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From sand piles to electrons in metals, one of
the greatest challenges in modern physics is to un-
derstand the behavior of an ensemble of strongly
interacting particles. A class of quantum many-
body systems such as neutron matter and cold
Fermi gases share the same universal thermo-
dynamic properties when interactions reach the
maximum effective value allowed by quantum me-
chanics, the so-called unitary limit [1, 2]. It
is then possible to simulate some astrophysical
phenomena inside the highly controlled environ-
ment of an atomic physics laboratory. Previous
work on the thermodynamics of a two-component
Fermi gas led to thermodynamic quantities av-
eraged over the trap [3, 4, 5], making it dif-
ficult to compare with many-body theories de-
veloped for uniform gases. Here we develop a
general method that provides for the first time
the equation of state of a uniform gas, as well
as a detailed comparison with existing theories
[6, 7, 8, 9, 10, 11, 12, 13, 14]. The precision of our
equation of state leads to new physical insights
on the unitary gas. For the unpolarized gas, we
prove that the low-temperature thermodynamics
of the strongly interacting normal phase is well
described by Fermi liquid theory and we local-
ize the superfluid transition. For a spin-polarized
system, our equation of state at zero tempera-
ture has a 2% accuracy and it extends the work
of [15] on the phase diagram to a new regime
of precision. We show in particular that, de-
spite strong correlations, the normal phase be-
haves as a mixture of two ideal gases: a Fermi
gas of bare majority atoms and a non-interacting
gas of dressed quasi-particles, the fermionic po-
larons [10, 16, 17, 18].

In this letter we study the thermodynamics of a mix-
ture of the two lowest spin states (i = 1, 2) of 6Li pre-
pared at a magnetic field B = 834 G (see Methods),
where the dimensionless number 1/kF a characterizing
the s-wave interaction is equal to zero, the unitary limit.
kF is the Fermi momentum and a the scattering length.
Understanding the universal thermodynamics at unitar-
ity is a challenge for many-body theories because of the
strong interactions between particles. Despite this com-
plexity at the microscopic scale, all the macroscopic prop-
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FIG. 1: Schematic representation of the universal function
h(η, ζ) that fully describes the thermodynamics of the unitary
gas as a function of chemical potential imbalance η = µ2/µ1

and of the inverse of the fugacity ζ = exp(−µ1/kBT ). In
this paper we measure the function h over the black lines
(1, ζ) and (η, 0) which correspond to the balanced unitary gas
at finite temperature and to the spin-imbalanced gas at zero
temperature, respectively.

erties of an homogeneous system are encapsulated within
a single equation of state P (µ1, µ2, T ) that relates the
pressure P of the gas to the chemical potentials µi of the
species i and to the temperature T . In the unitary limit,
this relationship can be expressed as [1, 19, 20]

P (µ1, µ2, T ) = P1(µ1, T )h

(
η =

µ2

µ1

, ζ = exp

(−µ1

kBT

))
,

(1)
where P1(µ1, T ) = −kBTλ−3

dB(T )f5/2

(
−ζ−1

)
is the pres-

sure of a single component non-interacting Fermi gas and
f5/2(z) =

∑
∞

n=1
zn/n5/2. h(η, ζ) is a universal function

which contains all the thermodynamic information of the
unitary gas (Fig.1). In cold atomic systems, the inhomo-
geneity due to the trapping potential makes the measure-
ment of h(η, ζ) challenging.

We directly probe the local pressure of the trapped
gas using in situ images, following the recent proposal
[21]. In the local density approximation, the gas is locally
homogeneous with local chemical potentials

µi(r) = µ0
i − V (r) (2)

(µ0
i is the chemical potential at the bottom of the trap

for species i). Then a simple formula relates the pressure
P to the doubly-integrated density profiles

P (µ1z, µ2z , T ) =
mω2

r

2π
(n1(z) + n2(z)) , (3)
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FIG. 2: The 6Li atomic cloud is imaged in the direction y;
the column density is then integrated along the direction x
to give n(z). The 7Li atoms are imaged after a time of flight
along the z direction.

where ni(z) =
∫

ni(x, y, z)dxdy, ni being the atomic
density. ωr (resp. ωz) is the transverse (resp. axial)
angular frequency of a cylindrically symmetric trap (see
Fig.2) and µiz = µi(0, 0, z) is the local chemical poten-
tial along the z axis. From a single image, we thus mea-
sure the equation of state (1) along the parametric line
(η, ζ) = (µ2z/µ1z, exp(−µ1z/kBT )), see below.

