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Abstract 

     In this paper, we study the following theoretical 

scheduling problem: the tasks of a given application have 

to be statically distributed and executed on the 

heterogeneous servers of a multi-user system on a wide 

area, heterogeneous network, such as Internet. The 

application is divided into a set of communicating tasks 

that may be executed on at least one, and possibly several, 

servers. The processing time of each task depends on the 

server processing it, and the communication delay 

between two tasks depends on the communicating servers. 

Task duplication is allowed. We propose an efficient 

algorithm that first uses a PERT-like algorithm to compute 

the earliest execution dates of each task and then build an 

optimal static solution for this scheduling problem, with a 

low number of tasks duplications. 

 
Keywords: Wide-Area Distributed System, 
Communication Delays, Scheduling, Critical-Path 
Method, Minimal Makespan. 

1  Introduction 

     The development of geographically distributed 
systems, also known as meta-computing systems, or 
wide-area systems, or computational grids, presents 
new opportunities. A growing number of applications 
try to use the offered computational power. Some of 
the current ones include Automated Document 
Factories (ADF) in banking environments where 
several hundred thousands documents are produced 
each day on networks of several multiprocessors 
servers, or high performance Data Mining (DM) 
systems [10] or Grid Computing [9, 11]. However, 
using efficiently these heterogeneous systems is a 
hard problem. 
 

   When the application tasks can be represented by 
Directed Acyclic Graphs (DAGs), many dynamic 
scheduling algorithms have been devised. For some 
examples, see [2, 3, 7].   Also, several static 
algorithms for scheduling DAGs in metacomputing 
systems are described in [4, 6, 13]. Most of them 
suppose that tasks competes for limited processor 
resources, and thus these algorithms are mostly 
heuristics, in [5] is presented an optimal polynomial 
algorithm that schedules the tasks and 
communications of an application on a Virtual 
Distributed System with several clusters levels, 
although, in [8] we studied the static scheduling 
problem where the tasks execution times are positive 
independent random variables, and the 
communication delays between the tasks are 
perfectly known. 
 
     In the first part of this paper, we present the 
following theoretical scheduling problem: the tasks 
of a given application have to be statically distributed 
and executed on the heterogeneous servers of a 
multi-users system on a wide area, heterogeneous 
network, such as Internet. In the following, we call 
this theoretical architecture a Distributed Servers 
System (DSS). The application is divided into a set 
of communicating tasks that may be executed on at 
least one, and possibly several servers of a 
Distributed Servers System. The processing time of 
each task depends on the server processing it, and the 
communication delay between two tasks depends on 
the tasks and on the communicating servers. Task 
duplication, that is the execution of the same task on 
several servers, is allowed. This application is 
represented by an extended Directed Acyclic Graph. 
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     In the second part of this paper, we present 
DSS_OPT. This algorithm is a polynomial algorithm 
that computes the earliest execution date of each task 
on each server of the DSS, and then uses these dates 
to build an optimal static solution that schedules the 
tasks on the servers of the DSS. Although task 
duplication is allowed, the solution found uses a low 
number of executions of the same task on different 
servers. 
 
     Finally, we discuss the validity of our hypothesis 
and conclude with some remarks on the DSS 
scheduling problem and on the DSS_OPT algorithm 
in the last part of our paper. 

2  The data of the central problem 

     In this part, we first define what we call a 
Distributed Servers System. We then present the 
formal definition of our scheduling problem. Next, 
we define what constitutes a feasible solution. 
Finally, we state our optimality conditions. 

2.1 The Distributed Servers System 

     We call Distributed Servers System (DSS) a 
virtual set of geographically distributed, multi-users, 
heterogeneous or not, servers. Therefore, a DSS  has 
the following properties: 
First, the processing time of a task on a DSS may 
vary from a server to another. This may be due to the 
processing power available on each server of the 
DSS for example. The processing time of each task 
on each server is supposedly known.  
 
     Second, although it may be possible that some 
servers of a DSS are potentially able to execute all 
the tasks of an application, it may also be possible in 
some applications that some tasks may not be 
executed by all servers. This could be due to the fact 
that specific hardware is needed to process these 
tasks and that this hardware is not available on some 
servers. Or it could be that some specific data needed 
to compute these tasks are not available on these 
servers for some reason. Or it could be that some 
user input is needed and the user is only located in a 
geographically specific place. Obviously, in our 
problem we suppose that the needs of each task of an 
application are known, and that at least one server of 
the DSS may process it, else there is no possible 
solution to the scheduling problem. 
 
