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Introduction

In [START_REF] Lindelöf | Sur les limites entre lesquelles le caténoïde est une surface minimale[END_REF], L. Lindelöf determines which domains of revolution on the catenoid C in R 3 are stable. More precisely, he gives the following geometric construction, see Figure 1. Take any point A on the generating catenary C = {(x, z) ∈ R 2 | x = cosh(z)}. Draw the tangent to C at the point A and let I be the intersection point of the tangent with the axis {x = 0}. From I, draw the second tangent to C. It touches C at the point B. Lindelöf's result states that the compact connected arc AB generates a stable-unstable domain on the catenoid C (see definitions in Section 2). As a consequence, the upper-half of the catenoid, C ∩ {z > 0}, is a maximal stable domain among domains invariant under rotations. We will refer to this property as Lindelöf's property.

In [START_REF] Bérard | Minimal hypersurfaces in H n ×R, total curvature and index[END_REF], we prove that minimal catenoids in H n × R do not satisfy Lindelöf's property (Theorem 3.5, Assertion 2). In this paper we consider minimal and embedded constant mean curvature one catenoids in H 3 . The global picture is as follows. Catenoid-cousins in H 3 , as their minimal counterparts in R 3 , satisfy Lindelöf's property (Theorem 4.16). This is not surprising in view of the local correspondence between minimal surfaces in R 3 and surfaces with constant mean curvature 1 in H 3 . One may also observe that the Jacobi operators look the same, namely -∆ -|A 0 | 2 , where A 0 is the second fundamental form for catenoids or its traceless analog for catenoid-cousins. On the other-hand, catenoids in H 3 divide into two families, a family of stable catenoids which foliate the space, and a family of index 1 catenoids which intersect each other and have an envelope; the hyperbolic catenoids do not satisfy Lindelöf's property (Theorem 4.7, Proposition 4.8). We finally point out that among the examples we have studied, the hypersurfaces which do not satisfy Lindelöf's property are precisely those which are vertically bounded.

The authors would like to thank M. do Carmo for pointing out Lindelöf's paper to them. The authors gratefully acknowledge the hospitality of the Mathematics Department of puc-rio (pb) and Institut Fourier (rsa), and the financial support of cnpq, faperj, Université Joseph Fourier and Région Rhône-Alpes.

Preliminaries

Let M 2 M 3 be an orientable minimal or constant mean curvature surface in an oriented Riemannian manifold ( M , g). Let N M be a unit normal field along M and let A M be the second fundamental form with respect to N M . Let Ric be the Ricci curvature of M . The second variation of the volume functional gives rise to the Jacobi operator (or stability operator) J M of M , see [START_REF] Blaine Lawson | Lectures on minimal submanifolds[END_REF],

(1)

J M := -∆ M -|A M | 2 + Ric(N M ) ,
where ∆ M is the non-positive Laplacian on M for the induced metric. Given a relatively compact regular domain Ω on the surface M , we let Ind(Ω) denote the number of negative eigenvalues of J M for the Dirichlet problem in Ω. The index of M is defined to be the supremum Ind(M ) := sup{Ind(Ω) | Ω ⋐ M } ≤ +∞, taken over all relatively compact regular domains. Let λ 1 (Ω) be the least eigenvalue of the operator J M with Dirichlet boundary conditions in Ω. We call a relatively compact regular domain Ω, stable, if λ 1 (Ω) > 0; unstable, if λ 1 (Ω) < 0; stable-unstable, if λ 1 (Ω) = 0. More generally, we say that a domain Ω is stable if any relatively compact subdomain is stable. Properties 2.1 We recall the following properties.

1.

Let Ω be a stable-unstable relatively compact domain. Then, any smaller domain is stable while any larger domain is unstable (monotonicity of Dirichlet eigenvalues).

2. We refer to the solutions of the equation J M (u) = 0 as Jacobi fields on M . Let X a : M n ( M n+1 , g) be a one-parameter family of oriented constant mean curvature H a immersions, with variation field V a = ∂Xa ∂a and unit normal N a . If H a does not depend on a, then, the function g(V a , N a ) is a Jacobi field on M ([1], Theorem 2.7).

