
HAL Id: hal-00429449
https://hal.science/hal-00429449

Submitted on 3 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-valued DAG model and an optimal PERT-like
Algorithm for the Distribution of Applications on

Heterogeneous Computing Systems
Jean-Yves Colin, Moustafa Nakechbandi, Patrice Colin

To cite this version:
Jean-Yves Colin, Moustafa Nakechbandi, Patrice Colin. A multi-valued DAG model and an opti-
mal PERT-like Algorithm for the Distribution of Applications on Heterogeneous Computing Systems.
PDPTA’05 : International Conference on Parallel and Distributed Processing Techniques and Appli-
cations, Jun 2005, Las Vegas, United States. pp.876-882. �hal-00429449�

https://hal.science/hal-00429449
https://hal.archives-ouvertes.fr

Communication PDPTA'05 : The 2005 International Conference on Parallel and Distributed Processing Techniques and

Applications, Las Vegas, Nevada, USA, pp 876-882 (2005)..

A multi-valued DAG model and an optimal PERT-like

Algorithm for the Distribution of Applications on

Heterogeneous Computing Systems

J.-Y. Colin , M. Nakechbandi, P. Colin

LIH - Laboratoire d'Informatique du Havre, UFR Sciences et Techniques,
25 rue Ph. Lebon - BP 540, 76058 Le Havre Cedex - FRANCE

email : jean-yves.colin@univ-lehavre.fr, moustafa.nakechbandi@univ-lehavre.fr

Abstract

 In this paper, we study the following theoretical

scheduling problem: the tasks of a given application have

to be statically distributed and executed on the

heterogeneous servers of a multi-user system on a wide

area, heterogeneous network, such as Internet. The

application is divided into a set of communicating tasks

that may be executed on at least one, and possibly several,

servers. The processing time of each task depends on the

server processing it, and the communication delay

between two tasks depends on the communicating servers.

Task duplication is allowed. We propose an efficient

algorithm that first uses a PERT-like algorithm to compute

the earliest execution dates of each task and then build an

optimal static solution for this scheduling problem, with a

low number of tasks duplications.

Keywords: Wide-Area Distributed System,
Communication Delays, Scheduling, Critical-Path
Method, Minimal Makespan.

1 Introduction

 The development of geographically distributed
systems, also known as meta-computing systems, or
wide-area systems, or computational grids, presents
new opportunities. A growing number of applications
try to use the offered computational power. Some of
the current ones include Automated Document
Factories (ADF) in banking environments where
several hundred thousands documents are produced
each day on networks of several multiprocessors
servers, or high performance Data Mining (DM)
systems [10] or Grid Computing [9, 11]. However,
using efficiently these heterogeneous systems is a
hard problem.

 When the application tasks can be represented by
Directed Acyclic Graphs (DAGs), many dynamic
scheduling algorithms have been devised. For some
examples, see [2, 3, 7]. Also, several static
algorithms for scheduling DAGs in metacomputing
systems are described in [4, 6, 13]. Most of them
suppose that tasks competes for limited processor
resources, and thus these algorithms are mostly
heuristics, in [5] is presented an optimal polynomial
algorithm that schedules the tasks and
communications of an application on a Virtual
Distributed System with several clusters levels,
although, in [8] we studied the static scheduling
problem where the tasks execution times are positive
independent random variables, and the
communication delays between the tasks are
perfectly known.

 In the first part of this paper, we present the
following theoretical scheduling problem: the tasks
of a given application have to be statically distributed
and executed on the heterogeneous servers of a
multi-users system on a wide area, heterogeneous
network, such as Internet. In the following, we call
this theoretical architecture a Distributed Servers
System (DSS). The application is divided into a set
of communicating tasks that may be executed on at
least one, and possibly several servers of a
Distributed Servers System. The processing time of
each task depends on the server processing it, and the
communication delay between two tasks depends on
the tasks and on the communicating servers. Task
duplication, that is the execution of the same task on
several servers, is allowed. This application is
represented by an extended Directed Acyclic Graph.