The interest of this method is straightforward. First,
one directly measures the equation of state (EOS) of the
uniform gas. Second, each pixel row zi gives a point
h(η(zi), ζ(zi)) whose signal to noise ratio is essentially
given by the one of n1(z) + n2(z); typically one experi-
mental run leads to ∼ 100 points with a signal to noise
between 3 and 10. With about 40 images one gets ≃ 4000
points h(η, ζ), which after averaging provides a low-noise
EOS. The standard deviation, σ = 2%, reveals new fea-
tures of the EOS. In the following we illustrate the ef-
ficiency of our method on two important sectors of the
parameter space (η, ζ) in Fig1: the balanced gas at finite
temperature (1, ζ) and the zero-temperature imbalanced
gas (η, 0).

The balanced unitary gas at finite temperature
We first measure the equation of state of the unpolar-
ized unitary gas at finite temperature, P (µ1, µ2, T ) =
P (µ, T ). The measurement of h(1, ζ) through the local
pressure (3) can be done provided one knows the temper-
ature T of the cloud and its central chemical potential µ0.
• In the balanced case, model-independent thermome-

try is notoriously difficult because of the strong interac-
tions. Inspired by [22], we overcome this issue by measur-
ing the temperature of a 7Li cloud in thermal equilibrium
with the 6Li mixture (see Methods).
• µ0 is fitted on the hottest clouds so that the EOS

agrees in the classical regime ζ ≫ 1 with the second-
order virial expansion h(1, ζ) ≃ 2(1 + ζ−1/

√
2) [23]. For

colder clouds we proceed recursively. The EOS of an im-
age recorded at temperature T has some overlap with the
previously determined EOS from all images with T ′ > T .
In this overlap region µ0 is fitted to minimize the distance
between the two EOS’s. This provides a new portion of
the EOS at lower temperature. Using 40 images of clouds
prepared at different temperatures, we thus reconstruct
a low-noise EOS from the classical part down to the de-
generate regime, as shown in Fig.3a.

We now comment the main features of the equation of
state. At high temperature, the EOS can be expanded
in powers of ζ−1 as a virial expansion [11]:

h(1, ζ)

2
=

∑
∞

k=1

(
(−1)k+1k−5/2 + bk

)
ζ−k

∑
∞

k=1
(−1)k+1k−5/2ζ−k

,

where bk is the kth virial coefficient. Since we have b2 =
1/

√
2 in the measurement scheme described above, our

data provides for the first time the experimental values of
b3 and b4. b3 = −0.35(2) is in excellent agreement with
the recent calculation b3 = −0.291−3−5/2 = −0.355 from
[11] but not with b3 = 1.05 from [12]. b4 = 0.096(15)
involves the 4-fermion problem at unitarity and could
interestingly be computed along the lines of [11].

Let us now focus on the low-temperature regime of the
normal phase ζc < ζ ≪ 1. In analogy with 3He [24] or
heavy-fermion metals [25], we fit our data with the EOS
of a Landau Fermi liquid [26]:

P (µ, T ) = 2P1(µ, 0)

(
ξ−3/2
n +

5π2

8
ξ−1/2
n

m∗

m

(
kBT

µ

)2
)

,

(4)
P1(µ, 0) = 1/15π2(2m/~

2)3/2µ5/2 being the pressure of
a single-component Fermi gas at zero temperature. m∗

is the quasi-particle mass and ξ−1
n is the compressibility

of the normal gas extrapolated to zero temperature, and
normalized to that of an ideal gas of same density. As
seen in Fig.3b, from T = Tc to T = 0.8µ/kB the agree-
ment with the data is excellent and we deduce two new
parameters m∗/m = 1.13(3) and ξn = 0.51(2). Despite
the strong interactions m∗ is close to m, unlike the weakly
interacting 3He liquid for which 2.7 < m∗/m < 5.8, de-
pending on pressure [24]. Our ξn value is slightly lower
than the variational Fixed-Node Monte-Carlo calcula-
tion ξn = 0.56 [10]. This yields the Landau parameters
F s

