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Abstract. In this paper, I prove the existence of a regular eigenform for suitable weights,
on fractals with the only assumptions that the boundary cells are separated and the union of
the interior cells is connected. This result improves previous results, and works for many
of the usually considered finitely ramified fractals.
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1. Introduction

The subpject of this paper is that of analysis on finitely ramified fractals. The Sierpinski
Gasket, the Vicsek Set and the Lindstrøm Snowflake are finitely ramified fractals, while the
Sierpinski Carpet is not. The essential reason is that, in the Sierpinski Carpet, some two
cells intesect at a segment line and not only at finitely many points. J. Kigami introduced
in [3] a general class of finitely ramified fractals, called P.C.F. self-similar sets. The general
theory of P.C.F. self-similar sets and many examples can be found in [4]. In this paper,
I essentially consider P.C.F. self-similar sets with a mild additional hypothesis − as e.g.
considered in [10] − that is, I require that every point in the initial set is a fixed point of
one of the contractions defining the fractal. I will only consider connected fractals.

One of the main problems in analysis on finitely ramified fractals is the construction
of self-similar Dirichlet forms, i.e. energies, on them, and the basic tool to do this is
the construction of a self-similar discrete Dirichlet form defined on a finite subset V (0)

of the fractal, which is a sort of boundary of the fractal, but not in a topological sense.
Such Dirichlet forms on V (0) are self-similar in the sense that they are eigenforms, that is,
eigenfunctions of a special nonlinear operator Λr, depending on a set of positive numbers
ri (called weights) put on the cells, often called renormalization operator. More precisely,
I will call r-eigenform an eigenfunction of Λr and G-eigenform (short for generalized eigen-
form) an r-eigenform fo some r. In [5], [9] and [6] criteria for the existence of an eigenforms
with prescribed weights are discussed. In particular, in [5], T. Linstrøm proved that there
exists an eigenforms on the nested fractals with all weights equal to 1, C. Sabot in [9]
proved a rather general criterion, and V. Metz in [6] improved the results in [9].

In this paper I consider, instead, the problem whether on a given fractal there exists a
set of weights r such that the operator Λr has an eigenform, in other words whether there
exist a G-eigenform. In fact, an open problem is whether a G-eigenform exists on every
P.C.F.self-similar set. Results about this problem, so far, have been given in [1], in [7] and
in [8]. In [1], a method is described that permits to prove the existence of a G-eigenform
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on fractals with three vertices with some additional, relatively mild, conditions, and on
fractals with more than three vertices, but with stronger symmetry assumptions. In [7],
the existence of a G-eigenform is proved in the general case of fractals with three vertices.
In [8] the existence of a G-eigenform is proved on a relatively general class of fractals, called
nicely separated fractals, with an arbitrary number of vertices, and with no symmetries.
However, the eigenform turns out to be regular only on a subclass of those fractals, which in
any case contains new and nontrivial examples of fractals having a G-eigenform. In [1], the
method consists of approximating a collapsed simpler structure in which there is existence
and uniqueness of the eigenform, by putting weights tending to infinity on the interior
(i.e., containing no vertices) cells. In [7] the existence result follows from a connectedness
argument. In [8], the existence of a G-eigenform is proved using an approximation method
combined with a fixed point argument. Namely, if we say that a map is stably fixed if it
is continuous and maps a suitable nonempty compact and convex set into its interior, we
note that a sufficiently close approximation of a stably fixed map has a fixed point. Now,
in [8], roughly speaking, Λr, or more precisely, a sort of normalization of it, on the given
fractal, tends, when some weights tend to infinity (and possibly other weights to 0), to a
stably fixed map.

In the present paper, I merely require that the boundary (i.e., containing a vertex) cells
are mutually disjoint and that the set of interior cells is connected, and prove that on such
fractals there exists a regular G-eigenform. Such a result improves both the result of [1], in
that it does not require any sort of symmetry, and that of [8], in that it does not require any
technical condition on the intersection of the boundary cells with the interior cells. The
method of proof is similar to that in [8], in the sense that here I use the idea (introduced
in [1]) of putting weights tending to infinity on the interior cells, and the corresponding
Λr approximate a stably fixed map on a collapsed structure.