3.

Let Ω be a relatively compact domain on a minimal or constant mean curvature manifold M . If there exists a positive function u on Ω such that J M (u) ≥ 0, then Ω is stable ( [START_REF] Fischer-Colbrie | The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature[END_REF], Theorem 1).

3 Catenoids in R 3

In this section, we briefly recall Lindelöf's results for Euclidean catenoids. We consider the family of catenoids given by parametrization

X(a, t, θ) = a cosh( t a ) cos θ, a cosh( t a ) sin θ, t , t ∈ R, a > 0,
and in particular the catenoid C given by a = 1. Let N (t, θ) be the unit normal to C, pointing towards the axis. According to Properties 2.1, the functions

(2) v(t) = tanh(t) = ∂ ∂z , N (t, θ) , and e(t) = 1 -t tanh(t) = -d da X a | a=1 (a, t, θ), N (t, θ) ,
are Jacobi fields on C.

Theorem 3.1 Let ξ 0 be the positive zero of the function e(t) = 1 -t tanh(t).

1. The domain

D(-ξ 0 , ξ 0 ) = X(1, ] -ξ 0 , ξ 0 [, [0, 2π]
) is a stable-unstable domain on the catenoid C.

The domain

D(0, ∞) = X(1, ]0, ∞[, [0, 2π]
) is a maximal stable rotation invariant domain on C. More precisely, given any α > 0, there exists some

β(α) > 0 such that the domain D α, β(α) = X(1, ] -α, β(α)[, [0, 2π]) is stable-unstable, see Figure 1. 3. The catenoid C = X(1, ] -∞, ∞[, [0, 2π]) has index 1.
Sketch of the proof of Theorem 3.1. Assertion 1. Use the Jacobi field e(t). Assertion 2. The Jacobi field v(t) is positive in D(0, ∞). It follows that this domain is stable (Properties 2.1). Take any α > 0. The function e(α, t) defined by

(3) e(α, t) = v(α)e(t) + e(α)v(t).

is a Jacobi field and satisfies e(α, -α) = 0. Because e(α, ±∞) = -∞ and ∂e ∂t (α, -α) = 0, the function e(α, •) must have another zero β(α) = -α. Observe now that the function e(α, •) cannot have two negative zeroes or two positive zeroes because the upper and lower half-catenoids C ∩ {z > < 0} are stable. Hence e(α, •) has exactly one negative zero -α, and one positive zero β(α). It follows that the domain D α, β(α) is stable-unstable. It also follows that D(0, ∞) is a maximal stable domain among rotation invariant domains. Assertion 3. It follows from Assertion 1 that the index of C is at least 1. The horizontal halfcatenoid C ∩ {x > 0} is stable. This implies that an eigenfunction of the Jacobi operator associated with a negative eigenvalue must be invariant by rotations (see [START_REF] Bérard | Minimal hypersurfaces in H n ×R, total curvature and index[END_REF], Theorem 3.5 or [START_REF] Tam | Stability properties of the higher dimensional catenoid in R n+1[END_REF]). Use Assertion 1 to conclude that there is only one negative eigenvalue. 2

Remarks.

1. Using the function e(α, t) defined by (3), one can recover Lindelöf's tangent construction, see Figure 1.

2.

The function e(α, •) is a Jacobi field arising from the variation of the oneparameter family of catenaries passing through the point (cosh(α), -α). 3. It turns out that the above proof and tangent construction of maximal stable domains work for n-dimensional catenoids in R n+1 as well, see [START_REF] Bérard | Lindeloef's theorem for catenoids, revisited[END_REF].

When n ≥ 3, these catenoids have bounded height and the tangent construction shows that they do not satisfy Lindelöf's property, see Figure 1.

Catenoids and catenoid cousins in H 3

In the sequel, we use subscripts to denote the derivative with respect to a given variable. For example, if y 0 (a, s) is a function of the variables a and s, then y 0,a (a, s) = ∂ ∂a y(a, s) and y 0,s (a, s) = ∂ ∂s y(a, s).