     Furthermore, an important hypothesis is that the 
concurrent executions of some tasks of the 
application on a server have a negligible effect on the 
processing time of any other task of the application 
on the same server. Although apparently far-fetched, 

this hypothesis may hold if the server is a 
multiprocessors architecture with enough processors 
to simultaneously execute all the tasks of the 
application that are to be processed concurrently. Or 
it may be that the server is a time-shared, multi-user 
system with a permanent heavy load coming from 
other applications, and the tasks of an application on 
this server represent a negligible additional load 
compared to the rest. 
 
    In addition, in the network interconnecting the 
servers of a DSS, the transmission delay of a result 
between two tasks varies depending on the tasks and 
on their respective sites.  
 
     Again, we suppose that concurrent 
communications between tasks of the same 
application on two servers have a negligible effect on 
the communication delays between two others tasks 
located on the same two servers. This hypothesis 
may hold if the network already has a permanent 
heavy load due to other applications, and the 
communications of the application represent a 
negligible additional load compared to the one 
already present.  Figure 1 presents un example of a 
DSS. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Example of Distributed Servers System  

 

2.2 Directed Acyclic Graph 

     We now describe the application itself in our 
problem. An application is decomposed into a set of 
indivisible tasks that have to be processed. A task 
may need data or results from other tasks to fulfil its 
function and then send its results to other tasks. The 
transfers of data between the tasks introduce  
dependencies between them. The resulting 
dependencies form a Directed Acyclic Graph. 
 
     Because the servers are not necessarily identical, 
the processing time of a given task can vary from one 
server to the next. 
  

Possible Tasks 
 

task 1 
task 2 
task 4 
task 5 

SERVER σ1 SERVER σ2 

 Possible  Tasks 
 

task 2 
task 3 
task 5 

Possible Tasks 
 

task 1 
task 2 
task 3 
task 5 
task 6 

SERVER σ3 SERVER σ4 

Possible Tasks 
 

task 3 
task 4 
task 5 
task 6 

Network 
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     Furthermore, the duration of the transfer of a 
result on the network cannot be ignored. This 
communication delay is function of the size of the 
data to be transferred and of the transmission speed 
that the network can provide between the involved 
servers. Note that if two dependent tasks are 
processed themselves on the same server, this 
communication delay is considered to be 0.   
   

     The central scheduling problem P on a 
Distributed Server System, is represented therefore 
by the following parameters:   
• a set of servers, noted Σ = {σ1, ..., σs}, 

interconnected by a  network, 
• a set of the tasks of the application, noted I = 

{1,..., n}, to be executed on Σ. The execution of 
task i, i ∈ I, on server σr, σr ∈ Σ, is noted i/σr. 
The subset of the servers able to process task i is 
noted Σi, and may be different from Σ,  

• the processing times of each task i on a server σr 

is a positive value noted 
ri σπ   / . The set of 

processing times of a given task i on all servers 

of Σ is noted  Πi(Σ). 
ri σπ   / = ∞ means that the 

task i cannot be executed by the server σr. 
• a set of the transmissions between the tasks of 

the application, noted U. The transmission of a 
result of an task i, i ∈ I, toward a task j, j ∈ I, is 
noted (i, j). It is supposed in the following that 
the tasks are numbered so that if (i, j) ∈ U, then i 
< j, 

• the communication delays of the transmission of 
the result (i, j) for a task i processed by server σr 
toward a task j processed by server σp is a 

positive value noted 
pr jic σσ /, / . The set of all 

possible communication delays of the 
transmission of the result of task i, toward task j 
is noted ∆i,j(Σ). Note that a zero in ∆i,j(Σ)  mean 

that i and j are on the same server, i.e. 
pr jic σσ /, / = 

0 ⇒ σr  = σp.  And 
pr jic σσ /, / =  ∞ means that 

either task i cannot be executed by server σr, or 
task j cannot be executed by server σp, or both. 

 

     Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all 

processing times of the tasks of P on Σ.   

Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be  the set of all 

communication delays of transmissions (i, j) on Σ. 
  
