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From sand piles to electrons in metals, one of the greatest challenges in modern physics is to understand the behavior of an ensemble of strongly interacting particles. A class of quantum manybody systems such as neutron matter and cold Fermi gases share the same universal thermodynamic properties when interactions reach the maximum effective value allowed by quantum mechanics, the so-called unitary limit [START_REF] Ho | Universal thermodynamics of degenerate quantum gases in the unitarity limit[END_REF][START_REF] Inguscio | Ultracold Fermi Gases[END_REF]. It is then possible to simulate some astrophysical phenomena inside the highly controlled environment of an atomic physics laboratory. Previous work on the thermodynamics of a two-component Fermi gas led to thermodynamic quantities averaged over the trap [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF][START_REF] Luo | Measurement of the entropy and critical temperature of a strongly interacting Fermi gas[END_REF][START_REF] Luo | Thermodynamic Measurements in a Strongly Interacting Fermi Gas[END_REF], making it difficult to compare with many-body theories developed for uniform gases. Here we develop a general method that provides for the first time the equation of state of a uniform gas, as well as a detailed comparison with existing theories [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF][START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF][START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF][START_REF] Combescot | Particle distribution tail and related energy formula[END_REF][START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF][START_REF] Liu | Virial expansion for a strongly correlated Fermi gas[END_REF][START_REF] Rupak | Universality in a 2-Component Fermi System at Finite Temperature[END_REF][START_REF] Combescot | Normal state of highly polarized Fermi gases: simple many-body approaches[END_REF][START_REF] Combescot | Normal state of highly polarized Fermi gases: full many-body treatment[END_REF][START_REF] Prokof'ev | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF]. The precision of our equation of state leads to new physical insights on the unitary gas. For the unpolarized gas, we show that the low-temperature thermodynamics of the strongly interacting normal phase is well described by Fermi liquid theory and we localize the superfluid transition. For a spin-polarized system [START_REF] Shin | Observation of phase separation in a strongly interacting imbalanced Fermi gas[END_REF][START_REF] Partridge | Pairing and phase separation in a polarized Fermi gas[END_REF][START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF], our equation of state at zero temperature has a 2% accuracy and it extends the work of [START_REF] Shin | Phase diagram of a two-component Fermi gas with resonant interactions[END_REF][START_REF] Shin | Determination of the equation of state of a polarized fermi gas at unitarity[END_REF] on the phase diagram to a new regime of precision. We show in particular that, despite strong interactions, the normal phase behaves as a mixture of two ideal gases: a Fermi gas of bare majority atoms and a non-interacting gas of dressed quasi-particles, the fermionic polarons [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF][START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF][START_REF] Shin | Determination of the equation of state of a polarized fermi gas at unitarity[END_REF][START_REF] Chevy | Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations[END_REF][START_REF] Schirotzek | Observation of fermi polarons in a tunable fermi liquid of ultracold atoms[END_REF].

In this letter we study the thermodynamics of a mixture of the two lowest spin states (i = 1, 2) of 6 Li prepared at a magnetic field B = 834 G (see Methods), where the dimensionless number 1/k F a characterizing the s-wave interaction is equal to zero, the unitary limit. k F is the Fermi momentum and a the scattering length. Understanding the universal thermodynamics at unitarity is a challenge for many-body theories because of the strong interactions between particles. Despite this complexity at the microscopic scale, all the macroscopic properties of an homogeneous system are encapsulated within a single equation of state P (µ 1 , µ 2 , T ) that relates the

1 0 1 Η Μ 2 Μ 1 0 0.5 Ζ Μ 1 k B T h FIG. 1: Schematic representation of the universal function h(η, ζ).
It fully describes the thermodynamics of the unitary gas as a function of chemical potential imbalance η = µ2/µ1 and of the inverse of the fugacity ζ = exp(-µ1/kBT ). In this paper we measure the function h over the black lines (1, ζ) and (η, 0) which correspond to the balanced unitary gas at finite temperature and to the spin-imbalanced gas at zero temperature, respectively.

pressure P of the gas to the chemical potentials µ i of the species i and to the temperature T . In the unitary limit, this relationship can be expressed as [START_REF] Ho | Universal thermodynamics of degenerate quantum gases in the unitarity limit[END_REF]:

P (µ 1 , µ 2 , T ) = P 1 (µ 1 , T )h η = µ 2 µ 1 , ζ = exp -µ 1 k B T , (1) where 
P 1 (µ 1 , T ) = -k B T λ -3 dB (T )f 5/2 -ζ -1
is the pressure of a single component non-interacting Fermi gas and

f 5/2 (z) = ∞ n=1 z n /n 5/2 . h(η, ζ
) is a universal function which contains all the thermodynamic information of the unitary gas (Fig. 1). In cold atomic systems, the inhomogeneity due to the trapping potential makes the measurement of h(η, ζ) challenging. However, this inhomogeneity of the trap can be turned into an advantage as shown in [START_REF] Shin | Determination of the equation of state of a polarized fermi gas at unitarity[END_REF][START_REF] Ho | Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases[END_REF].