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

Author manuscript, published in "PDPTA'05 : International Conference on Parallel and Distributed Processing Techniques and
Applications, Las Vegas : United States (2005)"

http://hal.archives-ouvertes.fr/hal-00429449/fr/
http://hal.archives-ouvertes.fr

 In the second part of this paper, we present
DSS_OPT. This algorithm is a polynomial algorithm
that computes the earliest execution date of each task
on each server of the DSS, and then uses these dates
to build an optimal static solution that schedules the
tasks on the servers of the DSS. Although task
duplication is allowed, the solution found uses a low
number of executions of the same task on different
servers.

 Finally, we discuss the validity of our hypothesis
and conclude with some remarks on the DSS
scheduling problem and on the DSS_OPT algorithm
in the last part of our paper.

2 The data of the central problem

 In this part, we first define what we call a
Distributed Servers System. We then present the
formal definition of our scheduling problem. Next,
we define what constitutes a feasible solution.
Finally, we state our optimality conditions.

2.1 The Distributed Servers System

 We call Distributed Servers System (DSS) a
virtual set of geographically distributed, multi-users,
heterogeneous or not, servers. Therefore, a DSS has
the following properties:
First, the processing time of a task on a DSS may
vary from a server to another. This may be due to the
processing power available on each server of the
DSS for example. The processing time of each task
on each server is supposedly known.

 Second, although it may be possible that some
servers of a DSS are potentially able to execute all
the tasks of an application, it may also be possible in
some applications that some tasks may not be
executed by all servers. This could be due to the fact
that specific hardware is needed to process these
tasks and that this hardware is not available on some
servers. Or it could be that some specific data needed
to compute these tasks are not available on these
servers for some reason. Or it could be that some
user input is needed and the user is only located in a
geographically specific place. Obviously, in our
problem we suppose that the needs of each task of an
application are known, and that at least one server of
the DSS may process it, else there is no possible
solution to the scheduling problem.

 Furthermore, an important hypothesis is that the
concurrent executions of some tasks of the
application on a server have a negligible effect on the
processing time of any other task of the application
on the same server. Although apparently far-fetched,

this hypothesis may hold if the server is a
multiprocessors architecture with enough processors
to simultaneously execute all the tasks of the
application that are to be processed concurrently. Or
it may be that the server is a time-shared, multi-user
system with a permanent heavy load coming from
other applications, and the tasks of an application on
this server represent a negligible additional load
compared to the rest.

 In addition, in the network interconnecting the
servers of a DSS, the transmission delay of a result
between two tasks varies depending on the tasks and
on their respective sites.

 Again, we suppose that concurrent
communications between tasks of the same
application on two servers have a negligible effect on
the communication delays between two others tasks
located on the same two servers. This hypothesis
may hold if the network already has a permanent
heavy load due to other applications, and the
communications of the application represent a
negligible additional load compared to the one
already present. Figure 1 presents un example of a
DSS.

Figure 1: Example of Distributed Servers System

2.2 Directed Acyclic Graph

 We now describe the application itself in our
problem. An application is decomposed into a set of
indivisible tasks that have to be processed. A task
may need data or results from other tasks to fulfil its
function and then send its results to other tasks. The
transfers of data between the tasks introduce
dependencies between them. The resulting
dependencies form a Directed Acyclic Graph.

 Because the servers are not necessarily identical,
the processing time of a given task can vary from one
server to the next.

Possible Tasks

task 1
task 2
task 4
task 5

SERVER σ1 SERVER σ2

 Possible Tasks

task 2
task 3
task 5

Possible Tasks

task 1
task 2
task 3
task 5
task 6

SERVER σ3 SERVER σ4

Possible Tasks

task 3
task 4
task 5
task 6

Network

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

 Furthermore, the duration of the transfer of a
result on the network cannot be ignored. This
communication delay is function of the size of the
data to be transferred and of the transmission speed
that the network can provide between the involved
servers. Note that if two dependent tasks are
processed themselves on the same server, this
communication delay is considered to be 0.