0 = ξnm∗/m−1 = −0.42 and F s
1 = 3(m∗/m−1) = 0.39

[26].
In the lowest temperature points (Fig.3c) we observe

a sudden deviation of the data from the fit (4) at
(kBT/µ)c = 0.32(3). We interpret this singular behavior
as the transition from the normal phase to the super-
fluid phase. The error bar is dominated by our estimate
of the systematic error introduced by the trap anhar-
monicity (see supplementary materials). This fundamen-
tal quantity has been extensively calculated in the recent
years. Our value is in close agreement with the diagram-
matic Monte-Carlo calculation (kBT/µ)c = 0.32(2) of [6]
but differs from the self-consistent approach in [8] giving
(kBT/µ)c = 0.41, from the renormalization group predic-
tion 0.24 in [27], from the Fixed-Node Monte-Carlo cal-
culation 0.52(4) in [7], and from several other less precise
theories. From equation (4) we deduce the total density
n = n1 + n2 = ∂P (µi = µ, T )/∂µ and the Fermi energy
EF = kBTF = ~

2/2m(3π2n)2/3 at the transition point.
We obtain (µ/EF )c = 0.49(2) and (T/TF )c=0.157(15),
in very good agreement with [6]. Our measurement is
the first direct determination of (µ/EF )c and (T/TF )c
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in the homogeneous gas. It agrees with the extrapolated
value of the MIT measurement [15].

Below Tc, advanced theories [7, 8] predict that
P (µ, T )/2P1(µ, 0) is nearly constant (Fig.3b). Therefore

at T = Tc, P/2P1 ≃ ξ
−3/2
s ≃ 3.7, and is consistent with

our data. Here ξs = 0.42(1) is the fundamental parame-
ter characterizing the EOS of the balanced superfluid at
zero temperature, a quantity extensively measured and
computed in the recent years [2].

Our data is compared at all temperatures with the cal-
culations from [6, 7, 8, 9] (Fig.3a). The agreement with
[7] is very good for a large range of temperatures. How-
ever their determination of Tc was too high by about
60%. Concerning [6], the agreement on Tc is very good
as mentioned above, but the deviation with our data is
about one error bar of the Monte-Carlo method below
ζ = 0.2 and the deviation increases with temperature
(Fig.3a). Furthermore, we show in the supplementary
material that h(1, ζ)/2 must be greater than 1, an in-
equality violated by the two hottest Monte-Carlo points
of [6].

From our homogeneous EOS we can deduce the equa-
tion of state of the harmonically trapped unitary gas
by integrating h(1, ζ) over the trap (see supplementary
material). In particular, we find a critical tempera-
ture for the trapped gas (T/TF )c = 0.19(2), where
TF = ~(3ω2

rωzN)1/3. This value agrees very well with
the recent measurement of [28], and with less precise
measurements [5, 29, 30] but differs from [4, 31].

The zero-temperature imbalanced unitary gas
Let us now explore a second line in the universal diagram
h(η, ζ) (Fig.1) by considering the case of the T = 0 spin-
imbalanced mixture µ2 6= µ1, i.e. η 6= 1. Previous work
[18, 32, 33] has shown that phase separation occurs in
a trap. Below a critical population imbalance a fully-
paired superfluid occupies the center of the trap. It is
surrounded by a normal mixed phase and an outer rim
consisting of an ideal gas of the majority component.
In two out of the three previous experiments including
ours [18, 32], the local density approximation has been
carefully checked. We are therefore entitled to use (3) to
analyze our data.

As in the previous case, the relationship between the
pressure and the EOS requires the knowledge of the
chemical potentials µ0

1 and µ0
2 at the center of the trap.

