8 , (3.8)

λABX
6 ≤ λ7(Ω) . (3.9)

Remark 3.3
The multiplicity of λℓ(Ω) as eigenvalue of the Dirichlet Laplacian on Ω̇R

X is of course
larger or equal to its multiplicity on Ω. This could permit to improve some inequalities
above when we can find for a given pole an eigenfunction u of the Dirichlet Laplacian on
Ω vanishing at the pole. The number of nodal domains of the lifted symmetric function on
the covering is then two times the number µ(u) of nodal domains of u instead of 2µ(u)−1.
To find this eigenfunction could be easier when the eigenspace is of higher dimension. This
appears for example for λ2(Ω).
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Proof : Let us first prove (3.2). We first observe that, for any X ∈ [0 , 1
2 ]×[0 , 1

2 ], there
exists an eigenfunction uX of the Dirichlet Laplacian associated with λ2(Ω) and uX(X) =
0. We have just to look for uX of the form uX = αφ1,2+βφ2,1 with (α, β) 6= (0, 0) satisfying
αφ1,2(X) + βφ2,1(X) = 0 . By lifting on Ω̇R

X , this gives a DR
X -symmetric eigenfunction

uX ◦ πR
X on Ω̇R

X with four nodal domains and associated with λ2(Ω). Hence by Courant’s
theorem, λ2(Ω) = λℓ2(Ω̇

R
X) with ℓ2 ≥ 4. To establish the first inequality in (3.2), we

consider the functions max(uX , 0) and max(−uX , 0), which span a two-dimensional space
in the form domain of the ABX-Hamiltonian for which the energy is less than λ2(Ω).
We can conclude by the minimax principle. It is easy to see that the inequality is strict.
Hence at this stage we also get (3.1).

Let us now prove (3.3). Using the three functions obtained by restriction to one
nodal domain of the function φ2,2 (then extended by 0) which does not contain X, we
obtain a 3-dimensional space of functions in the form domain of the ABX-Hamiltonian
for which the energy is less than λ4(Ω) (or a 4-dimension space if X is on the perpendicular
bisector to the side of the square because we can in this case get a 4-dimensional space,
see Remark 3.3). We then conclude by the minimax principle. The relation with λℓ4(Ω̇

R
X)

is an application of the Courant’s nodal theorem using the function φ2,2 ◦ πR
X .

Relation (3.4) is a consequence of (3.3).

For (3.5), we can this time use the function φ3,2 which has at least 5 nodal domains
not containing X. For X on the perpendicular bisector, we get (3.9).

The function φ4,1 has at least 3 nodal domains not containing X. Using (3.5) and the
multiplicity of λ9(Ω), we obtain (3.6).

Using the function φ3,3 which has at least 8 nodal domains not containing X, we deduce
(3.7).

The lower bound for ℓ7, ℓ9 and ℓ11 results immediately of the upper bounds of λABX
5

by λ7(Ω) (hence by λ9(Ω)) and of λABX
8 by λ11(Ω) established in (3.5) and (3.7). ✷

Lemma 3.4
The nodal set of the second KX-real eigenfunction uABX

2 consists of one line joining the
pole X to the boundary.

Proof :
We know from [10] that a piecewise regular line in the nodal set should join the pole X to
the boundary. Another piece in the nodal set should necessary create an additional nodal
domain which will lead to λ2 ≤ λABX

2 in contradiction to (3.2). ✷

Let X = (x, y) ∈ [0 , 1
2 ]× [0 , 1

2 ], we denote X̃ = (x
2 , y

2 ). Using a dilation argument, we
can establish in complement of (3.3), that

λABX
4 ≤ 4λABX

1 .

The property that λABX
1 ≥ λ1(Ω) is of course a particular case of the diamagnetic

inequality. We will observe on the pictures that the situation is much more complicate for
the excited states. Except in the case of additional symmetries where some monotonicity
will be proven, we have no theoretical results.
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Remark 3.5
We will see in Figures 18, 22 and 26, that the upper-bounds (3.2), (3.3) and (3.5) in
Proposition 3.2 for the ABX-eigenvalues are optimal in the sense that we can find a pole
such that the upper-bound is false with a smaller eigenvalue of the square.

4 Behavior of the eigenvalues on the double covering of the

punctured square, when moving the pole

In this section, we start to discuss the influence of the location of the puncturing point X
(or pole) on the topological structure of the nodal set of the first eigenfunctions.

4.1 Behavior when the pole tends to the boundary

It has been announced by B. Noris and S. Terracini [18, 19] that the k-th ABX-eigenvalue
of the punctured square tends to the k-th eigenvalue of the Dirichlet Laplacian on the
square as the pole tends to the boundary (see also [14] for connected results). They also
establish in [18] the continuity with respect to a pole and prove that X 7→ λABX

k is of
class C1 if λABX

k is simple. Because after a translation by X, we get a fixed operator
with moving regular boundary and fixed pole at (0, 0), the regularity is actually easy.
These results are illustrated in Figures 4–14 which represent the eigenvalues λk(Ω̇

R
X),

k = 2, 3, 6, 7, 8, 9, 11, 12, 13, according to the location of the pole X ∈ P and Table 3 which
gives the first 12 eigenvalues of the Dirichlet Laplacian on Ω̇R

X for three points X: one
near the boundary denoted by A, one at the center denoted by C and one other denoted
by B.

n λn(Ω̇R
A ) λn(Ω̇R

B ) λn(Ω̇R
C )

1 19.739 19.739 19.739
2 19.739 20.269 33.528
3 49.348 49.325 33.534
4 49.348 49.348 49.348
5 49.348 49.348 49.348
6 49.348 51.480 66.581
7 78.957 78.957 66.581
8 78.957 79.536 78.957
9 98.696 98.658 98.696
10 98.696 98.696 98.696
11 98.696 98.696 111.910
12 98.696 102.647 111.910

A

B

C

Table 3: First 12 eigenvalues of the Dirichlet Laplacian on Ω̇R
A , Ω̇R

B and Ω̇R
C , with

A = ( 1
100 , 1

100), B = ( 1
10 , 2

5), C = (1
2 , 1

2).
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4.2 Eigenvalues 2 and 3

We observe numerically, see Figure 4, that for X ∈ P, the function X 7→ λ2(Ω̇
R
X) has a

global maximum, denoted by λmax
2 for X = C and is minimal when X belongs to the

boundary x = 0 or y = 0. This minimum equals λ2(Ω). Moreover we do not observe
other critical points in P. Looking at Figure 5, we observe numerically that the function
X 7→ λ3(Ω̇

R
X) behaves conversely : it has a global minimum, denoted by λmin

3 , for X = C
and the maximum is reached at the boundary x = 0 or y = 0 and equals λ3(Ω). We have
monotonicity along lines joining a point of the boundary to the center C. Furthermore,
we notice that λmax

2 = λmin
3 .
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Figure 5: X 7→ λ3(Ω̇
R
X) for X ∈ P.