 The central scheduling problem P on a
Distributed Server System, is represented therefore
by the following parameters:
• a set of servers, noted Σ = {σ1, ..., σs},

interconnected by a network,
• a set of the tasks of the application, noted I =

{1,..., n}, to be executed on Σ. The execution of
task i, i ∈ I, on server σr, σr ∈ Σ, is noted i/σr.
The subset of the servers able to process task i is
noted Σi, and may be different from Σ,

• the processing times of each task i on a server σr

is a positive value noted
ri σπ / . The set of

processing times of a given task i on all servers

of Σ is noted Πi(Σ).
ri σπ / = ∞ means that the

task i cannot be executed by the server σr.
• a set of the transmissions between the tasks of

the application, noted U. The transmission of a
result of an task i, i ∈ I, toward a task j, j ∈ I, is
noted (i, j). It is supposed in the following that
the tasks are numbered so that if (i, j) ∈ U, then i
< j,

• the communication delays of the transmission of
the result (i, j) for a task i processed by server σr
toward a task j processed by server σp is a

positive value noted
pr jic σσ /, / . The set of all

possible communication delays of the
transmission of the result of task i, toward task j
is noted ∆i,j(Σ). Note that a zero in ∆i,j(Σ) mean

that i and j are on the same server, i.e.
pr jic σσ /, / =

0 ⇒ σr = σp. And
pr jic σσ /, / = ∞ means that

either task i cannot be executed by server σr, or
task j cannot be executed by server σp, or both.

 Let Π (Σ) = U
Ii∈

Πi (Σ) be the set of all

processing times of the tasks of P on Σ.

Let ∆ (Σ) = U
Uji ∈),(

∆i,j (Σ) be the set of all

communication delays of transmissions (i, j) on Σ.

 The central scheduling problem P on a distributed
servers system DSS can be modelled by a multi-

valued DAG G = {I, U, Π(Σ), ∆(Σ)}. In this case we
note P={G, Σ}. Figure 2 is an example with six
tasks:

Figure 2: Example of a multi-valued DAG

 On four servers we have Σ = {σ1, σ2, σ3, σ4 }. If

Π1 = (3333, ∞, 2, ∞), then the execution time of task 1 on

server 1 is 1 /1 σπ =3, and the execution time of the same

task on server 2 is 2 /1 σπ = ∞ that is, the server 2 is

not able to execute task 1. If the communications

between task 1 and task 2 are represented by the

following matrix ∆1,2 (Table 1):

 σ1 σσσσ2222 σ3 σ4

σ1 0 3 2 ∞

σ2 ∞ ∞ ∞ ∞

σσσσ3333 2 3333 0 ∞

σ4 ∞ ∞ ∞ ∞

Table 1: Example of a communication matrix between the

tasks 1 and 2

Then, if task 1 is executed on server σ3 and must send

its result to task 2 on server σ2 the communication

delay c1/σ3, 2/σ2 will be 3.

2.3 Definition of a feasible solution

 We note PRED(i), the set of the predecessors of task
i in G:

{ }),(et /)PRED(UikIkki ∈∈=
 And we note SUCC(i), the set of the successors of
task i in G :

{ }),(et /)SUCC(UjiIjji ∈∈=
 A feasible solution S for the problem P is a subset of
executions { i/σr , i∈I } with the following properties:

• each task i of the application is executed at
least once on at least one server σr of Σi,

• to each task i of the application executed by a
server σr of Σi, is associated one positive

execution date
rit σ/ ,

• for each execution of a task i on a server σr,
such that PRED(i) ≠ ∅, there is at least an
execution of a task k, k ∈PRED(i), on a server

2

3

1

Π3

Π2

Π1

∆2,4
4

5

6

Π6

Π4

Π5
∆5,6

∆4,6

∆3,5

∆1,2

∆1,3
∆2,5

∆3,4

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

σp, σp ∈ Σκ, that can transmit its result to server

σr before the execution date
rit σ/ .

 The last condition, also known as the Generalized
Precedence Constraint (GPC) [5], can be expressed
more formally as:







++≥Σ∈∃∈∀

≥
∈∀

rpppr

r

ikkkikp

i

r
cttik

t
Si

σσσσσ

σ

πσ
σ

 /, / / //

/

/),PRED(

0
/

else

)PRED(if ∅=i

 It means that if a communication must be done
between two scheduled tasks, there is at least one
execution of the first task on a server with enough delay
between the end of this task and the beginning of the
second one for the communication to take place.