Preliminaries

We work in the half-space model for the hyperbolic space,

H 3 {x1,x2,x3} = {(x 1 , x 2 , x 3 ) ∈ R 3 | x 3 > 0}, g h = x -2 3 dx 2 1 + dx 2 2 + dx 2 3 .
In the hyperbolic plane

H 2 {x1,x3} = {(x 1 , x 3 ) ∈ R 2 | x 3 > 0},
we consider the Fermi coordinates (u, v) associated with the geodesic s → (0, e s ). They are defined by R 2 ∋ (u, v) → x 1 = e v tanh(u), x 3 = e v / cosh(u) . Given a function f , we consider the curve t → (t, f (t)) in the {u, v}-plane and the associated rotation surface

F : M H 3 {x1,x2,x3} , 
F (t, θ) =    e f (t) tanh(t) ω θ e f (t) cosh(t)    ,
where ω θ = (cos θ, sin θ) for short.

The principal directions of curvature are the tangents to the generating curve and to the horizontal circle. Using [START_REF] Sa | Introduction à la géométrie hyperbolique et aux surfaces de Riemann[END_REF] Theorem 2.6.18, we easily compute the respective principal curvatures

         k g (t) = f tt (t) cosh(t) + 2f t (t) sinh(t) + f 3 t (t) cosh 2 (t) sinh(t) 1 + cosh 2 (t)f 2 t (t) 3/2 , k c (t) = f t (t) cosh 2 (t) sinh(t) 1 + cosh 2 (t)f 2 t (t) 1/2 .
and the mean curvature ( 4)

H(t) sinh(2t) = d dt f t (t) sinh(t) cosh 2 (t) 1 + cosh 2 (t)f 2 t (t) 1/2 .
of the immersion F . Integrating Equation ( 4) when H = 0 or H = 1 in the next sections, we will find graphs, ϕ(a, t) = (t, λ(a, t)), t ≥ a, in the plane H 2 {u,v} . They extend by symmetry with respect to the u-axis as smooth curves with an arc-length parametrization of the form Φ(a, s) = y(a, s), Λ(a, s) , where y(a, s) is a smooth even function of s and Λ(a, s) a smooth odd function of s, such that Λ(a, s) = λ a, y(a, s) for s ≥ 0.

The corresponding constant mean curvature rotation surfaces in H 3 are given by the parametrizations ( 5)

Y (a, s, θ) =    e Λ(a,s) tanh(y(a, s)) ω θ e Λ(a,s) cosh(y(a, s))    .
The Killing field associated with the hyperbolic translations along the vertical geodesic t → (0, 0, e t ) in H 

= g h (Y a , N Y ) = cosh(y(a, s)) Λ a y s -Λ s y a .

Minimal catenoids in H 3

When H = 0, Equation (4) yields the solutions curves {C 0,a } a>0 , [START_REF] Blaine Lawson | Lectures on minimal submanifolds[END_REF] λ 0 (a, t) = sinh(2a)

t a dτ cosh(τ ) sinh 2 (2τ ) -sinh 2 (2a) 1/2
which are defined for t ≥ a (here, the lower index 0 refers to the value of H).

Notice that this parametrization only covers a half-catenary and that we work up to a v-translation in H 2 {u,v} , i.e. up to a hyperbolic translation with respect to the vertical geodesic in H 2 {x1,x3} . The arc-length parameter along the curve is given by [START_REF] Lopes | On the index of constant mean curvature 1 surfaces in hyperbolic space[END_REF] S 0 (a, t)

= t a sinh(2τ ) cosh 2 (2τ ) -cosh 2 (2a) -1/2 dτ, cosh(2a) cosh 2S 0 (a, t) = cosh(2t), t ≥ a.
Proposition 4.3 For s ∈ R, define the functions y 0 (a, s) and Λ 0 (a, s) by the formulas (8)

         y 0 (a, s) = a + s 0 cosh(2a) sinh(2t) cosh 2 (2a) cosh 2 (2t) -1 1/2 dt, and Λ 0 (a, s) = √ 2 sinh(2a) s 0 cosh(2a) cosh(2t) -1 1/2 cosh 2 (2a) cosh 2 (2t) -1 dt.
1. The function y 0 is an even function of s, and Λ 0 an odd function of s.