Figure 6 gives the eigenvalues and the nodal lines of the eigenfunctions associated with
the second and third eigenvalues of the Dirichlet Laplacian on Ω̇R

X on the first and second
lines respectively. The j-th column corresponds to the domain Ω̇R

Xj
with Xj = (1

5 , j
10),

j = 1, . . . , 5. These figures are illustration of the theory of Berger–Rubinstein [2] and
Helffer–Hoffmann-Ostenhof–Hoffmann-Ostenhof–Owen [10] (see also [1]). For the ground
state energy, we recover the theorem of these authors that the nodal set is composed of
a line joining the pole to the boundary. We observe that the nodal line in the first case
is choosing a kind of minimal distance between the pole and the boundary whereas the
nodal line in the second case seems to choose a kind of maximal distance. We do not have
a rigorous explanation for this property except that it should be related to the theorem
proved in [2, 10] that λABX

1 is the infimum over the Dirichlet eigenvalue of the Laplacian
in Ω \ γ where γ is a regular path joining the pole X to the boundary.

11



19.940 20.447 21.104 21.688 21.930

49.346 49.315 49.190 48.950 48.798

Figure 6: Nodal set for the eigenfunctions associated with λk(Ω̇
R
X), k = 2, 3, for poles

X = (1
5 , j

10), 1 ≤ j ≤ 5 .

We also recover the two last equations in (3.1).

4.3 Eigenvalues 4 and 5

Using (3.2), we have proved that λ2(Ω) ≥ λ5(Ω̇
R
X). We observe numerically (see also ahead

Figures 18 and 22 for poles along a symmetry axis and Figure 26) that, for any X ∈ P,
we have

λ4(Ω̇
R
X) = λ5(Ω̇

R
X) = λ2(Ω) . (4.1)

4.4 Eigenvalues 6 and 7
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Figure 7: λ6(Ω̇
R
X), in function of the pole X ∈ P.

Numerics shows that the 6-th eigenvalue λ6(Ω̇
R
X) has a unique maximum λmax

6 ≃ 66.581
which is attained when the pole is at the center and is minimal at the boundary. We do
not observe other critical points. The 7-th eigenvalue λ7(Ω̇

R
X) is minimal when the pole

is at the center and its minimum λmin
7 is equal to λmax

6 . When the pole is at the center,
the zero set of the 6-th eigenfunction provides, by projection, a candidate for a 3-partition
and λmax

6 is the conjectured value for L3(Ω). We observe that the 7-th eigenvalue becomes
constant equal to λmax

7 = λ4(Ω) = 8π2 as a function of the pole when the pole is close
to the boundary. Looking at the nodal set for the eigenfunctions associated with λ7(Ω̇

R
X),

we notice that when X is close to the boundary, λ7(Ω̇
R
X) = λ4(Ω). This corresponds to
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Figure 8: λ7(Ω̇
R
X), in function of the pole X ∈ P.

a crossing when X approaches the boundary between fixed eigenvalues belonging to the
spectrum of the square (i.e. the DR

X -symmetric spectrum on the covering) and the X-
dependent ABX-spectrum (i.e. the DR

X -antisymmetric spectrum on the covering Ω̇R
X).

Applying relation (3.3), we have proved theoretically that λ4(Ω) ≥ λ7(Ω̇
R
X). We observe

numerically that this relation is optimal in the sense that we have equality for X close to
the boundary.

Considering the linear combination of the eigenfunctions u6 and u7 associated respec-
tively with λ6(Ω̇

R
C ) and λ7(Ω̇

R
C ), with C = (1

2 , 1
2), we can construct a family of 3-partitions

with the same energy. Figures 9 give the projection by πR
C of the nodal set for the functions

tu6 + (1 − t)u7 with t = k/8, k = 0, . . . , 8.

Figure 9: Continuous family of 3-partitions with the same energy.

Using the double covering approach, it is very easy, for a given eigenvalue with multiplic-
ity ≥ 2, to compute linear combinations of the two eigenfunctions given by the program,
because their approximations are given at the same points. If we wanted to construct a
family of 3-partitions with the same energy without this approach, we should, for example,
construct linear combinations of the two candidates presented in Figure 1. Unfortunately
the approximation of the eigenfunctions are not defined at the same points and we should
defined new approximations at some new common points. This approach is more technical
and requires a longer computation time than the double covering approach.

It is interesting to discuss if we can prove the numerically observed inequality

λABX
3 ≥ λ2(Ω) . (4.2)

This is directly related to the conjecture proposed by S. Terracini2 :

Conjecture 4.1
Except at the center X = C = (1

2 , 1
2), λABX

3 is simple and the corresponding nodal set of

2Personal communication
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the KX-real eigenfunction is the union of a line joining the pole to the boundary and of
another line joining two points of the boundary.

We note indeed that if the conjecture is true, we will get (4.2) by the minimax principle.
This conjecture is illustrated in Fig. A1, having in mind that λ6(Ω̇

R
X) = λABX

3 .

4.5 Eigenvalues 8 and 9

Figures 10–11 represent the numerical computations of λ8(Ω̇
R
X) and λ9(Ω̇

R
X) for X ∈ P.