We directly probe the local pressure of the trapped gas using in situ images, following the recent proposal [START_REF] Ho | Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases[END_REF]. In the local density approximation, the gas is locally homogeneous with local chemical potentials:

µ i (r) = µ 0 i -V (r) (2) 
(µ 0 i is the chemical potential at the bottom of the trap for species i). Then a simple formula relates the pressure P to the doubly-integrated density profiles [START_REF] Ho | Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases[END_REF]: where n i (z) = n i (x, y, z)dxdy, n i being the atomic density. ω r (resp. ω z ) is the transverse (resp. axial) angular frequency of a cylindrically symmetric trap (see Fig. 2) and µ iz = µ i (0, 0, z) is the local chemical potential along the z axis. From a single image, we thus measure the equation of state (1) along the parametric line (η, ζ) = (µ 2z /µ 1z , exp(-µ 1z /k B T )), see below.

P (µ 1z , µ 2z , T ) = mω 2 r 2π (n 1 (z) + n 2 (z)) , (3) 
The interest of this method is straightforward. First, one directly measures the equation of state (EOS) of the uniform gas. Second, each pixel row z i gives a point h(η(z i ), ζ(z i )) whose signal to noise ratio is essentially given by the one of n 1 (z) + n 2 (z); typically one experimental run leads to ∼ 100 points with a signal to noise between 3 and 10. With about 40 images one gets ≃ 4000 points h(η, ζ), which after averaging provides a low-noise EOS of standard deviation σ = 2%. In the following we illustrate the efficiency of our method on two important sectors of the parameter space (η, ζ) in Fig. 1: the balanced gas at finite temperature (1, ζ) and the zerotemperature imbalanced gas (η, 0).

We first measure the equation of state of the unpolarized unitary gas at finite temperature, P (µ 1 , µ 2 , T ) = P (µ, T ). The measurement of h(1, ζ) through the local pressure (3) can be done provided one knows the temperature T of the cloud and its central chemical potential µ 0 .

In the balanced case, model-independent thermometry is notoriously difficult because of the strong interactions. Inspired by [START_REF] Spiegelhalder | Collisional Stability of 40 K Immersed in a Strongly Interacting Fermi Gas of 6 Li[END_REF], we overcome this issue by measuring the temperature of a 7 Li cloud in thermal equilibrium with the 6 Li mixture (see Methods).

µ 0 is fitted on the hottest clouds so that the EOS agrees in the classical regime ζ ≫ 1 with the second-order virial expansion h(1, ζ) ≃ 2(1+ζ -1 / √ 2) [START_REF] Ho | High temperature expansion applied to fermions near Feshbach resonance[END_REF]. For colder clouds we proceed recursively. The EOS of an image recorded at temperature T has some overlap with the previously determined EOS from all images with T ′ > T . In this overlap region µ 0 is fitted to minimize the distance between the two EOS's. This provides a new portion of the EOS at lower temperature. Using 40 images of clouds prepared at different temperatures, we thus reconstruct a low-noise EOS from the classical part down to the degenerate regime, as shown in Fig. 3a.

We now comment the main features of the equation of state. At high temperature, the EOS can be expanded in powers of ζ -1 as a virial expansion [START_REF] Liu | Virial expansion for a strongly correlated Fermi gas[END_REF]:

h(1, ζ) 2 = ∞ k=1 (-1) k+1 k -5/2 + b k ζ -k ∞ k=1 (-1) k+1 k -5/2 ζ -k
, where b k is the k th virial coefficient. Since we have b 2 = 1/ √ 2 in the measurement scheme described above, our data provides for the first time the experimental values of b 3 and b 4 . b 3 = -0.35( 2) is in excellent agreement with the recent calculation b 3 = -0.291-3 -5/2 = -0.355 from [START_REF] Liu | Virial expansion for a strongly correlated Fermi gas[END_REF] but not with b 3 = 1.05 from [START_REF] Rupak | Universality in a 2-Component Fermi System at Finite Temperature[END_REF]. b 4 = 0.096 [START_REF] Prokof'ev | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF] involves the 4-fermion problem at unitarity and could interestingly be computed along the lines of [START_REF] Liu | Virial expansion for a strongly correlated Fermi gas[END_REF].