• µ0
1 is determined using the outer shell of the ma-

jority spin component (i = 1). The pressure profile
P (µ1z, µ2z , 0) corresponds to the Fermi-Dirac distribu-
tion and is fitted with the Thomas-Fermi formula P1 =
α(1 − z2/R2

1)
5/2, providing µ0

1 = 1

2
mω2

zR2
1. Using P1

for the calculation of h = P/P1 cancels many systematic
effects on the absolute value of the pressure.
• µ0

2 is fitted by comparison in the superfluid region
with the superfluid equation of state at zero temperature
[19]:

h(η, 0) = (1 + η)5/2/(2ξs)
3/2. (5)
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FIG. 3: (color online) (a) Finite-temperature equation of state
h(1, ζ) of a balanced unitary Fermi gas (black dots). The er-
ror bars represented at ζ = 0.14 and ζ = 2.3 indicate the
5% accuracy of our EOS. The red curves are the successive
virial expansions up to 4th order. The blue triangles are from
[6], the green stars from [7], the purple diamonds from [8],
and the blue solid line from [9]. The grey region indicates
the superfluid phase. (b) Equation of state P (µ, T )/P (µ, 0)
as a function of (kBT/µ)2, fitted by the Fermi liquid equa-
tion of state (4). The red dashed line is the non-interacting
Fermi gas (NIFG). The horizontal dot-dashed (resp. dotted)
line indicates the zero-temperature pressure of the superfluid

phase ∝ ξ
−3/2

s (resp. normal phase ∝ ξ
−3/2

n ). (c) Expanded
view of (b) near Tc. The sudden deviation of the data from
the fit occurs at (kBT/µ)c = 0.32(3) that we interpret as the
superfluid transition.

Our measured equation of state h(η, 0) is displayed in
Fig.4. By construction our data agrees for η & 0.1 with
eq.(5). In Fig.4 the slope of h(η, 0) displays an obvious
discontinuity for η = ηc = 0.065(20). This is a signature
of a first-order quantum phase transition to the partially
polarized normal phase. The error bar is dominated by
the uncertainty on ξs. This value is slightly higher than
the prediction ηc = 0.02 given by the fixed-node Monte-
Carlo [10] and than the value ηc = 0.03(2) measured in
[15].

From the relations ni = ∂P/∂µi we deduce from h(η, 0)
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FIG. 4: (color online) Equation of state of the zero-
temperature imbalanced unitary gas h(η, 0) (black dots).
The red solid line is the superfluid equation of state, the
blue dashed line is the ideal Fermi liquid equation (6) with
A = −0.615, m∗ = 1.20m and the black dotted line is the
Monte Carlo calculation from [10]. Inset: Local density ratio
n2/n1 as a function of η. The red solid line n2/n1 = 1 corre-
sponds to the fully paired superfluid and blue dashed line to
the model (6).

the density ratio n2/n1 (see inset in Fig.4) This ratio is
discontinuous at the phase transition, from a maximum
value in the normal phase (n2/n1)c = 0.5(1) to n2 = n1

in the superfluid phase. This discontinuity is strongly
temperature-dependent as it vanishes at the tricritical
point T = 0.07TF [15]. Our value is close to the zero-
temperature calculation 0.44 [10] and agrees with the
coldest MIT samples, at kBT ≃ 0.03µ0

1. This justifies
our T = 0 assumption made above.

For η < ηc our equation of state h(η, 0) lies slightly
above the variational fixed-node Monte Carlo calculation
[10]. This difference is clearly revealed by the high accu-
racy (2% in the normal phase) resulting from our analysis
method.

Our data displays a better agreement with a simple
polaron model. A polaron is a quasi-particle describing
a single minority atom immersed in the majority Fermi
sea [16, 17, 18]. It is characterized by a renormalized
chemical potential µ2 − Aµ1 and an effective mass m∗

p.
For a mixture of a Fermi sea and an ideal gas of polarons,
equation (1) can be written as

h(η, 0) = 1 +

(
m∗

p

m

)3/2

(η − A)5/2. (6)

A and m∗

p have recently been calculated exactly [14]:
A = −0.615, m∗

p/m = 1.20(2) and with these values in-
serted in (6) the agreement with our data is perfect. We
therefore conclude that interactions between polarons are
not visible at this level of precision.