We observe numerically that the function X 7→ λ8(Ω̇
R
X) has a unique maximum denoted by

λmax
8 at a point C1 on the diagonal and X 7→ λ9(Ω̇

R
X) reaches its unique minimum, λmin

9 ,
at this point. We can recover this behavior on Figure 18 where are drawn the eigenvalues
for poles on the diagonal. Numerically, λmax

8 = λmin
9 and we come back to this equality

in Subsection 6.3 where we look at the nodal lines of the eigenfunctions associated with
λ8(Ω̇

R
X) and λ9(Ω̇

R
X) and predict the existence of the point C1, see Figure 23.
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Figure 10: X 7→ λ8(Ω̇
R
X) for X ∈ P.
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Figure 11: X 7→ λ9(Ω̇
R
X) for X ∈ P.

According to (3.8), we have proved that λ8(Ω̇
R
X) ≤ λ7(Ω). This theoretical upper-

bound is coarse and the numerics suggests that we have in fact the better bound λ8(Ω̇
R
X) ≤

λ5(Ω). Moreover C1 is singular for the maps X 7→ λ8(Ω̇
R
X) and λ9(Ω̇

R
X).
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4.6 Eigenvalue 10

We observe numerically that, for any X ∈ P, we have

λ10(Ω̇
R
X) = λ5(Ω). (4.3)

What we have proven in (3.4) is weaker.

4.7 Eigenvalues 11 and 12
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Figure 12: λ11(Ω̇
R
X), according to the location of the pole X ∈ P.
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Figure 13: λ12(Ω̇
R
X) according to X ∈ P with additional zoom.

As for the 7-th eigenvalue λ7(Ω̇
R
X), the 11-th eigenvalue λ11(Ω̇

R
X) becomes constant as

X is far enough from the center and equal to λ5(Ω). It seems that λ11(Ω̇
R
X) has a unique

global maximum when the pole is at the center (see Figure 12). On the contrary, see
Figure 13, it seems that λ12(Ω̇

R
X) has only a local minimum at the center and admits local

maxima at the points C2 on the diagonal (see Figure 18) and A1 = (a1,
1
2) and A′

1 = (1
2 , a1)

on the perpendicular bisector (see Figure 22). These local maxima can also be observed
in Figures 19–24 where is given the 12-th eigenvalue around the points A1 and C2. With
a finer grid for X around A1 = (a1,

1
2) and C2 = (c2, c2), we get, thanks to the change of

symmetry in the nodal domains, the estimates:

0.4255 ≤ a1 ≤ 0.4256 and 112.05 ≤ λ12(Ω̇
R
A1

) ≤ 112.06,

0.3689 ≤ c2 ≤ 0.3690 and 112.01 ≤ λ12(Ω̇
R
C2

) ≤ 112.02.
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It seems that X 7→ λ12(Ω̇
R
X) presents a global maximum for X = C2 and local maxima

at X = A2 = (a2,
1
2) and X = (1

2 , a2) but the accuracy of our computation, although we
used a refined grid for X, does not allow us to be more affirmative.
Theoretically, relation (3.5) gives λ11(Ω̇

R
X) ≤ λ7(Ω). This estimate is optimal since there

exist poles for which λ11(Ω̇
R
X) > λ5(Ω) = λ6(Ω) (see also Figures 18–22 for poles along the

diagonal or the perpendicular bisector). We recall that λ12(Ω̇
R
X) = λAB,X

6 .

4.8 Eigenvalues 13, 14 and 15
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Figure 14: λ13(Ω̇
R
X) according to X ∈ P.
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Figure 15: λ14(Ω̇
R
X) according to X ∈ P.

We observe that X 7→ λ13(Ω̇
R
X) tends to λ7(Ω) when X tends to the boundary and

admits a local minimum for X = C2 along the diagonal. It seems also that this function
admits a local minimum for X on one perpendicular bisector at points A1 and A′

1 (see
Figures 18 and 22) and a local maximum, λC

13 at X = C.

Looking at Figure 15, we observe numerically that for X sufficiently far from C, we
have

λ14(Ω̇
R
X) = λ7(Ω) .

It seems that the function X 7→ λ14(Ω̇
R
X) reaches its unique minimum λmin

14 at X = C and
we have λmin

14 = λC
13, as observed in Figure 22.

We observe numerically that, for any X ∈ P, we have

λ15(Ω̇
R
X) = λ7(Ω) . (4.4)
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4.9 Eigenvalues 16 and 17

Looking at Figure 16, we observe that X 7→ λ16(Ω̇
R
X) admits three local maxima : two on

the perpendicular bisectors reaching at points A2 and A′
2 and one on the diagonal at point

C3, see Figures 18 and 22. We also observe that λ16(Ω̇
R
X) tends to λ7(Ω) as X tends to

the boundary or X tends to the center X = C.

Let us now deal with λ17(Ω̇
R
X) represented in Figure 17. The behavior is in reverse

order: the function X 7→ λ17(Ω̇
R
X) seems to have three local minima at the same points

A2, A′
2 and C3 and these minima equal the maxima of λ16(Ω̇

R
X). With finer discretization

around the points A2 = (a2,
1
2) and C3 = (c3, c3), we estimate numerically according to

the change of symmetry in the nodal domains:

0.2389 ≤ c3 ≤ 0.2390 and 151.40 ≤ λ16(Ω̇
R
C3

) ≤ 151.42 ,

0.2829 ≤ a2 ≤ 0.2830 and 150.03 ≤ λ16(Ω̇
R
A2

) ≤ 150.05 .

Consequently the extrema seem to be global at C3 and local at A2 and A′
2. Furthermore,

λ16(Ω̇
R
X) tends to λ9(Ω) as X tends to the boundary or to the center C.
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Figure 16: λ16(Ω̇
R
X) according to X ∈ P.
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Figure 17: λ17(Ω̇
R
X) according to X ∈ P.
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5 Moving the pole along the axis y = 1/2

5.1 Analysis of the symmetries

Let us begin with some considerations about the ABX-Hamiltonian on the X-punctured
square, using the symmetry along the perpendicular bisector y = 1

2 . We refer to [3] for
more details. We fix a point X = (x0,

1
2) along this line. The square is invariant under

the symmetry
σ1(x, y) = (x, 1 − y).