Let us now focus on the low-temperature regime of the normal phase ζ ≪ 1. As shown in Fig. 3b, we observe a T 2 dependence of the pressure with temperature. This behavior is reminiscent of a Fermi liquid and indicates that pseudogap effects expected for strongly-interacting Fermi superfluids [START_REF] Chen | BCS BEC crossover: From high temperature superconductors to ultracold superfluids[END_REF] do not show up at the thermodynamic level within our experimental precision. In analogy with 3 He or heavy-fermion metals, we fit our data with the EOS:

P (µ, T ) = 2P 1 (µ, 0) ξ -3/2 n + 5π 2 8 ξ -1/2 n m * m k B T µ 2 , (4) 
P 1 (µ, 0) = 1/15π 2 (2m/ 2 ) 3/2 µ 5/2
being the pressure of a single-component Fermi gas at zero temperature. m * is the quasi-particle mass and ξ -1 n is the compressibility of the normal gas extrapolated to zero temperature, and normalized to that of an ideal gas of same density. We deduce two new parameters m * /m = 1.13(3) and ξ n = 0.51 [START_REF] Inguscio | Ultracold Fermi Gases[END_REF]. Despite the strong interactions m * is close to m, unlike the weakly interacting 3 He liquid for which 2.7 < m * /m < 5.8, depending on pressure. Our ξ n value is in agreement with the variational Fixed-Node Monte-Carlo calculations ξ n = 0.54 in [START_REF] Carlson | Superfluid Fermi gases with large scattering length[END_REF], ξ n = 0.56 in [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF] and with the Quantum Monte-Carlo calculation ξ n = 0.52 in [START_REF] Bulgac | Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature[END_REF]. This yields the Landau parameters F s 0 = ξ n m * /m -1 = -0.42 and F s 1 = 3(m * /m -1) = 0.39. In the lowest temperature points (Fig. 3c) we observe a sudden deviation of the data from the fit (4) at (k B T /µ) c = 0.32(3) (see supplementary materials). We interpret this behavior as the transition from the normal phase to the superfluid phase. This critical ratio has been extensively calculated in the recent years. Our value is in close agreement with the diagrammatic Monte-Carlo calculation (k B T /µ) c = 0.32(2) of [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF] and with the Quantum Monte-Carlo calculation (k B T /µ) c = 0.35(3) of [START_REF] Bulgac | Quantum Monte Carlo simulations of the BCS-BEC crossover at finite temperature[END_REF] but differs from the self-consistent approach in [START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF] giving (k B T /µ) c = 0.41, from the renormalization group prediction 0.24 in [START_REF] Gubbels | Renormalization group theory for the imbalanced Fermi gas[END_REF], and from several other less precise theories. From eq. ( 4) we deduce the total density n = n 1 + n 2 = ∂P (µ i = µ, T )/∂µ and the Fermi energy

E F = k B T F = 2 /2m(3π 2 n) 2/3
at the transition point. We obtain (µ/E F ) c = 0.49( 2) and (T /T F ) c =0.157 [START_REF] Prokof'ev | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF], in very good agreement with [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF]. Our measurement is the first direct determination of (µ/E F ) c and (T /T F ) c in the homogeneous gas. It agrees with the extrapolated value of the MIT measurement [START_REF] Shin | Phase diagram of a two-component Fermi gas with resonant interactions[END_REF].

Below T c , advanced theories [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF][START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF] predict that P (µ, T )/2P 1 (µ, 0) is nearly constant (Fig. 3b). Therefore at T = T c , P/2P 1 ≃ ξ -3/2 s ≃ 3.7, and is consistent with our data. Here ξ s = 0.42 [START_REF] Ho | Universal thermodynamics of degenerate quantum gases in the unitarity limit[END_REF] is the fundamental parameter characterizing the EOS of the balanced superfluid at zero temperature, a quantity extensively measured and computed in the recent years [START_REF] Inguscio | Ultracold Fermi Gases[END_REF].

Our data is compared at all temperatures with the calculations from [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF][START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF][START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF][START_REF] Combescot | Particle distribution tail and related energy formula[END_REF] (Fig. 3a). The agreement with [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF] is very good for a large range of temperatures. Concerning [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF], the deviation with our data is about one error bar of the Monte-Carlo method below ζ = 0.2 and the deviation increases with temperature (Fig. 3a). Furthermore, we show in the supplementary material that h(1, ζ)/2 must be greater than 1, an inequality violated by the two hottest Monte-Carlo points of [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF].