     The central scheduling problem P on a distributed 
servers system DSS can be modelled by a multi-

valued DAG G = {I, U, Π(Σ),  ∆(Σ)}. In this case we 
note  P={G, Σ}.   Figure 2  is an example with six 
tasks: 
 
 
 
 
 
 

 

 

 

Figure 2: Example of a multi-valued DAG 

 
     On four servers we have Σ = {σ1, σ2, σ3, σ4 }.     If  

Π1 = ( 3333, ∞, 2, ∞),  then the execution time of task 1 on 

server 1 is 1  /1 σπ =3, and the execution time of the same 

task on server 2 is 2  /1 σπ = ∞   that is, the server 2 is 

not able to execute task 1.   If the communications  

between task 1 and task 2 are represented by the 

following matrix ∆1,2  (Table 1): 

 

    σ1 σσσσ2222 σ3 σ4 

σ1 0 3 2 ∞ 

σ2 ∞ ∞ ∞ ∞ 

σσσσ3333 2 3333 0 ∞ 

σ4 ∞ ∞ ∞ ∞ 

Table 1: Example of a communication matrix between the 

tasks 1 and 2 

  

Then, if  task 1 is executed on server σ3 and must send 

its result to task 2 on  server σ2  the communication 

delay c1/σ3, 2/σ2  will be 3. 

2.3 Definition of a feasible solution 

     We note PRED(i), the set of the predecessors of task 
i in G: 

{ } ),(et  / )PRED( UikIkki ∈∈=  
     And we note SUCC(i), the set of the successors of 
task i in G : 

{ } ),(et  / )SUCC( UjiIjji ∈∈=  
     A feasible solution S for the problem P is a subset of 
executions { i/σr , i∈I } with the following  properties:   
   

• each task i of the application is executed at 
least once on at least one server σr of Σi, 

• to each task i of the application executed by a 
server σr of Σi, is associated one positive 

execution date 
rit σ/ , 

• for each execution of a task i on a server σr, 
such that PRED(i) ≠ ∅, there is at least an 
execution of a task k, k ∈PRED(i), on a server 

2 

3 

1 

Π3 

Π2 

Π1 

∆2,4 
4 

5 

6 

Π6 

Π4 

Π5 
∆5,6 

∆4,6 

∆3,5 

∆1,2 

∆1,3 
∆2,5 

∆3,4 
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σp, σp ∈ Σκ, that can transmit its result to server 

σr before the execution date 
rit σ/ .    

 
     The last condition, also known as the Generalized 
Precedence Constraint (GPC) [5], can be expressed 
more formally as:   
 







++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r
cttik

t
Si

σσσσσ

σ

πσ
σ

  /, / / //

/

/),PRED(

0
/

    
else

  )PRED(   if ∅=i  

 
     It means that if a communication must be done 
between two scheduled tasks, there is at least one 
execution of the first task on a server with enough delay 
between the end of this task and the beginning of the 
second one for the communication to take place. 
 
     A feasible solution S for the problem P is therefore a 
set of executions i/σr of all i tasks, i ∈ I, scheduled at 

their dates 
rit σ/ , and verifying the Generalised 

Precedence Constraints GPC. 
 
     Note that, in a feasible solution, several servers may 
simultaneously or not execute the same task. This may 
be useful to generate less communications.   All the 
executed tasks in this feasible solution, however, must 
respect the Generalized Dependence Constraints. 

2.4 Optimality Condition  

     Let T be the total processing time of an application 
(also known as the makespan of the application) in a 
feasible solution S, with T defined as  

 

)(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 

 

     A feasible solution S* of the problem P modelled by 
a DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total 
processing time T* is minimal. That is, it does not exist 
any feasible solution S with a total processing time T 
such that T < T*. 

3  The DSS_OPT Algorithm 

3.1 Presentation 

     Let P be a DSS scheduling problem, and let G = {I, 
U, Π(Σ),  ∆(Σ)} be its DAG.  
 
     One can first note that there is an optimal trivial 
solution to this DSS scheduling problem. In this trivial 
solution, all possible tasks are executed on all possible 
servers, and their results are then broadcasted to all 
other tasks that may need them on all others servers. 
This is an obvious waste of processing power and 
communication resources, however, and something 
better and more efficient is usually needed.  

 
     So, we now present DSS_OPT(P), a new polynomial 
algorithm that builds an optimal solution for problem P. 