We consider the antilinear operator

Σc
1 = ΓΣ1,

where Γ is the complex conjugation (Γu = u) and Σ1 is associated with σ1 by the relation
Σ1u(x, y) = u(x, 1 − y).

We use the symmetry of the X-punctured square to give an orthogonal decomposition
of L2

K = L2
KX

:

L2
K = L2

K,Σ1
⊕ L2

K,a Σ1
, (5.1)

where
L2

K,Σ1
= {u ∈ L2

K , Σc
1u = u }, (5.2)

and
L2

K,a Σ1
= {u ∈ L2

K , Σc
1u = −u }. (5.3)

As established in [3, Lemma 5.6], we can prove that:

• if u ∈ C∞(Ω̇X) ∩ L2
K,Σ1

, then its nodal set contains [0, x0] × {1
2},

• if u ∈ C∞(Ω̇X) ∩ L2
K,aΣ1

, then its nodal set contains [x0, 1] × {1
2}.

Dealing with a mixed Dirichlet-Neumann condition on the half-domain, we deduce that
the eigenvalues for which the eigenfunctions are symmetric are increasing with respect to
x0 , whereas the eigenvalues for which the eigenfunctions are antisymmetric are decreasing
with respect to x0.

5.2 Spectral variation

Figure 18 gives the eigenvalues for poles along the axis y = 1/2 and 0 < x ≤ 1/2. We
observe that λABX

k is increasing with the first coordinate of X for k = 1, 3, 5, 6, whereas
it is decreasing for k = 2, 4.

We denote by X(x) = (x, 1
2) the pole and introduce Aj = X(aj), Bj = X(bj) specific points

which can be seen on the Figure 18. The below mentioned symmetry (resp. antisymmetry)
is in this section with respect to Σc

1 (see (5.2) and (5.3)) and denoted by Σ1 (resp. aΣ1)
on the figure. Then, we observe numerically:

(a) x 7→ λ1(Ω̇
R
X(x)) equals λ1(Ω), in adequation with the theoretical result (3.1).
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Figure 18: Moving the pole along the axis y = 1/2.

(b) x 7→ λ2(Ω̇
R
X(x)) = λ

ABX(x)
1 is strictly increasing from [0 , 1

2 ] onto [λ1(Ω) , λABC
1 ] and

the eigenfunctions are symmetric. The equality between λ2(Ω̇
R
X(x)) and λ

ABX(x)
1 was

proved in (3.1).

(c) x 7→ λ3(Ω̇
R
X(x)) = λ

ABX(x)
2 is strictly decreasing from [0, 1

2 ] onto [λABC
2 , λ2(Ω)] and

the eigenfunctions are antisymmetric. The equality between λ3(Ω̇
R
X(x)) and λ

ABX(x)
2

was proved in (3.1).

(d) λ4(Ω̇
R
X(x)) = λ5(Ω̇

R
X(x)) = λ2(Ω). This numerical observation is more accurate than

the theoretical result deduced from (3.2): λ4(Ω̇
R
X) ≤ λ2(Ω).

(e) x 7→ λ6(Ω̇
R
X(x)) = λ

ABX(x)
3 is strictly increasing from [0 , 1

2 ] onto [λ3(Ω) , λABC
3 ] and

the eigenfunctions are symmetric.

(f) x 7→ λ7(Ω̇
R
X(x)) = λ

ABX(x)
4 is strictly decreasing from [0, 1

2 ] onto [λABC
4 , λ4(Ω)] and

the eigenfunctions are antisymmetric.

(g) λ8(Ω̇
R
X(x)) = λ4(Ω). We have proved in (3.8) that λ8(Ω̇

R
X(x)) ≤ λ4(Ω) and we observe

that this upper-bound is actually an equality. We notice that there is a gap between
λ4(Ω) and λ5(Ω) where there is no eigenvalue λk(Ω̇

R
X) for X on the perpendicular

bisector. This observation is no more true for poles on the diagonal (see Figure 22).

(h) λ9(Ω̇
R
X(x)) = λ10(Ω̇

R
X(x)) = λ5(Ω).

(i) x 7→ λ11(Ω̇
R
X(x)) = λ

ABX(x)
5 is strictly increasing from [0, 1

2 ] onto [λ5(Ω) , λABC
5 ]

and the eigenfunctions are symmetric. This observation shows that the theoretical
upper-bound λ11(Ω̇

R
X) ≤ λ7(Ω) deduced from (3.5) can not be improved.
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(j) x 7→ λ12(Ω̇
R
X(x)) = λ

ABX(x)
6 is strictly increasing from [0 , a1] onto [λ6(Ω) , λABA1

6 ]

and the eigenfunctions are symmetric. It is strictly decreasing from [a1 , 1
2 ] onto

[λABC
6 , λABA1

6 ] and the eigenfunctions are antisymmetric. This illustrates theoret-
ical result deduced from (3.9): λ12(Ω̇

R
X(x)) ≤ λ7(Ω) and shows that this result is

optimal.

(k) x 7→ λ13(Ω̇
R
X(x)) = λ

ABX(x)
7 is strictly decreasing from [0 , a1] onto [λ7(Ω) , λABA1

7 ]

and the eigenfunctions are antisymmetric. It is strictly increasing from [a1 , 1
2 ]

onto [λABC
7 , λABA1

7 ] and the eigenfunctions are symmetric. We observe then that
λ13(Ω̇

R
X) can be bounded from above by λ7(Ω) whereas we have proved in (3.6) the

upper-bound by λ9(Ω).

(l) λ14(Ω̇
R
X(x)) equals λ8(Ω) on [0 , b1] . It equals λ

ABX(x)
8 on [b1 , 1

2 ] and is strictly

decreasing from [b1 , 1
2 ] onto [λABC

8 , λ8(Ω)] with antisymmetric eigenfunctions.

(m) λ15(Ω̇
R
X(x)) = λ8(Ω).

(n) λ16(Ω̇
R
X(x)) equals λ

ABX(x)
8 on [0 , b1] and λ8(Ω) on [b1 , 1

2 ]. It is strictly increasing

from [0, a2] onto [λ8(Ω) , λABA2

8 ] with symmetric eigenfunctions and strictly decreas-
ing from [a2, b1] onto [λ8(Ω) , λABA2

8 ] with antisymmetric eigenfunctions.