From our homogeneous EOS we can deduce the equation of state of the harmonically trapped unitary gas by integrating h(1, ζ) over the trap (see supplementary material). In particular, we find a critical temperature for the trapped gas (T /T F ) c = 0.19 [START_REF] Inguscio | Ultracold Fermi Gases[END_REF], where

T F = (3ω 2 r ω z N ) 1/3
. This value agrees very well with the recent measurement of [START_REF] Riedl | Superfluid Quenching of the Moment of Inertia in a Strongly Interacting Fermi Gas[END_REF], and with less precise measurements [START_REF] Luo | Thermodynamic Measurements in a Strongly Interacting Fermi Gas[END_REF][START_REF] Greiner | Emergence of a molecular Bose-Einstein condensate from a Fermi gas[END_REF][START_REF] Inada | Critical temperature and condensate fraction of a fermion pair condensate[END_REF].

Let us now explore a second line in the universal diagram h(η, ζ) (Fig. 1) by considering the case of the T = 0 spin-imbalanced mixture µ 2 = µ 1 , i.e. η = 1. Previous work [START_REF] Shin | Observation of phase separation in a strongly interacting imbalanced Fermi gas[END_REF][START_REF] Partridge | Pairing and phase separation in a polarized Fermi gas[END_REF][START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF] has shown that phase separation occurs in a trap. Below a critical population imbalance a fullypaired superfluid occupies the center of the trap. It is surrounded by a normal mixed phase and an outer rim consisting of an ideal gas of the majority component. In two out of the three previous experiments including ours [START_REF] Shin | Observation of phase separation in a strongly interacting imbalanced Fermi gas[END_REF][START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF], the local density approximation has been carefully checked. We are therefore entitled to use [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF] to analyze our data.

As in the previous case, the relationship between the pressure and the EOS requires the knowledge of the chemical potentials µ 0 1 and µ 0 2 at the center of the trap. µ 0 1 is determined using the outer shell of the majority spin component (i = 1). The pressure profile P (µ 1z , µ 2z , 0) corresponds to the Fermi-Dirac distribution and is fitted with the Thomas-Fermi formula

P 1 = α(1 -z 2 /R 2 1 ) 5/2 , providing µ 0 1 = 1 2 mω 2 z R 2 1 .
Using P 1 for the calculation of h = P/P 1 cancels many systematic effects on the absolute value of the pressure. Moreover, fitting the outer shell using a finite-temperature Thomas-Fermi profile [START_REF] Shin | Phase diagram of a two-component Fermi gas with resonant interactions[END_REF], we measure a temperature k B T = 0.03(3)µ 0 1 . µ 0 2 is fitted by comparison in the superfluid region with the superfluid equation of state at zero temperature [START_REF] Chevy | Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations[END_REF]:

h(η, 0) = (1 + η) 5/2 /(2ξ s ) 3/2 .
(5)

Our measured equation of state h(η, 0) is displayed in Fig. 4. By construction our data agrees for η 0.1 with The red curves are the successive virial expansions up to 4 th order. The blue triangles are from [START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF], the green stars from [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF], the purple diamonds from [START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF], and the blue solid line from [START_REF] Combescot | Particle distribution tail and related energy formula[END_REF]. The grey region indicates the superfluid phase. (b) Equation of state P (µ, T )/2P1(µ, 0) as a function of (kBT /µ) ). (c) Expanded view of (b) near Tc. The sudden deviation of the data from the fit occurs at (kBT /µ)c = 0.32(3) that we interpret as the superfluid transition. The black dashed line indicates the mean value of the data points below Tc.
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eq.( 5). In Fig. 4 the slope of h(η, 0) displays an obvious discontinuity for η = η c = 0.065 [START_REF] Shin | Determination of the equation of state of a polarized fermi gas at unitarity[END_REF]. This is a signature of a first-order quantum phase transition to the partially polarized normal phase. The error bar is dominated by the uncertainty on ξ s . This value is slightly higher than the prediction η c = 0.02 given by the fixed-node Monte-Carlo [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF] and than the value η c = 0.03(2) measured in [START_REF] Shin | Phase diagram of a two-component Fermi gas with resonant interactions[END_REF].