 

     DSS_OPT has two phases. 
 
     The first phase, DSS_LWB(P), computes the earliest 

feasible execution dates 
r / ib σ  for all possible 

executions i/σr  of each task  i of problem P. 
 
     The second phase determines, for every task i that 
does not have any successor in P, the execution i/σr 

ending at the earliest possible date 
r / ib σ . If several 

executions of task i end at the same smallest date 
r / ib σ , 

one is chosen, arbitrarily or using other criteria of 
convenience, and kept in the solution. Then, for each 
kept execution i/σr that has at least one predecessor in 
the application, the subset Li of the executions of its 
predecessors that satisfy GPC(i/σr) is established. This 
subset of executions of predecessors of i contains at 
least an execution of each of its predecessors in G. One 
execution k/σp of every predecessor task k of task i is 
chosen in the subset, arbitrarily or using other criteria of 
convenience, and kept in the solution. It is executed at 

date 
p / kb σ .   The examination of the predecessors is 

pursued in a recursive manner until the studied tasks do 
not present any predecessors in G.   The complete 
algorithm is the following 
 
DSS_OPT (P) 

1: DSS_LWB (P)     
                                 // first phase 

2: )(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=  

3: for all tasks i such that SUCC(i) = ∅ 
                                // second phase 

4: iL  ← { i/σr / σr ∈ Σι   and  Tr
ri ≤σ/ } 

5:            i/σr  ←  keepOnefrom( iL ) 

6:           schedule (i/σr) 
end  DSS_OPT 

 
DSS_LWB(P) 

1: For each task i where PRED(i) = ∅  do 
2:      for each server σr  such that  σr ∈ Σi  do 

3: 0/ ←
rib σ  

4: 
rr iir σ/ / πσ ←  

         end for 

5:     mark (i) 
      end for 

 

6: while there is a non marked task i such that 
 all its predecessors  k in G  are marked  do 

 

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 - 

2 
N

ov
 2

00
9



 

7:  for each  server  σr  such that  σr ∈ Σi   do 

    )(minmax /,///
)(PRED

/ rppp
kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

 

9: 
rrr iii br σσσ π /// +←  

     end for 

 

10:  mark (i) 
   end while 

 

end DSS_LWB(P) 

 
schedule(i/σσσσr) 

1:execute the task i at the date 
rib σ/ on the server σr   

2:  if  PRED(i) ≠ ∅ then 
3:     for each task  k  such that  k ∈ PRED(i)  do 

4: ri

kL
σ/

← { k/σq    /   σp ∈ Σκ   and   

                        
rrppp iikkk bcb σσσσσ π //,/// ≤++ } 

5:  k/σq ← keepOneFrom( ri

kL
σ/

) 

6:  schedule (k/σq) 
         end for 

      end if 

end schedule 

 
keepOneFrom(Li) 

       return an execution i/σr of task i in the list of the 
       executions Li.   
end keepOneFrom. 

3.2 Example of application     

     Let P be a DSS scheduling problem, and its DAG  G be 
the following  DAG  
 
 
 
 
 
 
 

 

Figure 3: DAG of the problem P 

 
     Thus, the P problem has 6 distributed tasks, I = {1, 

2, 3, 4, 5, 6}, we also suppose that four servers are 
available, Σ = {σ1, σ2, σ3, σ4}, with the following 
processing times (Table 2): 

ri σπ   /  σ1 σ2 σ3 σ4 

1 3 ∞ 2 ∞ 
2 2 4 3 ∞ 
3 ∞ 2 2 2 

4 4 ∞ ∞ 2 

5 2 3 2 4 

6 ∞ ∞ 2 3 

Table 2: Processing times matrix for the problem P 

 
And with the following communication delays (Table 3): 

(1, 2) σ1 σ2 σ3 σ4  (1, 3) σ1 σ2 σ3 σ4 
σ1 0 3 2 ∞  σ1 ∞ 2 4 1 
σ2 ∞ ∞ ∞ ∞  σ2 ∞ ∞ ∞ ∞ 
σ3 2 3 0 ∞  σ3 ∞ 2 0 3 