(o) λ17(Ω̇
R
X(x)) equals λ

ABX(x)
9 on [0 , b2] and λ9(Ω) on [b2 , 1

2 ]. It is strictly decreas-

ing from [0, a2] onto [λABA2

9 , λ9(Ω)] with antisymmetric eigenfunctions and strictly
increasing from [a2 , b2] onto [λABA2

9 , λ9(Ω)] with symmetric eigenfunctions.

5.3 Exchange of symmetry and crossing points

When moving the pole on one bisector, and for each eigenvalue of multiplicity 1, the corre-
sponding KX -real eigenfunction should be either symmetric or antisymmetric with respect
to Σc

1. Figure 18 suggests that there exists two poles A1 = (a1,
1
2) and A2 = (a2,

1
2) on

the perpendicular bisector such that λ12(Ω̇
R
A1

) and λ16(Ω̇
R
A2

) are eigenvalues of multiplic-
ity 2. Taking the Aharonov-Bohm point of view, this corresponds to a crossing between

λ
ABX(x)
6 and λ

ABX(x)
7 for x = a1, with a1 ∈ ] 42

100 , 43
100 [ and to a crossing between λ

ABX(x)
8

and λ
ABX(x)
9 at x = a2, with a2 ∈ ] 28

100 , 29
100 [. The nodal sets of the corresponding eigen-

functions are given in Figures 19 and 20. The first line of the figure gives the eigenvalues
λABX

6 (resp. λABX
8 ) and the nodal set of the associated eigenfunction and the second

line λABX
7 (resp. λABX

9 ) and the corresponding nodal set for X along the perpendicular
bisector and close to A1 (resp. A2).
We can verify on each line of the two figures, that there exists an exchange of symmetry3

between the third column and the fourth column predicting the existence of the points A1

and A2.
We observe in the second line and fifth column of Figure 19 one nodal line with no self-
crossing. This is an artefact produced by our algorithm to detect the nodal lines and the
accuracy of our computation. There is actually a crossing between a closed line and the
horizontal segment joining the pole to the boundary of the square.

3Look at the horizontal nodal line joining the pole to the boundary!
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Change of symmetry
111.984 112.003 112.042 112.008 111.969 111.943

112.237 112.137 112.062 112.187 112.967 114.320

Figure 19: Nodal set for the eigenfunctions associated with λ
ABX(x)
k , k = 6, 7 for poles

X = ( i
100 , 1

2), 40 ≤ i ≤ 45.

146.468 148.019 149.568 149.077 147.800 146.591

153.514 151.934 150.454 151.106 152.615 154.077

Figure 20: Nodal set for the eigenfunctions associated with λ
ABX(x)
k , k = 8, 9 for poles

X = ( i
100 , 1

2), 26 ≤ i ≤ 31.

5.4 Nodal deformation : an example

The last column of Figure A3 gives the nodal set for the eigenfunction associated with
the fifth eigenvalue of the ABX-Hamiltonian for poles X = ( i

20 , 1
2), i = 1, . . . , 10, on

the perpendicular bisector of one side of the square. The deformation mechanism for the
nodal set is represented in Figure 21. Between the fourth and fifth figures, we have a nodal
structure where there are two double points at the boundary.

98.696 98.696 100.109 109.942 111.136 111.754 111.862 111.910

Figure 21: Nodal set for the 5-th eigenfunction of the AB-Hamiltonian with poles X =
( i
100 , 1

2), i = 1, 7, 30, 42, 43, 44, 45, 49.
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6 Moving the pole on the diagonal

6.1 Analysis of the symmetries

As for the case of poles along the perpendicular bisector, we can use the symmetry along
the diagonal to have additional information about the spectrum.
The square is invariant under the symmetry

σ2(x, y) = (y, x).

We consider the antilinear operator Σc
2 = ΓΣ2 where Σ2 is associated with σ2 by the

relation Σ2u(x, y) = u(y, x).
We use this symmetry to give an orthogonal decomposition of L2

K = L2
KX

:

L2
K = L2

K,Σ2
⊕ L2

K,a Σ2
, (6.1)

where L2
K,Σ2

and L2
K,a Σ2

are respectively symmetric and antisymmetric with respect to
Σc

2. As in [3, Lemma 5.6], we can prove that, with X = (x0, x0),

• if u ∈ C∞(Ω̇X) ∩ L2
K,Σ2

, then the nodal set of u contains {(x, x), 0 < x < x0} ;

• if u ∈ C∞(Ω̇X) ∩ L2
K,aΣ2

, then the nodal set of u contains {(x, x), x0 < x < 1} .

Dealing with a mixed Dirichlet-Neumann condition on the half-domain, we deduce that
the eigenvalues for which the eigenfunctions are symmetric are increasing with respect to
x0 whereas the eigenvalues for which the eigenfunctions are antisymmetric are decreasing
with respect to x0.

6.2 Spectral variation

Figure 22 gives the eigenvalues for poles along the diagonal line of the square x = y with

0 ≤ x ≤ 1/2. We observe that the eigenvalues λ
ABX̌(x)
k with X̌(x) = (x, x) are increasing

with x ∈ [0, 1
2 ] for k = 1, 3 and decreasing for k = 2.

We introduce Cj = X̌(cj), Dj = X̌(dj) specific crossing points appearing on the figure.
The below mentioned symmetry (resp. antisymmetry) is in this section with respect to
Σc

2 and denoted by Σ2 (resp. aΣ2) on the Figure 22. Then, we observe:

(a) x 7→ λ1(Ω̇
R
X̌(x)

) equals λ1(Ω), in adequation with (3.1).

(b) x 7→ λ2(Ω̇
R
X̌(x)

) = λ
ABX̌(x)
1 is strictly increasing from [0 , 1

2 ] onto [λ1(Ω) , λABC
1 ] and

the eigenfunctions are symmetric. The equality between λ2(Ω̇
R
X̌(x)

) and λ
ABX̌(x)
1

observed numerically was rigourously proved in (3.1).