Alternatively, we can fit our data with m∗

p/m as a free
parameter in (6). We obtain m∗

p/m = 1.20(2). The

b3 b4 (kBT/µ)c (µ/EF )c (T/TF )c

-0.35(2) 0.096(15) 0.32(3) 0.49(2) 0.157(15)

ξn m∗/m ηc (n2/n1)c m∗

p/m

0.51(2) 1.13(3) 0.065(20) 0.5(1) 1.20(2)

TABLE I: Table of quantities measured in this work.

uncertainty combines the standard error of the fit and
the uncertainty on ξs. This value agrees with our pre-
vious measurement m∗

p/m = 1.17(10) [18] (with a 5-
fold improvement in precision), with the theoretical value
m∗

p/m = 1.20(2) in [14] and with the variational calcula-
tion [13]. It differs from the values 1.09(2) in [34], 1.04(3)
in [10], and from the experimental value 1.06 in [35].

We arrive at a simple physical picture of the T = 0
spin-polarized gas: the fully paired superfluid is de-
scribed by an ideal gas EOS renormalized by a single
coefficient ξs; the normal phase is nothing but two ideal
gases, one of bare majority particles and one of polaronic
quasi-particles.

In conclusion, we have introduced a powerful method
for the measurement of the equation of state of the uni-
tary and homogeneous Fermi gas, that enables direct
comparison with theoretical models and provides a set of
new parameters shown in Tab.I. The method can readily
be extended to any multi-component cold atom gas in
three dimensions that fulfills the local density approxi-
mation (see supplementary discussion). We have shown
that the unitary Fermi gas is a high-Tc system whose nor-
mal phase is well described by Fermi liquid theory, unlike
high-Tc cuprates.

Methods
Our experimental setup is presented in [18]. We load into
a mixed magneto-optical trap and evaporate a mixture of
6Li in the |1/2,±1/2〉 states and of 7Li in the |1, 1〉 state
at 834 G. The cloud typically contains N6 = 5 to 10×104

6Li atoms in each spin state and N7 = 5 to 20 × 103 7Li
atoms at a temperature T ∼ 100 nK. The 6Li trap fre-
quencies are ωz/2π = 37 Hz, ωr/2π ∼ 1 kHz (Fig.2).
6Li atoms are imaged in situ using absorption imaging,
while 7Li atoms are imaged after time of flight, providing
the temperature in the same experimental run. Since the
scattering length describing the interaction between 7Li
and 6Li atoms, a67 = 2 nm, is much smaller than k−1

F ,
the 7Li thermometer has no influence on the 6Li density
profiles. The 7Li-6Li collision rate, Γ67 = 10 s−1, is large
enough to ensure thermal equilibrium between the two
species. As the scattering length between the 7Li atoms,
a77 = −3 nm is negative, the cloud becomes unstable
when a BEC forms. This sets a limit to our lowest tem-
peratures. For this reason, for the measurement of the
zero-temperature equation of state of the imbalanced gas,
we do not use 7Li thermometry.
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Supplementary Discussion
Equation of State of the Trapped Unitary Gas

In this work, we have measured the equation of state of
the homogeneous unitary gas. We can deduce from our
data the EOS of the trapped balanced unitary gas, which
has been measured in [3, 5].

Using the local density approximation, the total atom
number N =

∫
n dr3 is expressed as a function of the

temperature T and the chemical potential µ0 at the cen-
ter, involving the function h(1, ζ):

N =
−2√

π

(
kBT

~ω

)3 ∫ ∞

ζ0

d log1/2(ζ/ζ0)

dζ
f5/2(−ζ−1)h(ζ)dζ,

(7)
where ζ0 = exp(−µ0/kBT ) and ω = (ω2

rωz)
1/3. We

use for the calculation a discretized version of (7) taken
solely on our experimental values of h, i.e. without us-
ing any interpolating or fitting function. Similar ex-
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FIG. 5: (color online) (a) Comparison between our equation
of state of the trapped unitary gas E/NEF as a function
of S/NkB (in black) and the EOS measured in [5] (in red).
The red curve is the second-order virial equation of state. (b)
Comparison between our EOS E/E0 as a function of (T/TF )0

(in black) and the EOS measured on 40K in [3] (in red). The
grey regions correspond to the superfluid phase.

pressions are used to calculate the Fermi temperature
EF = kBTF = ~ω(3N)1/3, the total entropy S and en-
ergy E of the cloud. The equation of state E/NEF as a
function of S/NkB, displayed in (Fig.5a), is in very good
agreement with [5].