 A feasible solution S for the problem P is therefore a
set of executions i/σr of all i tasks, i ∈ I, scheduled at

their dates
rit σ/ , and verifying the Generalised

Precedence Constraints GPC.

 Note that, in a feasible solution, several servers may
simultaneously or not execute the same task. This may
be useful to generate less communications. All the
executed tasks in this feasible solution, however, must
respect the Generalized Dependence Constraints.

2.4 Optimality Condition

 Let T be the total processing time of an application
(also known as the makespan of the application) in a
feasible solution S, with T defined as

)(max // rr

r

ii
Si/

tT σσ
σ

π+=
∈

 A feasible solution S* of the problem P modelled by
a DAG G = {I, U, Π(Σ), ∆(Σ)} is optimal if its total
processing time T* is minimal. That is, it does not exist
any feasible solution S with a total processing time T
such that T < T*.

3 The DSS_OPT Algorithm

3.1 Presentation

 Let P be a DSS scheduling problem, and let G = {I,
U, Π(Σ), ∆(Σ)} be its DAG.

 One can first note that there is an optimal trivial
solution to this DSS scheduling problem. In this trivial
solution, all possible tasks are executed on all possible
servers, and their results are then broadcasted to all
other tasks that may need them on all others servers.
This is an obvious waste of processing power and
communication resources, however, and something
better and more efficient is usually needed.

 So, we now present DSS_OPT(P), a new polynomial
algorithm that builds an optimal solution for problem P.

 DSS_OPT has two phases.

 The first phase, DSS_LWB(P), computes the earliest

feasible execution dates
r / ib σ for all possible

executions i/σr of each task i of problem P.

 The second phase determines, for every task i that
does not have any successor in P, the execution i/σr

ending at the earliest possible date
r / ib σ . If several

executions of task i end at the same smallest date
r / ib σ ,

one is chosen, arbitrarily or using other criteria of
convenience, and kept in the solution. Then, for each
kept execution i/σr that has at least one predecessor in
the application, the subset Li of the executions of its
predecessors that satisfy GPC(i/σr) is established. This
subset of executions of predecessors of i contains at
least an execution of each of its predecessors in G. One
execution k/σp of every predecessor task k of task i is
chosen in the subset, arbitrarily or using other criteria of
convenience, and kept in the solution. It is executed at

date
p / kb σ . The examination of the predecessors is

pursued in a recursive manner until the studied tasks do
not present any predecessors in G. The complete
algorithm is the following

DSS_OPT (P)

1: DSS_LWB (P)
 // first phase

2:)(minmax /
)(SUCC/ r

ir

i
ii

rT σ
σ Σ∈∀∅=∀

=

3: for all tasks i such that SUCC(i) = ∅
 // second phase

4: iL ← { i/σr / σr ∈ Σι and Tr
ri ≤σ/ }

5: i/σr ← keepOnefrom(iL)

6: schedule (i/σr)
end DSS_OPT

DSS_LWB(P)

1: For each task i where PRED(i) = ∅ do
2: for each server σr such that σr ∈ Σi do

3: 0/ ←
rib σ

4:
rr iir σ/ / πσ ←

 end for

5: mark (i)
 end for

6: while there is a non marked task i such that
 all its predecessors k in G are marked do

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

7: for each server σr such that σr ∈ Σi do

)(minmax /,///
)(PRED

/ rppp
kp

r ikkk
ik

i cbb σσσσ
σ

σ π ++←
Σ∈∀∈∀

9:
rrr iii br σσσ π /// +←

 end for

10: mark (i)
 end while

end DSS_LWB(P)

schedule(i/σσσσr)

1:execute the task i at the date
rib σ/ on the server σr

2: if PRED(i) ≠ ∅ then
3: for each task k such that k ∈ PRED(i) do

4: ri

kL
σ/

← { k/σq / σp ∈ Σκ and

rrppp iikkk bcb σσσσσ π //,/// ≤++ }

5: k/σq ← keepOneFrom(ri

kL
σ/

)

6: schedule (k/σq)
 end for

 end if

end schedule

keepOneFrom(Li)

 return an execution i/σr of task i in the list of the
 executions Li.
end keepOneFrom.