(c) x 7→ λ3(Ω̇
R
X̌(x)

) = λ
ABX̌(x)
2 is strictly decreasing from [0 , 1

2 ] onto [λABC
2 , λ2(Ω)] and

the eigenfunctions are antisymmetric. The equality between λ3(Ω̇
R
X̌(x)

) and λ
ABX̌(x)
2

observed numerically was also rigourously proved in (3.1).
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Figure 22: Moving the poles on the diagonal.

(d) λ4(Ω̇
R
X̌(x)

) = λ5(Ω̇
R
X̌(x)

) = λ2(Ω). Theoretically, we have proved, see (3.2), that

λ4(Ω̇
R
X̌(x)

) ≤ λ2(Ω). This relation seems to be an equality, see Subsection 4.3 .

(e) x 7→ λ6(Ω̇
R
X̌(x)

) = λ
ABX̌(x)
3 is strictly increasing from [0 , 1

2 ] onto [λ3(Ω) , λABC
3 ] and

the eigenfunctions are symmetric.

(f) x 7→ λ7(Ω̇
R
X̌(x)

) equals λ4(Ω) on [0 , d1] and λ
ABX̌(x)
4 on [d1 , 1

2 ] where it is strictly

decreasing onto [λABC
4 , λ4(Ω)] and the eigenfunctions are antisymmetric. This nu-

merical computations show that the theoretical estimate λ7(Ω̇
R
X) ≤ λ4(Ω), deduced

from (3.3) is optimal.

(g) λ8(Ω̇
R
X̌(x)

) equals λ
ABX̌(x)
4 on [0 , d1] and λ4(Ω) on [d1 , 1

2 ]. It is strictly increas-

ing from [0 , c1] onto [λ4(Ω) , λ4(Ω̇
R
C1

)] with symmetric eigenfunctions and strictly

decreasing from [c1 , d1] onto [λ4(Ω) , λ4(Ω̇
R
C1

)] with antisymmetric eigenfunctions.
This illustrates that (3.4) is optimal.

(h) λ9(Ω̇
R
X̌(x)

) equals λ
ABX̌(x)
5 on [0 , d2] and λ5(Ω) on [d2 , 1

2 ]. It is strictly decreasing

from [0 , c1] onto [λ4(Ω̇
R
C1

) , λ5(Ω)] with antisymmetric eigenfunctions and strictly

increasing from [c1 , d1] onto [λ4(Ω̇
R
C1

) , λ5(Ω)] with symmetric eigenfunctions.

(i) λ10(Ω̇
R
X̌(x)

) = λ5(Ω) .

(j) x 7→ λ11(Ω̇
R
X̌(x)

) equals λ5(Ω) on [0 , d2] and λ
ABX̌(x)
5 on [d2 , 1

2 ] where it is strictly

increasing onto [λ5(Ω) , λABC
5 ] and the eigenfunctions are symmetric. This illustrates

the fact that relation (3.5) is optimal.
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(k) x 7→ λ12(Ω̇
R
X̌(x)

) = λ
ABX̌(x)
6 is strictly increasing from [0, c2] onto [λ6(Ω) , λABC2

6 ]

and the eigenfunctions are symmetric. It is strictly decreasing from [c2 , 1
2 ] onto

[λABC
6 , λABC2

6 ] and the eigenfunctions are antisymmetric.

(l) x 7→ λ13(Ω̇
R
X̌(x)

) = λ
ABX̌(x)
7 is strictly decreasing from [0 , c2] onto [λ7(Ω) , λABC2

7 ]

and the eigenfunctions are antisymmetric. It is strictly increasing from [c2 , 1
2 ] onto

[λABC
7 , λABC2

7 ] and the eigenfunctions are symmetric. We then observe λ13(Ω̇
R
X̌(x)

) ≤

λ7(Ω) whereas we have proved the weaker upper-bound by λ9(Ω) in (3.6).

(m) λ14(Ω̇
R
X̌(x)

) equals λ7(Ω) on [0 , d3]. It equals λ
ABX̌(x)
8 on [d3 , 1

2 ] and is strictly

decreasing from [d3 , 1
2 ] onto [λABC

8 , λ8(Ω)] with antisymmetric eigenfunctions.

(n) λ15(Ω̇
R
X̌(x)

) = λ8(Ω).

(o) λ16(Ω̇
R
X̌(x)

) equals λ
ABX̌(x)
8 on [0 , d3] and λ8(Ω) on [d3 , 1

2 ]. It is strictly increasing

from [0 , c3] onto [λ8(Ω) , λABC3

8 ] with symmetric eigenfunctions and strictly decreas-
ing from [c3 , d3] onto [λ8(Ω) , λABC3

8 ] with antisymmetric eigenfunctions.

(p) λ17(Ω̇
R
X̌(x)

) equals λ
ABX̌(x)
9 on [0 , 1

2 ]. It is strictly decreasing from [0 , c3] onto

[λABC3

9 , λ9(Ω)] with antisymmetric eigenfunctions and strictly increasing from [c3 , 1
2 ]

onto [λABC3

9 , λ9(Ω)] with symmetric eigenfunctions. We observe that λ17(Ω̇
R
X̌(x)

) ≤

λ9(Ω) whereas we have proved in (3.7) the upper-bound by λ11(Ω).

6.3 Exchange of symmetry

As in the case of the symmetry with respect to the bisector, when moving the pole on one
diagonal, and for each eigenvalue of multiplicity 1, the corresponding KX -real eigenfunc-
tion should be either symmetric or antisymmetric with respect to the quantized symmetry
with respect to the diagonal (see [3]). Figure 22 suggests that there are 3 points, C1, C2

and C3 on the diagonal such that λ8(Ω̇
R
C1

), λ12(Ω̇
R
C2

) and λ16(Ω̇
R
C3

) are eigenvalues of mul-

tiplicity 2. This corresponds to a crossing between λ
ABX̌(x)
4 and λ

ABX̌(x)
5 at x = c1, with

c1 ∈ ] 28
100 , 29

100 [. Similarly, there is a crossing between λ
ABX̌(x)
6 and λ

ABX̌(x)
7 at x = c2, with

c2 ∈ ] 36
100 , 37

100 [, and also between λ
ABX̌(x)
8 and λ

ABX̌(x)
9 at x = c3, with c3 ∈ ] 23

100 , 24
100 [.