The normal-superfluid phase transition for the trapped
gas occurs when at the trap center ζ0 = ζc =
exp(−(kBT/µ)−1

c ), with (kBT/µ)c = 0.32(3), as mea-
sured on the homogeneous EOS h(1, ζ). At this point
we get (T/TF )c = 0.19(2), (S/NkB)c = 1.5(1) and
(E/NEF )c = 0.67(5).

In order to make the comparison with [3], we also
express the equation of state E/E0 as a function of
(T/TF )0, where the superscript 0 refers to the quanti-
ties evaluated on a non-interacting Fermi gas having the
same entropy (Fig.5b). The good agreement with the
measurement in [3], performed on 40K clouds, illustrates
the universality of the unitary gas.

Trap Anharmonicity
First, in the axial direction z, the confinement is pro-
duced magnetically and the corresponding anharmonic-
ity is negligible. In the radial direction, we develop the
gaussian potential to fourth order around ρ = 0:

Vr(ρ) = V0

(
1 − exp

−ρ2

σ2

)
≃ 1

2
mω2

rρ2 + ǫρ4,

where mω2
r = 2V0/σ2 and ǫ = −V0/2σ4. In the balanced

case, we have

n(z) =

∫
d2ρ n

(
µ0 − 1

2
mω2

zz2 − 1

2
mω2

rρ2 − ǫρ4

)
.

Introducing n = ∂P/∂µ and defining u = mω2
rρ2/2+ ǫρ4

we obtain, to lowest order,

mω2
r

2π
n(z) = P (µz) +

∫
∞

0

P (µz − u)
du

V0

.

The error on the measurement of h is then

mω2
r n(z)

2πP1(µz , T )
−h(1, ζ) =

kBT

V0

∫
∞

ζ

f5/2(−ζ′−1)

f5/2(−ζ−1)

h(1, ζ′)

ζ′
dζ′.

(8)

We evaluate the integral in (8) using the experimental
values of h(1, ζ). In our shallowest trap, the worst case
anharmonicity effect is 5%. The very good agreement
between the experimental value b3 = −0.35(2) and the
theoretical value b3 = −0.355 of the third virial coeffi-
cient indicates no other systematic error higher than 6%.
From this error we deduce a 10% uncertainty on the value
of (kBT/µ)c.

An exact inequality on the equation of state of an
attractive Fermi gas
Writing the hamiltonian as Ĥ = Ĥ0 + Û , where Ĥ0 is
the single-particle part of the hamiltonian and Û is the
inter-particle interaction, one has the general inequality
Ω ≤ Ω0+〈V 〉0, where Ω0 is the grand potential associated

with Ĥ0 and 〈·〉0 is the thermal average related to Ĥ0 [36].
Taking for U a short range square potential of depth U0 <
0 recovering the true scattering length, one has trivially
〈V̂ 〉0 < 0, hence Ω ≤ Ω0. Using the thermodynamic
identity Ω = −PV , and recalling that Ω0 = −2P1V and
h = P/P1, we finally get the inequality

h(1, ζ) ≥ 2.

Extension to a Multi-Component System
We extend the equation (2) to a mixture of species i,
of mass mi, trapped in a harmonic trap of transverse
frequencies ωri, following the calculations in [21]. Us-
ing Gibbs-Duhem relation at a constant temperature T ,
dP =

∑
i nidµi, then

∑

i

miω
2
ri

2π
ni =

∫ ∑

i

miω
2
ri

2π
dxdy

∂P

∂µi
=

∫ ∑

i

dµi
∂P

∂µi
,

where we have used local density approximation (2) to
convert the integral over space to an integral on the chem-
ical potentials. The integral is straightforward and yields
to

P (µiz , T ) =
1

2π

∑

i

miω
2
rini(z).
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