From the relations n i = ∂P/∂µ i we deduce from h(η, 0) the density ratio n 2 /n 1 (see inset in Fig. 4). This ratio is discontinuous at the phase transition, from a maximum value in the normal phase (n 2 /n 1 ) c = 0.5(1) to n 2 = n 1 in the superfluid phase. Our value is close to the zero-temperature calculation 0.44 [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF] and agrees with the coldest MIT samples [START_REF] Shin | Phase diagram of a two-component Fermi gas with resonant interactions[END_REF][START_REF] Shin | Determination of the equation of state of a polarized fermi gas at unitarity[END_REF]. It confirms that the temperature is much smaller than the tricritical point temperature T = 0.07T F [START_REF] Shin | Phase diagram of a two-component Fermi gas with resonant interactions[END_REF] where the discontinuity vanishes, justifying our T = 0 assumption made above. For η < η c our data displays a good agreement with a simple polaron model, based on the pioneering work in [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF]. A polaron is a quasi-particle describing a single minority atom immersed in the majority Fermi sea [START_REF] Prokof'ev | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF][START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF][START_REF] Chevy | Universal phase diagram of a strongly interacting fermi gas with unbalanced spin populations[END_REF][START_REF] Schirotzek | Observation of fermi polarons in a tunable fermi liquid of ultracold atoms[END_REF]. It is characterized by a renormalized chemical potential µ 2 -A µ 1 and an effective mass m * p [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF]. Following this picture, we write the pressure as the sum of the Fermi pressures of ideal gases of majority atoms and of polarons:

Η c Η c Η Η A A 1.0 0.
P = 1 15π 2 2m 2 3/2 µ 5/2 1 + m * p m 3/2 (µ 2 -Aµ 1 ) 5/2 , (6) 
which can be written as

h(η, 0) = 1 + m * p m 3/2 (η -A) 5/2 . ( 7 
)
A and m * p have recently been calculated exactly [START_REF] Combescot | Normal state of highly polarized Fermi gases: full many-body treatment[END_REF][START_REF] Prokof'ev | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF]: A = -0.615, m * p /m = 1.20 [START_REF] Inguscio | Ultracold Fermi Gases[END_REF] and with these values inserted in [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF] the agreement with our data is perfect. Note that our data lies slightly above the variational fixednode Monte Carlo calculation [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF]. We therefore con- clude that interactions between polarons are not visible at this level of precision. Alternatively, we can fit our data with m * p /m as a free parameter in [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF]. We obtain m * p /m = 1.20 [START_REF] Inguscio | Ultracold Fermi Gases[END_REF]. The uncertainty combines the standard error of the fit and the uncertainty on ξ s . This value agrees with our previous measurement m * p /m = 1.17 [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF] [START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF] (with a 5fold improvement in precision), with the theoretical value m * p /m = 1.20( 2) in [START_REF] Combescot | Normal state of highly polarized Fermi gases: full many-body treatment[END_REF][START_REF] Prokof'ev | Fermi-polaron problem: Diagrammatic monte carlo method for divergent signalternating series[END_REF] and with the variational calculation [START_REF] Combescot | Normal state of highly polarized Fermi gases: simple many-body approaches[END_REF]. It differs from the values 1.09(2) in [START_REF] Pilati | Phase separation in a polarized Fermi gas at zero temperature[END_REF], 1.04(3) in [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF], and from the experimental value 1.06 in [START_REF] Shin | Determination of the equation of state of a polarized fermi gas at unitarity[END_REF].

We arrive at a simple physical picture of the T = 0 spin-polarized gas: the fully paired superfluid is described by an ideal gas EOS renormalized by a single coefficient ξ s ; the normal phase is nothing but two ideal gases, one of bare majority particles and one of polaronic quasi-particles.

In conclusion, we have introduced a powerful method for the measurement of the equation of state of the unitary and homogeneous Fermi gas, that enables direct comparison with theoretical models and provides a set of new parameters shown in Tab.I. The method can readily be extended to any multi-component cold atom gas in three dimensions that fulfills the local density approximation (see supplementary discussion). We have shown that the normal phase of the unitary Fermi gas is a strongly correlated system whose thermodynamic properties are well described by Fermi liquid theory, unlike high-T c cuprates.