σ4 ∞ ∞ ∞ ∞  σ4 ∞ ∞ ∞ ∞ 
           
(2, 4) σ1 σ2 σ3 σ4  (2, 5) σ1 σ2 σ3 σ4 

σ1 0 ∞ ∞ 3  σ1 0 2 2 2 
σ2 1 ∞ ∞ 2  σ2 3 0 1 2 
σ3 3 ∞ ∞ 3  σ3 1 2 0 3 

σ4 ∞ ∞ ∞ ∞  σ4 ∞ ∞ ∞ ∞ 

           
(3, 4) σ1 σ2 σ3 σ4  (3, 5) σ1 σ2 σ3 σ4 

σ1 0 ∞ ∞ ∞  σ1 ∞ ∞ ∞ ∞ 
σ2 2 ∞ ∞ 1  σ2 2 0 2 2 
σ3 3 ∞ ∞ 2  σ3 3 1 0 4 

σ4 1 ∞ ∞ 0  σ4 2 1 1 0 
           
(4, 6) σ1 σ2 σ3 σ4  (5, 6) σ1 σ2 σ3 σ4 

σ1 ∞ ∞ 1 2  σ1 ∞ ∞ 3 2 
σ2 ∞ ∞ ∞ ∞  σ2 ∞ ∞ 2 2 
σ3 ∞ ∞ ∞ ∞  σ3 ∞ ∞ 0 1 

σ4 ∞ ∞ 2 0  σ4 ∞ ∞ 1 0 
Table 3: Complete  communication times matrix for the 

problem P 

 
     For example for the arc (5, 6), if the task 5 is 
executed on the server σ1 and must send its result to the 
task 6 on the server σ3  the communication delay 

31 65c σσ /,/  will be 3.  

 
      The algorithm uses DSS_LWB to compute the 
earliest possible execution date of all tasks on all 
possible servers, resulting in the following values b and  

r (Table 4): 
 

1 b1 r1  2 b2 r2  3 b3 r3 
σ1 0 3  σ1 3 5  σ1 ∞ ∞ 
σ2 ∞ ∞  σ2 5 9  σ2 4 6 

σ3 0 2  σ3 2 5  σ3 2 4 

σ4 ∞ ∞  σ4 ∞ ∞  σ4 4 6 
           

4 b4 r4  5 b5 r5  6 b6 r6 
σ1 7 11  σ1 7 9  σ1 ∞ ∞ 
σ2 ∞ ∞  σ2 7 10  σ2 ∞ ∞ 
σ3 ∞ ∞  σ3 5 7  σ3 12 14 

σ4 8 10  σ4 7 11  σ4 10 13 
Table 4: The earliest possible execution date of all tasks 

on all possible servers  for the problem P 

 
     It then computes the smallest makespan of any 
solution to the P problem : 
 

13) ,min(max)(minmax ///
)(SUCC/

===
Σ∈∀∅=∀

43r

ir

66i
ii

rrrT σσσ
σ

 

2 

3 

1 

4 

5 

6 
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     In the example, only task 6 does not have any 
successor. The list L6 of the executions kept for this task 
in the solution is reduced therefore to the execution 6/σ4 
. Thus  L6 = {6/σ4}.     The execution of task 6 on the 
server σ4  is scheduled at date 10.  
 
     Next, The tasks 4 and 5 are the predecessors in G of 
task 6. For the task 4, only the execution 4/σ4  may 
satisfy the Generalised Precedence Constraints relative 
to 6/σ4 . Therefore, this execution is kept and is 

scheduled at date
44b σ/ . For task 5, execution 5/σ3  is 

kept and is scheduled at date 
35b σ/ … 

     The table 5 presents the final executions i/σr kept by 
the DSS_OPT(P) algorithm, with their date of 
execution, in an optimal solution S. 
 

 1/σ3 2/σ3 3/σ3 4/σ4 5/σ3 6/σ4 

rib σ/  0 2 2 8 5 10 

rir σ/  2 5 4 10 7 13 

Table 5:  final executions i/σr kept by the DSS_OPT(P) 

algorithm 

 
     Finally, we obtain (figure 4) the following optimal 
scheduling : 
 

0 1 2 3 4 5 6 7 8 9 10 11 12 13

 
figure 4:  An optimal scheduling  S*  for the problem P 

3.3 Complexity 

     The most computationally intensive part of 
DSS_OPT(P) is the first part DSS_LWB(P). In this 
part, for each task i, for each server executing i, for 
each predecessor j of i, for each server executing j, a 
small computation is done. Thus the complexity of 
DSS_LWB(P) is Ο(n2

s
2), where n is the number of 

tasks in P, and s is the number of servers in DSS. 
 