The difference is that in [8] the map is a rather technical form of normalization of Λr,
and this as a natural normalization of Λr (e.g., Λr divided by its norm) fails to be a stably
fixed map. In the present paper, instead of using the map E 7→ Λr(E) with fixed r, I use
a map of the form E 7→ Λr(E)(E), where r is a suitable continuous function. A natural
normalization of the map obtained by this simple device is in fact a stably fixed map. The
proof in the present paper definitely simplifies that in [8].

2. Notation

In this section, I introduce the notation and the setting. I will use the obvious notation
R
A to denote the linear space of the functions from a set A to R and for every t ∈ R, tA will

denote the function in R
A taking the value t at every point of A. In case A = {1, ..., n}, I

will write R
n for R

A as usual, and tn for tA. I will use the restriction of an element of R
A

to a subset B of A in its obvious sense, which can also be interpreted as the projection on
R
B . Given a set V = {P1, ..., PN}, N ≥ 2, let J = {{j1, j2} : j1, j2 = 1, ..., N, j1 6= j2}.

Note that #J = M where M = n(n−1)
2 . I will denote by D̃(V ) or simply D̃ the set of the

irreducible Dirichlet forms on V , i.e., the set of the functionals E from R
V into R of the

form

2



E(u) =
∑

{j1,j2}∈J

c{j1,j2}(E)
(
u(Pj1) − u(Pj2)

)2

with c{j1,j2}(E) ≥ 0, such that moreover E(u) = 0 if and only if u is constant. Every

E ∈ D̃ is uniquely determined by its coefficients, namely

c{j1,j2}(E) =
1

4

(
E(χ{Pj1

} − χ{Pj2
}) − E(χ{Pj1

} + χ{Pj2
})

)

χA denoting the characteristic function of a set A. Thus, we could identify E ∈ D̃ with
the set of its coefficients in [0,+∞[J . However, as I will also define the set of effective
resistances, in order to avoid possible confusion in the interpretation of an element of
[0,+∞[J , I will explicitly define this identification as a map. Let Q̃ be the set of q ∈
[0,+∞[J such that the graph

{
{j1, j2} : q{j1,j2} > 0

}
on {1, ..., N} is connected. Note that

Q̃ ⊇]0,+∞[J . Now, we define the bijection I from Q̃ to D̃ in the following way:

Given q ∈ Q̃ we put I(q) to be the element of D̃ such that cd
(
I(q)

)
= qd for every d ∈ J .

I now recall the notion of the restriction of an element of D̃. Given E ∈ D̃, a nonempty
subset V ′ of V and u ∈ R

V ′

, I denote by EV ′(u) = inf
{
E(v) : v : V → R, v = u on V ′}.

The infimum is in fact a minimum and is attained at a unique function v satisfying minu ≤
v ≤ maxu. I denote such a function by HV,V ′,E(u). I recall the following standard facts:

Lemma 2.1 The function v := HV,V ′,E(u) is the unique function from V to R having the
following properties:
i) v = u on V ′

ii)
∑
j′ 6=j

c{j,j′}(v(Pj) − v(Pj′)) = 0 for every Pj ∈ V \ V ′.

Also, HV,V ′,E is linear on R
V ′

, and HV,V ′,E(c) = c for every constant c.

Corollary 2.2. The maps (q, u) 7→ HV,V ′,I(q)(u) and (q, u) 7→ I(q)V ′(u) are continuous.

Given q ∈ Q̃, we recall that the effective resistance R̂(q){A,B} for A,B ⊆ V , A ∩ B = ø,

A 6= ø, B 6= ø, is defined as 1

I(q)A∪B(χB)
. Put also

R(q){j1,j2} = R̂(q){{Pj1
},{Pj2

}} =
1

inf
{
I(q)(v)| v : V → R, v(Pj1) = 0, v(Pj2) = 1 }

when {j1, j2} ∈ J . This is the most usual case (effective resistance between two points).
It is known that the map

R : Q̃ →]0,+∞[J

is one-to-one (by [4] , Theorem 2.1.12) and continuous, thus its restriction to ]0,+∞[J is

open, and the inverse map from the image Û := R
(
]0,+∞[J

)
onto ]0,+∞[J is continuous.
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Moreover, since R(1J) is clearly constant, using a homogeneity argument we see that

1J ∈ Û . Let δ1 ∈]0, 1[ be such that

[1 − δ1, 1 + δ1]
J ⊆ Û .