3.2 Example of application

 Let P be a DSS scheduling problem, and its DAG G be
the following DAG

Figure 3: DAG of the problem P

 Thus, the P problem has 6 distributed tasks, I = {1,

2, 3, 4, 5, 6}, we also suppose that four servers are
available, Σ = {σ1, σ2, σ3, σ4}, with the following
processing times (Table 2):

ri σπ / σ1 σ2 σ3 σ4

1 3 ∞ 2 ∞
2 2 4 3 ∞
3 ∞ 2 2 2

4 4 ∞ ∞ 2

5 2 3 2 4

6 ∞ ∞ 2 3

Table 2: Processing times matrix for the problem P

And with the following communication delays (Table 3):

(1, 2) σ1 σ2 σ3 σ4 (1, 3) σ1 σ2 σ3 σ4
σ1 0 3 2 ∞ σ1 ∞ 2 4 1
σ2 ∞ ∞ ∞ ∞ σ2 ∞ ∞ ∞ ∞
σ3 2 3 0 ∞ σ3 ∞ 2 0 3

σ4 ∞ ∞ ∞ ∞ σ4 ∞ ∞ ∞ ∞

(2, 4) σ1 σ2 σ3 σ4 (2, 5) σ1 σ2 σ3 σ4

σ1 0 ∞ ∞ 3 σ1 0 2 2 2
σ2 1 ∞ ∞ 2 σ2 3 0 1 2
σ3 3 ∞ ∞ 3 σ3 1 2 0 3

σ4 ∞ ∞ ∞ ∞ σ4 ∞ ∞ ∞ ∞

(3, 4) σ1 σ2 σ3 σ4 (3, 5) σ1 σ2 σ3 σ4

σ1 0 ∞ ∞ ∞ σ1 ∞ ∞ ∞ ∞
σ2 2 ∞ ∞ 1 σ2 2 0 2 2
σ3 3 ∞ ∞ 2 σ3 3 1 0 4

σ4 1 ∞ ∞ 0 σ4 2 1 1 0

(4, 6) σ1 σ2 σ3 σ4 (5, 6) σ1 σ2 σ3 σ4

σ1 ∞ ∞ 1 2 σ1 ∞ ∞ 3 2
σ2 ∞ ∞ ∞ ∞ σ2 ∞ ∞ 2 2
σ3 ∞ ∞ ∞ ∞ σ3 ∞ ∞ 0 1

σ4 ∞ ∞ 2 0 σ4 ∞ ∞ 1 0
Table 3: Complete communication times matrix for the

problem P

 For example for the arc (5, 6), if the task 5 is
executed on the server σ1 and must send its result to the
task 6 on the server σ3 the communication delay

31 65c σσ /,/ will be 3.

 The algorithm uses DSS_LWB to compute the
earliest possible execution date of all tasks on all
possible servers, resulting in the following values b and

r (Table 4):

1 b1 r1 2 b2 r2 3 b3 r3
σ1 0 3 σ1 3 5 σ1 ∞ ∞
σ2 ∞ ∞ σ2 5 9 σ2 4 6

σ3 0 2 σ3 2 5 σ3 2 4

σ4 ∞ ∞ σ4 ∞ ∞ σ4 4 6

4 b4 r4 5 b5 r5 6 b6 r6
σ1 7 11 σ1 7 9 σ1 ∞ ∞
σ2 ∞ ∞ σ2 7 10 σ2 ∞ ∞
σ3 ∞ ∞ σ3 5 7 σ3 12 14

σ4 8 10 σ4 7 11 σ4 10 13
Table 4: The earliest possible execution date of all tasks

on all possible servers for the problem P

 It then computes the smallest makespan of any
solution to the P problem :

13) ,min(max)(minmax ///
)(SUCC/

===
Σ∈∀∅=∀

43r

ir

66i
ii

rrrT σσσ
σ

2

3

1

4

5

6

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

 In the example, only task 6 does not have any
successor. The list L6 of the executions kept for this task
in the solution is reduced therefore to the execution 6/σ4
. Thus L6 = {6/σ4}. The execution of task 6 on the
server σ4 is scheduled at date 10.