Note added in proof : Since this paper was accepted for publication, we have become aware of the measurement of a similar equation of state for the balanced unitary Fermi gas at finite temperature by different methods [START_REF] Horikoshi | Measurement of Universal Thermodynamic Functions for a Unitary Fermi Gas[END_REF]. METHODS SUMMARY Our experimental setup is presented in [START_REF] Nascimbene | Collective Oscillations of an Imbalanced Fermi Gas: Axial Compression Modes and Polaron Effective Mass[END_REF]. We load into an optical dipole trap and evaporate a mixture of 6 Li in the |1/2, ±1/2 states and of 7 Li in the |1, 1 state at 834 G. The cloud typically contains N 6 = 5 to 10 × 10 4 6 Li atoms in each spin state and N 7 = 3 to 20 × 10 3 7 Li atoms at a temperature from T = 150 nK to 1.3 µK. The 6 Li trap frequencies are ω z /2π = 37 Hz, ω r /2π varying from 830 Hz to 2.20 kHz, and the trap depth is 25 µK for our hottest samples, with T ≃ 2T F . 6 Li atoms are imaged in situ using absorption imaging, while 7 Li atoms are imaged after time of flight, providing the temperature in the same experimental run (Fig. 4). Since the scattering length describing the interaction between 7 Li and 6 Li atoms, a 67 = 2 nm, is much smaller than k -1 F , the 7 thermometer has no influence on the 6 Li density profiles. The 7 Li-6 Li collision rate, Γ 67 = 10 s -1 , is large enough to ensure thermal equilibrium between the two species.

METHODS

Construction of the equation of state by successive patches.

A typical image at high temperature provides about 100 pixels corresponding to ζ values varying from 2 at the trap center to 6 at the edges, with a signal-to-noise from 3 to 10. 7 such images are fitted in the wings using the second-order virial expansion and averaged to obtain a low-noise EOS up to ζ = 2. Then images of clouds where the evaporation has been pushed to a slightly lower temperature are recorded. They show about 75% overlap in ζ with the previous EOS. After minimization of the distance between a new image and the previously determined EOS in the overlap region, we obtain the value of µ 0 for a single image with 3% statistical uncertainty. This process is repeated for 6 successive trap depths. When averaging one image with typically 10 previous images, we obtain a new EOS with an error on ζ of about 0.03/ √ 10 ≃ 1%. The EOS experiences a random walk error on the 40 images of 0.01 × √ 40 ≃ 5% for the coldest data. An independent check of the maximum error is provided by the good agreement with the superfluid equation of state for temperatures lower than T c [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF][START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF].

Evaluation of the systematic uncertainties. For the measurement of h(1, ζ), the combined uncertainties on the radial frequency of the trap, trap anharmonicity, magnification of our imaging system, and atom counting affect the pressure measurement given in (3) at ≃ 20% level. However, two measurements, one at relatively high temperature and one at very low temperature, enable us to show that the overall error does not exceed 6%. In the temperature range ζ > 0.5, the agreement between the experimental value b 3 = -0.35 [START_REF] Inguscio | Ultracold Fermi Gases[END_REF] and the theoretical value b 3 = -0.355 of the third virial coefficient indicates that the global systematic error is smaller than 6%. Second, at very low temperature, theory [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF][START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF] predicts that the variation of P/2P 1 as a function of k B T /µ in the superfluid phase remains smaller than 5%. Our value of P/2P 1 = 3.75 below the critical point is within 5% of the T = 0 prediction ξ -3/2 s = 3.7(2). This confirms that systematic errors for our coldest samples are also smaller than 6%.

For the determination of the critical transition to superfluidity we fit the low-temperature data P (µ, T )/2P 1 (µ, 0) with a variable horizontal line for T < T c and with the Fermi-liquid equation (4) for T > T c . The result of the fit is the dashed black line in Fig. 3c, which intersects equation ( 4) at (k B T /µ) c = 0.315 [START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF]. This statistical error is negligible compared to the error induced by the 6% systematic uncertainty discussed above, justifying our very simplified fit procedure. Indeed a 6% error on the pressure induces a 10% error on µ for images recorded in the vicinity of the critical temperature, leading to (k B T /µ) c = 0.32 [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF].

For the measurement of h(η, 0), the fit of the fully polarized wings of the cloud serves as a pressure calibration for the rest of the cloud, cancelling many systematic effects.