Now, given R ∈ Û we can naturally extend R to {A,B} such that A,B ⊆ V , A ∩B = ø,

A 6= ø, B 6= ø, putting RA,B = R̂
(
R

−1
(R)

)
{A,B}

. By the previous considerations we have

Corollary 2.3. the map R 7→ RA,B from Û to R is continuous.

I will now define the fractal setting, which is based on that in [7]. This kind of approach was
firstly given in [2]. We define a fractal by giving a fractal triple, i.e., a triple (V (0), V (1),Ψ)
where V (0) and V (1) are finite sets with #V (0) ≥ 2, and Ψ is a finite set of one-to-one
maps from V (0) into V (1) satisfying

V (1) =
⋃

ψ∈Ψ

ψ(V (0)) . (2.1)

We put V (0) =
{
P1, ..., PN

}
, and of course N ≥ 2. A set of the form ψ(V (0)) with ψ ∈ Ψ

will be called a cell or a 1-cell. We require that

a) For each j = 1, ..., N there exists a (unique) map ψj ∈ Ψ such that ψj(Pj) = Pj , and
Ψ =

{
ψ1, ..., ψk

}
, with k ≥ N .

b) Pj /∈ ψi(V
(0)) when i 6= j.

c) Any two points in V (1) can be connected by a path whose any edge belongs to a 1-cell,
depending of the edge.

Of course, it immediately follows V (0) ⊆ V (1). Let W =]0,+∞[k. We put D̃ = D̃(V (0)),
and in general we will consider the previous setting with V = V (0). Put Vi = ψi(V

(0)) for
each i = 1, ..., k.

Next, I recall the definition of the renormalization operator Λr. For every u ∈ R
V (0)

,
every E ∈ D̃ and every r ∈W , let

Λr(E)(u) = inf
{
Sr(E, v) : v ∈ R

V (1)

, v = u on V (0)
}
,

Sr(E, v) :=
k∑

i=1

riE(v ◦ ψi) .

It is well known that the infimum is attained at a unique function. In the next section, I
will introduce the class of fractals considered in this paper, where I will prove the existence
of a G-eigenform in D̃, in other words, the existence of E ∈ D̃ such that Λr(E) = ρE for

some ρ > 0 and r ∈W . Define Λ∗ : Û ×W → Û by

Λ∗(R, r)(= Λ∗
r(R)) = R̃

(
ΛrR̃

−1(R)
)
,
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where, R̃ = R ◦ I
−1

. Since, by a standard argument, the map (q, r) 7→ I
−1

(
Λr(I(q))

)

from Q̃×W → Q̃ is continuous, it follows that Λ∗ is continuous. Note that in the previous
considerations, in particular in order to state that in fact Λ∗ takes values in Û , I implicitly
use the well-known fact that Λr maps I(]0,+∞[J) into itself. In the following, as done
in [1], I will sometimes permit that the weights can also assume the value +∞. More
precisely, suppose {1, ..., N} ⊆ A ⊆ {1, ..., k}, s ∈]0,+∞[A and t ∈]0,+∞]. Then, we
define ιt(s) ∈W by

ιt(s)i =

{
si if i ∈ A

t if i /∈ A ,

and put ι(s) := ι+∞(s). Define

Λs,A(E)(u) := Λι(s)(E)(u) =

inf
{∑

i∈A

siE(v ◦ ψi) : v ∈ R
V (1)

, v = u on V (0), v constant on Vi ∀ i /∈ A
}

where we use the convention 0× (+∞) = 0. Note that, if the set {Vi : i /∈ A} is connected,
then the condition v constant on Vi ∀ i /∈ A amounts to v constant on

⋃
i/∈A

Vi. Note also that

the infimum is in fact a minimum, attained at a function v satisfying minu ≤ v ≤ maxu.
It is easily seen that Λs,A(E) ∈ D̃. Note that, putting

Kj1,j2 :=
{
v ∈ R

V (1)

: 0 ≤ v ≤ 1, v(Pj1) = 0, v(Pj2) = 1
}
,

and E = I
(
R

−1
(R)

)
, we have

Λ∗(R, ιt(s)){j1,j2} =

(
inf

{
Sιt(s)(E, v) : v ∈ Kj1,j2

})−1

.