 Next, The tasks 4 and 5 are the predecessors in G of
task 6. For the task 4, only the execution 4/σ4 may
satisfy the Generalised Precedence Constraints relative
to 6/σ4 . Therefore, this execution is kept and is

scheduled at date
44b σ/ . For task 5, execution 5/σ3 is

kept and is scheduled at date
35b σ/ …

 The table 5 presents the final executions i/σr kept by
the DSS_OPT(P) algorithm, with their date of
execution, in an optimal solution S.

 1/σ3 2/σ3 3/σ3 4/σ4 5/σ3 6/σ4

rib σ/ 0 2 2 8 5 10

rir σ/ 2 5 4 10 7 13

Table 5: final executions i/σr kept by the DSS_OPT(P)

algorithm

 Finally, we obtain (figure 4) the following optimal
scheduling :

0 1 2 3 4 5 6 7 8 9 10 11 12 13

figure 4: An optimal scheduling S* for the problem P

3.3 Complexity

 The most computationally intensive part of
DSS_OPT(P) is the first part DSS_LWB(P). In this
part, for each task i, for each server executing i, for
each predecessor j of i, for each server executing j, a
small computation is done. Thus the complexity of
DSS_LWB(P) is Ο(n2

s
2), where n is the number of

tasks in P, and s is the number of servers in DSS.

 Thus, the global complexity of the DSS_OPT(P)
algorithm is Ο(n2

s
2).

4 Discussion

 As usual in all PERT or critical-path methods, the
various processing times and communications delays
of each task on each server are supposedly known.
While these processing times and communication
delays may easily be determined in some numerical
applications, they may be much harder to estimate in
others. This is a well-known problem of all PERT
methods, and various means must sometimes be used
to get estimates of these data [12].

 Furthermore, an important hypothesis in our
problem is that the concurrent executions of some
tasks of the application on a server have none or a
negligible effect on the processing time of any other
task of the application on the same server. Although
apparently far-fetched, this hypothesis may hold if
the server is a multiprocessors architecture with
enough processors to simultaneously execute all the
tasks that are to be processed concurrently. Or it may
be that the server is a time-shared, multi-user system
with a permanent heavy load coming from other
applications, and the tasks of an application on this
server represent a negligible additional load
compared to the rest. If this is not the case, then this
hypothesis is still similar to the non limited number
of available processors hypothesis present in all
classical PERT problems. And as in the classical
PERT problems, our earliest execution dates of each
task may be used as priority values to build priority
lists for list scheduling algorithms or heuristics.

 Also, as already noted when introducing
DSS_OPT, there is an optimal trivial solution to the
DSS scheduling problem. In this trivial solution, all
possible tasks are executed on all possible servers,
and their results are then broadcasted to all other
tasks that may need them on all others servers. For
any real application, with many tasks and
communications, this is a tremendous waste of
processing power and communication resources,
however. By contrast, our solution has the same total
execution time but uses a much more limited number
of tasks duplication, if any.

 Additionally, one can note that the DSS_LWB(P)
part itself is an extension of the VDS_OPT algorithm
[1, 5], that are themselves extensions of the classical
PERT algorithm to DAGs with communication
delays. However, the hard condition that processing
times must be superior or equal to communication
delays in the VDS_OPT problem for the problem to
be computationally tractable, even with a non limited
number of processors, does not hold in the problem
studied here. The reason is that we suppose that

σ4

σ3

 σ3

1/σ3

3/σ3

2/σ3 5/σ3

4/σ4 6/σ4

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

several tasks can concurrently be executed on the
same server with no effects, or with negligible
effects on their processing times.

 On a different aspect, note that the selection of the
task to be kept from the list Li of possible tasks is not
attached to a particular policy or strategy. That is,
any choice, even a random one, is possible in this list
and will still result in an optimal solution. Thus, it is
possible to use a more sophisticated policy to try to
minimize a second criteria, if one is present. For
example, if a money cost is associated to the
execution of a given task on a given server, then a
good choice will try to choose cheap executions to
pay the smallest total execution price that still gives
the minimal global execution time. The analysis of
such multi-criteria problems needs more work
however.

 Finally, it may also be possible to improve the
fault-tolerant aspects of a solution by keeping more
tasks than necessary in the final solution, so as to
have back-up tasks on other servers if the efficient
ones fail. Worst-cases scenarios may then be studied
and their additional costs and resulting loss of
performances evaluated. Again, more work is needed
on this subject.