The nodal set of the corresponding eigenfunctions are given in Figures 23, 24 and 25. We
can verify that there exists an exchange of symmetry permitting to predict the existence
of the points C1, C2 and C3.

The nodal lines have to respect the symmetry according to the diagonal line. Conse-
quently, in each case, there exists a nodal line touching the point (0, 0) or (1, 1). In some
picture, the touching point is not exactly one of these points but it is quite difficult to
detect accurately these lines near the boundary because the eigenfunction vanishes at the
boundary.
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87.467 88.173 88.909 88.744 86.419 84.023

94.276 92.744 90.880 89.677 90.481 91.325

Figure 23: Nodal set for the eigenfunctions associated with λABX
k , k = 4, 5 for poles

X = (i, i)/100, 26 ≤ i ≤ 31 .

111.257 111.575 111.836 112.013 111.968 111.945

112.426 112.223 112.093 112.037 112.185 112.284

Figure 24: Nodal set for the eigenfunctions associated with λABX
k , k = 6, 7 for poles

X = (i, i)/100, 34 ≤ i ≤ 39.

146.972 147.833 149.708 151.033 147.721 145.131

161.593 158.489 154.785 151.601 153.467 155.275

Figure 25: Nodal set for the eigenfunctions associated with λABX
k , k = 8, 9 for poles

X = (i, i)/100, 21 ≤ i ≤ 26.

6.4 Moving the pole without respecting the symmetries of the square

Figure 26 gives the eigenvalues λk(Ω̇
R
X) for 1 ≤ k ≤ 12 when the pole X belongs to the line

y = 1
4 + x

2 . We choose this axis to exhibit a case without symmetry and we notice that the
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AB-eigenvalues λABX
k are no longer monotone with respect to x when X = (x, 1

4 + x
2 ).

The result should be the same for any arbitrary line (except the perpendicular bisector
and the diagonal). We choose to present the simulations for this line because this line
contains enough points in P to use the previous numerical computations.
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Figure 26: Moving the pole along the axis y = 1
4 + x

2 , 0 ≤ x ≤ 1
2 .

It would be interesting to make computations for a finer grid of X = (x, 1
4 + x

2 ) for x
around 0.44 to detect possible crossings between λAB

5 , λAB
6 and λAB

7 .

7 Nodal sets and minimal partitions

The analysis of λABX
5 and λABX

6 leads us to guess numerically a double eigenvalue at the
center. As for the pairs λABX

3 and λABX
4 which lead us to the family of candidates for the

minimal 3-partitions of the square (see Subsection 4.4), we are led to produce a candidate
for a minimal 5-partition for the square, with the property that it is minimal inside the
class of 5-partitions which can be lifted to Ω̇R

C . Although λABC
5 = λ11(Ω̇

R
C ), which is not

Courant-sharp, we observe that it is Courant-sharp for the AB-Hamiltonian.

The eigenfunctions computed with the double covering approach do not produce a
5-partition actually a small perturbation of it with only three nodal sets in Ω̇C , but we
can have a better insight by taking the Dirichlet-Neumann approach along the bisector
orthogonal to one side: we compute the 5-th eigenfunction of the Dirichlet Laplacian on
the square with Dirichlet condition on {(x, 1

2), 1
2 < x < 1}, see Figure 28.

This time, neither numerics nor theory is giving the existence of a continuous family of
5-partitions. Actually, one knows from elementary results on the perturbation of harmonic
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polynomials of order 2 that the perpendicular crossing of two lines will generically disap-
pear by perturbation.
In the 2D eigenspace of λ11(Ω̇

R
C ) only four eigenfunctions seem to lead to a configuration on

one sheet with five nodal domains. The other eigenfunctions seem to have four symmetric
(for the deck map) pairs of domains. These eigenfunctions are symmetric or antisymmetric
with respect of one of the four bisectors of the square (see Figure 27). Looking at the linear
combination tu11 + (1 − t)u12 of the eigenfunction associated with λ11(Ω̇

R
C ) and λ12(Ω̇

R
C ),

we observe in Figure 27 that the triple point is very unstable and only appears for t ≃ 96
200

and t ≃ 194
200 when we consider 0 ≤ t ≤ 1.

Figure 27: Nodal sets of the linear combination of u11 and u12

tu11 + (1 − t)u12 with t = 1
200(0, 25, 55, 96, 125, 138, 175, 194, 200).

Of course it is interesting to compare with what can be obtained by looking at other
topological types for the 5-minimal partitions. We recall that these types can be classified
by using Euler formula (see [11] for the case of 3-partitions). Inspired [9], we look for a
partition which has the symmetries of the square and four critical points. We get two types
of models that we can reduce to a Dirichlet-Neumann problem on a triangle corresponding
to the eighth of the square. Moving the Neumann boundary on one side like in [4] leads
to two candidates. Numerical computations demonstrate a lower energy in one case which
coincides with one of the pictures in [9] (see Figure 28).

λ11(Ω̇
R
X) = 111.910 λDN

2 = 104.294 λDN
2 = 131.666

Figure 28: Three candidates for the 5-partition of the square.

Remark 7.1
Note that in the case of the disk a similar analysis leads to a different answer. The partition
of the disk by five halfrays with equal angle has a lower energy than the minimal 5-partition
with four singular points (see Figure 29). We note that, on the basis of standard computa-
tions (see for example (A1) and (A5) in [12], Appendix A) this energy corresponds to the
eleventh eigenvalue of the Dirichlet problem on the double covering on the punctured disk
(hence is not Courant sharp) but corresponds to the fifth of the Aharonov-Bohm spectrum
of the disk. Hence it is Courant sharp in the sense developed in [13] (for the sphere) and
shows the minimality of this 5-partition inside the minimal 5-partitions of the disk having
a unique critical point at the center.

27



104.367 110.832

Figure 29: Two candidates for the 5-partition of the disk.