Put now

Λ∗(R, ι(s)){j1,j2} :=

(
inf

{
Sι(s)(E, v) : v ∈ Kj1,j2

})−1

,

and note that

Λ∗(R, ι(s)){j1,j2} =

(
inf

{∑

i∈A

siE(v ◦ ψi) : v ∈ Kj1,j2 , v constant on Vi ∀ i /∈ A
})−1

.

(2.2)

Lemma 2.4. For every {j1, j2} ∈ J we have

Λ∗(R, ιt(s)){j1,j2} −→
t→+∞

Λ∗(R, ι(s)){j1,j2}

uniformly for (R, s) ∈ K for every K compact subset of Û×]0,+∞[A.
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Proof. A similar statement is proved in [1], Section 5. So, I will only sketch the proof.
Using the previous formulas as well as the compactness of Kj1,j2 , it is simple to prove

that Λ∗(R, ιt(s)){j1,j2} is continuous with respect to (R, s) ∈ Û×]0,+∞[A for t ∈]0,+∞].
Moreover

Λ∗(R, ιt(s)){j1,j2} −→
t→+∞

Λ∗(R, ι(s)){j1,j2}

and the function on the left-hand side is monotonically decreasing in t, thus using the Dini
Theorem, the convergence is uniform on K.

3. Fractals with connected interior.

We will say that the fractal triple is a connected interior fractal triple if
i) Vj1 ∩ Vj2 = ø if j1, j2 = 1, ..., N , j1 6= j2,
ii) the set {Vi : i = N + 1, ..., k} is connected.

We will assume that i) and ii) hold in all this section. As a consequence, defining

Ṽ :=
⋃

i=N+1,...,k

Vi,

and, for i = 1, .., N ,
φ(i) :=

{
Pj : j = 1, ..., N, ψi(Pj) ∈ Ṽ

}
,

we have that Ṽ 6= ø, and Pi /∈ φ(i) 6= ø, for every i = 1, ..., N .

Note that this class of fractals generalizes both that considered in [1], and that considered
in [8] when the eigenform is regular. I will prove that on these fractals there exists a
G-eigenform. To this aim, I will evaluate Λ∗(R, ι(s)){j1,j2} when A = {1, ..., N}. Namely,

Lemma 3.1. Let (R, s) ∈ Û×]0,+∞[N . Then, for every {j1, j2} ∈ J we have

Λ∗(R, ι(s)){j1,j2} =
R{Pj1

,φ(j1)}

sj1
+
R{Pj2

,φ(j2)}

sj2
.

Proof (Sketch). Let R and s be as above, and let E = I(R
−1

(R)). Then,

1

Λ∗(R, ι(s)){j1,j2}
= inf

{
sj1E(v ◦ ψj1) + sj2E(v ◦ ψj2) : v ∈ Kj1,j2 , v constant on Ṽ

}

= inf
{ sj1z

2

R{Pj1
,φ(j1)}

+
sj2(1 − z)2

R{Pj2
,φ(j2)}

: z ∈ [0, 1]
}
,

for every {j1, j2} ∈ J , where we use formula (2.2) and ii) in the definition of connected
interior fractal triple in the first equality, and i) in the second equality. We conclude using
a simple calculation (resistances in series).

Theorem 3.2 There exist R ∈ Û , s ∈]0,+∞[N and t > 0 such that Λ∗(R, ιt(s)) = R.
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Proof. For R ∈ Û , define σ(R)j := 2R{{Pj},φ(j)} for every j = 1, ..., N . Then,

Λ∗
∞(R, σ(R)){j1,j2} = 1 .

Moreover, σ : Û →]0,+∞[N is continuous by Corollary 2.3. Using Lemma 2.4 and Lemma

3.1, we thus see that, for sufficiently large t, the map R 7→ Λ∗
(
R, ιt

(
σ(R)

))
maps [1 −

δ1, 1 + δ1]
J into itself. As it is continuous, it has a fixed point.

Corollary 3.3 There exist E ∈ D̃ and r ∈W such that Λr(E) = E.

Proof. It suffices to take E = R
−1

(R), where R is as in Theorem 3.2 and r = ιt(s).

Remark 3.4 It follows that the eigenform obtained as above is regular (this means that
ri > ρ for every i = 1, ..., k) as, by a known and standard argument, this is always true
when ri ≤ ri′ when i ≤ N , i′ > N . See for example [4] for the notion of regular eigenform.
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