In order to estimate temperature effects in the polarized gas, let us first remark that in the superfluid phase corrections scale as T 4 for the bosonic excitations and are exponentially suppressed by the gap for the fermionic ones [START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF]. So in our temperature range k B T = 0.03µ 0 1 their contributions will be very small. On the other hand, in the partially polarized normal phase, we expect a typical Fermi liquid T 2 scaling. In order to obtain an estimate of the error on the EOS, we develop the following simple model. In equation ( 9) which describes a mixture of zero-temperature ideal gases, we replace the Fermi pressures by the finite-temperature pressures of ideal gases (see equation ( 1)):

P (µ 1 , µ 2 , T ) = P 1 (µ 1 , T ) + m * p m 3/2 P 1 (µ 2 -Aµ 1 , T ),
and run the analysis described in the main text. At T = 0.05µ 0 1 , the correction on h is less than 1%, half of our current error bar. Limit of 7 Li Thermometry. As the scattering length between the 7 Li atoms, a 77 = -3 nm is negative, the 7 Li cloud becomes unstable when a BEC forms. This occurs at T ∼ 150 nK with typically 3500 atoms. Precise thermometry with lower atom numbers becomes difficult. For the measurement of the zero-temperature equation of state of the imbalanced gas, we do not use 7 Li thermometry but rather the fit of the wings of the majority spin component. E/E 0 as a function of (T /TF ) 0 (black dots) and the EOS measured on 40 K in [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF] (open red squares). The grey regions correspond to the superfluid phase.

Equation of State of the Trapped Unitary Gas

In this work, we have measured the equation of state of the homogeneous unitary gas. We can deduce from our data the EOS of the trapped balanced unitary gas, which has been measured in [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF][START_REF] Luo | Thermodynamic Measurements in a Strongly Interacting Fermi Gas[END_REF].

the local density approximation, the total atom number N = n dr 3 is expressed as a function of the temperature T and the chemical potential µ 0 at the center, involving the function h(1, ζ):

N = -2 √ π k B T ω 3 ∞ ζ0 d log 1/2 (ζ/ζ 0 ) dζ f 5/2 (-ζ -1 )h(ζ)dζ, (8) 
where ζ 0 = exp(-µ 0 /k B T ) and ω = (ω 2 r ω z ) 1/3 . We use for the calculation a discretized version of (8) taken solely on our experimental values of h, i.e. without using any interpolating or fitting function. Similar expressions are used to calculate the Fermi temperature E F = k B T F = ω(3N ) 1/3 , the total entropy S and energy E of the cloud. The equation of state E/N E F as a function of S/N k B , displayed in Supplementary Fig. 5a, is in very good agreement with [START_REF] Luo | Thermodynamic Measurements in a Strongly Interacting Fermi Gas[END_REF].

The normal-superfluid phase transition for the trapped gas occurs when at the trap center ζ 0 = ζ c = exp(-(k B T /µ) -1 c ), with (k B T /µ) c = 0.32(3), as measured on the homogeneous EOS h (1, ζ). At this point we get (T /T F ) c = 0.19(2), (S/N k B ) c = 1.5 [START_REF] Ho | Universal thermodynamics of degenerate quantum gases in the unitarity limit[END_REF] and (E/N E F ) c = 0.67 [START_REF] Luo | Thermodynamic Measurements in a Strongly Interacting Fermi Gas[END_REF].

In order to make the comparison with [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF], we also express the equation of state E/E 0 as a function of (T /T F ) 0 , where the superscript 0 refers to the quantities evaluated on a non-interacting Fermi gas having the same entropy (Supplementary Fig. 5b). The good agreement with the measurement in [START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF], performed on 40 K clouds, illustrates the universality of the unitary gas.

Physical interpretation of the pressure in the normal mixed phase

We have shown that the pressure in the normal mixed phase can be described as the sum of the Fermi pressures of ideal gases of majority atoms and of polarons: (9) Here, we evaluate the corresponding canonical EOS relating the energy E to the densities n 1 , n 2 , in order to compare with the Fixed Node Monte Carlo prediction [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF]. Since at unitarity we have E = 3P V /2 [START_REF] Ho | Universal thermodynamics of degenerate quantum gases in the unitarity limit[END_REF], we just express the chemical potentials in terms of densities by using the thermodynamical identities n i = ∂ µi P , which yield respectively:

P = 1 15π 2
n 2 = 1 6π 2 2m * 2 (µ 2 -Aµ 1 )
3/2 (10)

n 1 = 1 6π 2 2mµ 1 2 3/2 -An 2 . (11) 
The last term in equation [START_REF] Liu | Virial expansion for a strongly correlated Fermi gas[END_REF] clearly indicates the increased majority density due to the presence of the minority component. Expressing the pressure as a function of n i in (9) yields the energy:

E = E FP (1 + Ax) 5/3 + m m * x 5/3 ,
where E F P is the energy of the fully polarized gas and x = n 2 /n 1 . Expanding E to order x 2 finally leads to an expression similar to that obtained in [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF]:

E(x) = E FP 1 + 5 3
Ax + m m * x 5/3 + Bx 2 + .... , with B = 5A 2 /9 = 0.2. Our value of B is close to the calculated value B ≃ 0.14 from [START_REF] Lobo | Normal state of a polarized Fermi gas at unitarity[END_REF].