8 Conclusion

We have explored rather systematically how minimal partitions could be obtained by
looking at nodal domains of a problem on the double covering of a punctured square. We
have analyzed the behavior of the nodal set when moving the pole in the square. This has
permitted to confirm the status of “main” candidate for some 3-partitions in the case of the
square. This has also permitted to exhibit a natural candidate for a minimal 5-partition
which finally appears to be less favorable than another partition with four critical points.
This is a starting point for a program which can be developed in at least two directions :

• analyze other domains,

• do the same work by considering the double covering of a multi-punctured domain
and moving the poles.
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Appendix. Additional numerics for the first Aharonov-Bohm eigenvalues

Figures A1–A4 give the nodal set for the eigenfunctions associated with λAB

k (Ω̇X) with
k = 3, 4, 5, 6 and X ∈ P0 = {(i, j)/20, 1 ≤ i, j ≤ 10}. Line i and column j correspond to
the pole X = ( i

20 , j
20). As mentioned in (4.1), the fourth and fifth eigenvalues, λ4(Ω̇

R
X) and

λ5(Ω̇
R
X), are equal to the second eigenvalue of the square, hence the associated eigenfunc-

tions of the Dirichlet-Laplacian on the square have two nodal domains and those of the
Dirichlet-Laplacian on the double covering Ω̇R

X have three or four nodal domains according
to the location of X. We do not represent them here. We have observed that λABX

4 equals
λ7(Ω̇

R
X) when X is close to the center C and λ8(Ω̇

R
X) for X close to the corner X = (0, 0).

The transition between these two eigenvalues is represented in Figure A2 by the separation
line (dotted line). Similarly, λABX

5 equals λ9(Ω̇
R
X) or λ11(Ω̇

R
X) for X close to the center

X = C and the transition is represented in Figure A3 by the separation line (dotted line).

We verify the property proved in [10] that from the pole X only an odd number of
lines can start for the nodal set corresponding to an ABX-eigenfunction.
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49.377 49.456 49.566 49.685 49.790 49.870 49.917 49.938 49.942 49.942

49.456 49.738 50.123 50.539 50.917 51.208 51.392 51.481 51.507 51.511

49.566 50.123 50.874 51.689 52.453 53.068 53.478 53.692 53.767 53.776

49.685 50.538 51.689 52.955 54.172 55.195 55.917 56.320 56.477 56.513

49.790 50.917 52.453 54.171 55.871 57.351 58.455 59.115 59.408 59.471

49.869 51.207 53.069 55.196 57.351 59.288 60.791 61.743 62.187 62.297

49.916 51.392 53.478 55.919 58.453 60.788 62.636 63.832 64.412 64.563

49.936 51.481 53.687 56.323 59.121 61.744 63.832 65.162 65.790 65.950

49.944 51.505 53.765 56.481 59.404 62.186 64.412 65.791 66.378 66.502

49.944 51.512 53.776 56.517 59.469 62.295 64.560 65.949 66.502 66.581

Figure A1: Third eigenvalue λAB
3 (Ω̇X).
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79.013 79.155 79.328 79.470 79.526 79.473 79.328 79.148 79.004 78.949

79.155 79.629 80.197 80.679 80.891 80.712 80.187 79.536 79.025 78.836

79.328 80.197 81.247 82.194 82.692 82.381 81.240 79.814 78.731 78.340

79.470 80.678 82.193 83.717 84.760 84.392 82.218 79.550 77.678 77.034

79.526 80.891 82.692 84.759 86.791 86.748 82.428 78.086 75.453 74.603

79.473 80.711 82.380 84.395 86.747 86.421 79.982 75.045 72.317 71.479

79.327 80.188 81.239 82.219 82.422 79.962 75.328 71.520 69.422 68.801

79.147 79.536 79.812 79.553 78.090 75.041 71.520 68.947 67.622 67.246

79.004 79.025 78.731 77.679 75.452 72.316 69.426 67.621 66.843 66.665

78.949 78.836 78.340 77.035 74.606 71.479 68.796 67.246 66.665 66.581

Figure A2: Fourth eigenvalue λAB
4 (Ω̇X).
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98.696 98.696 98.695 98.694 98.693 98.692 98.692 98.694 98.695 98.696

98.696 98.694 98.685 98.666 98.638 98.620 98.628 98.658 98.687 98.698

98.695 98.685 98.643 98.538 98.373 98.256 98.311 98.493 98.657 98.719

98.694 98.666 98.538 98.181 97.522 96.990 97.273 98.023 98.622 98.835

98.693 98.638 98.373 97.522 95.497 93.571 95.037 97.229 98.744 99.259

98.692 98.620 98.256 96.990 93.572 90.483 93.598 96.987 99.518 100.437

98.692 98.629 98.311 97.272 95.033 93.594 95.238 98.517 101.690 103.027

98.694 98.658 98.493 98.024 97.231 96.987 98.516 101.812 105.648 107.585

98.695 98.687 98.657 98.622 98.743 99.5178 101.6903 105.6520 110.5143 111.8625

98.696 98.6980 98.7192 98.8351 99.2584 100.4355 103.0223 107.5785 111.8625 111.9101

Figure A3: Fifth eigenvalue λAB
5 (Ω̇X).
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98.758 98.908 99.089 99.255 99.398 99.542 99.710 99.892 100.036 100.094

98.909 99.397 99.970 100.517 101.010 101.506 102.066 102.647 103.094 103.263

99.089 99.970 101.002 102.005 102.937 103.875 104.883 105.857 106.551 106.791

99.255 100.517 102.004 103.459 104.805 106.120 107.461 108.625 109.335 109.559

99.397 101.010 102.938 104.805 106.464 107.974 109.410 110.486 110.983 111.109

99.540 101.505 103.875 106.122 107.974 109.451 110.704 111.471 111.686 111.732

99.708 102.067 104.883 107.463 109.409 110.702 111.577 111.880 111.899 111.919

99.890 102.648 105.851 108.629 110.489 111.471 111.880 111.935 111.937 111.984

100.040 103.091 106.548 109.337 110.982 111.686 111.899 111.937 111.927 111.943

100.096 103.265 106.791 109.562 111.108 111.732 111.919 111.984 111.943 111.910

Figure A4: Sixth eigenvalue λAB
6 (Ω̇X).
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