5 Conclusions

 In this paper, we studied the problem of
scheduling the tasks of an application on the many
heterogeneous servers of a multi-users system
distributed on a heterogeneous network. The
application is divided into communicating tasks that
can be executed on at least one, and possibly several
servers, with variable processing times depending on
the chosen servers, and variable communication
delays depending on the servers that communicate.
We proposed an efficient algorithm that uses an
extended DAG to build a static solution with a
minimal makespan to this scheduling problem, with
minimal number of task duplication or without task
duplication at all. In our future work, we intend to
study further both the multi-criteria problem and also
the fault tolerant aspects evoked in the discussion
part.

References

[1] J.-Y. Colin and P. Colin, “Scheduling tasks and
communications on a virtual distributed
 system”, European Journal of Operational
Research, Vol: 94, Issue:2, October 25, 1996.

[2] M. Maheswaran and H. J. Siegel, “A Dynamic
matching and scheduling algorithm for
heterogeneous computing systems”, Proceedings

of the 7th IEEE Heterogeneous Computing
Workshop(HCW '98), pp. 57-69, Orlando, Florida
1998.

[3] M. Iverson, F. Özgüner, “Dynamic, Competitive
Scheduling of Multible DAGs in a Distributes
Heterogeneous Environment”, Proceedings of the
7th IEEE Heterogeneous Computing Workshop
(HCW '98), pp. 70 – 78, Orlando, Florida 1998.

 [4] H. Topcuoglu, S. Hariri, and M.-Y. Wu., “Task
scheduling algorithms for heterogeneous
processors”. In 8th Heterogeneous Computing
Workshop (HCW’ 99), pages 3–14, April 1999.

[5] J.-Y. Colin , M. Nakechbandi, P. Colin, F.
Guinand, “Scheduling Tasks with communication
Delays on Multi-Levels Clusters”, PDPTA'99 :
Parallel and Distributed Techniques and
Application, Las Vegas, U.S.A., June 1999.

[6] A. H. Alhusaini, V. K. Prasanna, C.S.
Raghavendra, “A Unified Resource Scheduling
Framework for Heterogeneous, Computing
Environments”, Proceedings of the 8th IEEE
Heterogeneous Computing Workshop, Puerto
Rico, 1999, pp.156- 166.

[7] H. Chen, M. Maheswaran, “Distributed Dynamic
Scheduling of Composite Tasks on Grid
Computing Systems”, Proceedings of the 11th
IEEE Heterogeneous Computing Workshop, p.
88b-98b, Fort Lauderdale, 2002.

[8] M. Nakechbandi, J.-Y. Colin , C. Delaruelle,
“Bounding the makespan of best pre-scheduling of
task graphs with fixed communication delays and
random execution times on a virtual distributed
system”, OPODIS02, Reims, December 2002.

[9] Christoph Ruffner, Pedro José Marrón, Kurt
Rothermel, “An Enhanced Application Model for
Scheduling in Grid Environments”, TR-2003-01,
University of Stuttgart, Institute of Parallel and
Distributed Systems (IPVS), 2003.

[10] P. Palmerini, “On performance of data mining:
from algorithms to management systems for data
exploration”, PhD. Thesis: TD-2004-2, Universit`a
Ca’Foscari di Venezia,2004.

[11] Srikumar Venugopal, Rajkumar Buyya and Lyle
Winton, “A Grid Task Broker for Scheduling
Distributed Data-Oriented Applications on Global
Grids”, Technical Report, GRIDS-TR-2004-1,
Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Australia,
February 2004.

[12] Salah Elmagrgraby, “The Teory of networks and
Management” Part II , Management Science Vol.
17, October 1970, pages B54-71.

[13] Yu-Kwong Kwok, and Ishfaq Ahmad, “Static
scheduling algorithms for allocating directed task
graphs to multiprocessors”, ACM Computing
Surveys (CSUR), 31 (4): 406 - 471, 1999.

ha
l-0

04
29

44
9,

 v
er

si
on

 1
 -

2
N

ov
 2

00
9