Trap Anharmonicity

First, in the axial direction z, the confinement is produced magnetically and the corresponding anharmonicity is negligible. In the radial direction, we develop the gaussian potential to fourth order around ρ = 0:

V r (ρ) = V 0 1 -exp -ρ 2 σ 2 ≃ 1 2 mω 2 r ρ 2 + ǫρ 4 ,
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 2 FIG. 2: Schematic representation of our atomic sample. The 6 Li atomic cloud is imaged in the direction y; the column density is then integrated along the direction x to give n(z). The 7 Li atoms are imaged after a time of flight along the z direction.
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 3 FIG. 3: (color online) Equation of state of a spin-balanced unitary Fermi gas. (a) Finite-temperature equation of state h(1, ζ) (black dots). The error bars represented at ζ = 0.14 and ζ = 2.3 indicate the 6% accuracy in ζ and h of our EOS.The red curves are the successive virial expansions up to 4 th order. The blue triangles are from[START_REF] Burovski | Critical temperature and thermodynamics of attractive fermions at unitarity[END_REF], the green stars from[START_REF] Bulgac | Spin 1/2 fermions in the unitary regime: A superfluid of a new type[END_REF], the purple diamonds from[START_REF] Haussmann | Thermodynamics of the BCS-BEC crossover[END_REF], and the blue solid line from[START_REF] Combescot | Particle distribution tail and related energy formula[END_REF]. The grey region indicates the superfluid phase. (b) Equation of state P (µ, T )/2P1(µ, 0) as a function of (kBT /µ) 2 , fitted by the Fermi liquid equation of state[START_REF] Luo | Measurement of the entropy and critical temperature of a strongly interacting Fermi gas[END_REF]. The red dashed line is the non-interacting Fermi gas (NIFG). The horizontal dot-dashed (resp. dotted) line indicates the zero-temperature pressure of the superfluid phase ∝ ξ
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 5 FIG.5:(color online) Equations of state of the trapped unitary gas. (a) Comparison between our EOS E/N EF as a function of S/N kB (black dots) and the EOS measured in[START_REF] Luo | Thermodynamic Measurements in a Strongly Interacting Fermi Gas[END_REF] (open red squares). The red solid line is the second-order virial equation of state. (b) Comparison between our EOS E/E 0 as a function of (T /TF ) 0 (black dots) and the EOS measured on 40 K in[START_REF] Stewart | Potential Energy of a 40 K Fermi Gas in the BCS-BEC Crossover[END_REF] (open red squares). The grey regions correspond to the superfluid phase.
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where mω 2 r = 2V 0 /σ 2 and ǫ = -V 0 /2σ 4 . In the balanced case, we have

Introducing n = ∂P/∂µ and defining u = mω 2 r ρ 2 /2 + ǫρ 4 we obtain, to lowest order,

The error on the measurement of h is then

We evaluate the integral in [START_REF] Rupak | Universality in a 2-Component Fermi System at Finite Temperature[END_REF] using the experimental values of h(1, ζ). In our shallowest trap, the worst case anharmonicity effect is 5%.

An exact inequality on the equation of state of an attractive Fermi gas

Writing the hamiltonian as H = H 0 + U , where H 0 is the single-particle part of the hamiltonian and U is the inter-particle interaction, one has the general inequality Ω ≤ Ω 0 + V 0 , where Ω 0 is the grand potential associated with H 0 and • 0 is the thermal average related to H 0 [START_REF] Feynman | Statistical Mechanics: A set of lectures[END_REF]. Taking for U a short range square potential of depth U 0 < 0 recovering the true scattering length, one has trivially V 0 < 0, hence Ω ≤ Ω 0 . Using the thermodynamic identity Ω = -P V , and recalling that Ω 0 = -2P 1 V and h = P/P 1 , we finally get the inequality

Extension to a Multi-Component System

We extend the equation ( 2) to a mixture of species i, of mass m i , trapped in a harmonic trap of transverse frequencies ω ri , following the calculations in [START_REF] Ho | Obtaining phase diagram and thermodynamic quantities of bulk systems from the densities of trapped gases[END_REF]. Using Gibbs-Duhem relation at a constant temperature T , dP = i n i dµ i , then

where we have used local density approximation (µ i (r) = µ 0 i -V (r)) to convert the integral over space to an integral on the chemical potentials. The integral is straightforward and yields to