     Thus, the global complexity of the DSS_OPT(P) 
algorithm is Ο(n2

s
2). 

4  Discussion 

     As usual in all PERT or critical-path methods, the 
various processing times and communications delays 
of each task on each server are supposedly known. 
While these processing times and communication 
delays may easily be determined in some numerical 
applications, they may be much harder to estimate in 
others. This is a well-known problem of all PERT 
methods, and various means must sometimes be used 
to get estimates of these data [12]. 
 
     Furthermore, an important hypothesis in our 
problem is that the concurrent executions of some 
tasks of the application on a server have none or a 
negligible effect on the processing time of any other 
task of the application on the same server. Although 
apparently far-fetched, this hypothesis may hold if 
the server is a multiprocessors architecture with 
enough processors to simultaneously execute all the 
tasks that are to be processed concurrently. Or it may 
be that the server is a time-shared, multi-user system 
with a permanent heavy load coming from other 
applications, and the tasks of an application on this 
server represent a negligible additional load 
compared to the rest. If this is not the case, then this 
hypothesis is still similar to the non limited number 
of available processors hypothesis present in all 
classical PERT problems. And as in the classical 
PERT problems, our earliest execution dates of each 
task may be used as priority values to  build priority 
lists for list scheduling algorithms or heuristics. 
 
     Also, as already noted when introducing 
DSS_OPT, there is an optimal trivial solution to the 
DSS scheduling problem. In this trivial solution, all 
possible tasks are executed on all possible servers, 
and their results are then broadcasted to all other 
tasks that may need them on all others servers. For 
any real application, with many tasks and 
communications, this is a tremendous waste of 
processing power and communication resources, 
however. By contrast, our solution has the same total 
execution time but uses a much more limited number 
of tasks duplication, if any. 
 
     Additionally, one can note that the DSS_LWB(P) 
part itself is an extension of the VDS_OPT algorithm 
[1, 5], that are themselves extensions of the classical 
PERT algorithm to DAGs with communication 
delays. However, the hard condition that processing 
times must be superior or equal to communication 
delays in the VDS_OPT problem for the problem to 
be computationally tractable, even with a non limited 
number of processors, does not hold in the problem 
studied here. The reason is that we suppose that 

σ4 

σ3 

  σ3 

1/σ3 

3/σ3 

2/σ3 5/σ3 

4/σ4 6/σ4 

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 - 

2 
N

ov
 2

00
9



 

several tasks can concurrently be executed on the 
same server with no effects, or with negligible 
effects on their processing times. 
 
     On a different aspect, note that the selection of the 
task to be kept from the list Li of possible tasks is not 
attached to a particular policy or strategy. That is, 
any choice, even a random one, is possible in this list 
and will still result in an optimal solution. Thus, it is 
possible to use a more sophisticated policy to try to 
minimize a second criteria, if one is present. For 
example, if a money cost is associated to the 
execution of a given task on a given server, then a 
good choice will try to choose cheap executions to 
pay the smallest total execution price that still gives 
the minimal global execution time. The analysis of 
such multi-criteria problems needs more work 
however. 
 
     Finally, it may also be possible to improve the 
fault-tolerant aspects of a solution by keeping more 
tasks than necessary in the final solution, so as to 
have back-up tasks on other servers if the efficient 
ones fail. Worst-cases scenarios may then be studied 
and their additional costs and resulting loss of 
performances evaluated. Again, more work is needed 
on this subject. 

5  Conclusions 

     In this paper, we studied the problem of 
scheduling the tasks of an application on the many 
heterogeneous servers of a multi-users system 
distributed on a heterogeneous network. The 
application is divided into communicating tasks that 
can be executed on at least one, and possibly several 
servers, with variable processing times depending on 
the chosen servers, and variable communication 
delays depending on the servers that communicate. 
We proposed an efficient algorithm that uses an 
extended DAG to build a static solution with a 
minimal makespan to this scheduling problem, with 
minimal number of task duplication or without task 
duplication at all. In our future work, we intend to 
study further both the multi-criteria problem and also 
the fault tolerant aspects evoked in the discussion 
part. 
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