2.

For s ≥ 0, the function y 0 (a, •) is the inverse function of the function S 0 (a, •). In particular, cosh 2y 0 (a, s) = cosh(2a) cosh(2s).

3. For s ≥ 0, we have Λ 0 (a, s) = λ 0 (a, y 0 (a, s)).

4.

For s ∈ R, the functions s → y 0 (a, s), Λ 0 (a, s) are arc-length parametrizations of the family of catenaries {C 0,a } a>0 .

Proof. The proof is straightforward. 2

For later reference, we introduce the function

(9) J 0 (a, t) = sinh(2a)(cosh(2a) cosh(2t) + 1) -1 (cosh(2a) cosh(2t) -1) -1/2 , so that Λ 0 (a, s) = √ 2 s 0 J 0 (a, t) dt. We compute ∂J0 ∂a (a, t) and find, (10) 
       I 0 (a, t) = ∂J 0 ∂a (a, t) = n(cosh(2a), cosh(2t)) d(cosh(2a), cosh(2t))
, where

n(A, T ) = A(3 -A 2 )T 2 + (A 2 -1)T -2A, d(A, T ) = (AT + 1) 2 (AT -1) 3/2 .
We note that n(A, T ) is a polynomial of degree 2 in T .

Lemma 4.4 Let a 1 > 0 be such that cosh 2 (2a 1 ) = 11+8 √ 2 7 ≈ 3.1876, i.e. a 1 ≈ 0.5915. For a ≥ a 1 and for all t, we have n(cosh(2a), cosh(2t)) ≤ 0.

To the above family {C 0,a } a>0 of catenaries corresponds a family {C 0,a } a>0 of catenoids in H 3 with the arc-length parametrization Y 0 (a, s, θ),

(11) Y 0 (a, s, θ) = e Λ0 tanh(y 0 ) ω θ e Λ0 / cosh(y 0 ) ,
where the functions Λ 0 (a, s) and y 0 (a, s) are given by Proposition 4.3.

Catenoids in H 3 have been considered in [START_REF] Mori | Minimal surfaces of revolution in H 3 and their stability properties[END_REF][START_REF] Do | Hypersurfaces in spaces of constant curvature[END_REF] and more recently in [START_REF] Seo | Stable minimal hypersurfaces in the hyperbolic space[END_REF]. As pointed out by these authors, among the family {C 0,a } of catenoids in H 3 , there are stable and index one catenoids. We now give a precise analysis of this phenomenon and we also consider Lindelöf's property for these catenoids.

Jacobi fields on C 0,a

We introduce Jacobi fields on C 0,a , having Properties 4.1 and 4.2 in mind. The variation Jacobi field e 0 (a, s) is given by e 0 (a, s) = -g h (Y 0,a (a, s, θ), N 0 (a, s, θ)) =cosh(y 0 ) Λ 0,a y 0,s -Λ 0,s y 0,a .

We have [START_REF] Tam | Stability properties of the higher dimensional catenoid in R n+1[END_REF] e 0 (a, s) = sinh 2 (2a) cosh(2s) cosh 2 (2a) cosh 2 (2s) -1

-1 - cosh(2a) sinh(2s) cosh(2a) cosh(2s) -1 1/2 s 0 I 0 (a, t) dt,
where I 0 (a, t) is defined by [START_REF] Sa | Introduction à la géométrie hyperbolique et aux surfaces de Riemann[END_REF]. The vertical Jacobi field v 0 (a, s) is defined by

(13) v 0 (a, s) = √ 2 cosh(y 0 )y 0,s = cosh(2a) sinh(2s) cosh(2a) cosh(2s) -1 1/2 . Define (14) f 0 (a, s) = sinh 2 (2a) cosh(2s) cosh 2 (2a) cosh 2 (2s) -1 -1
an even function of s which goes to 0 at infinity. In view of Equations ( 12), ( 13) and ( 14), we have the relations

(15) e 0 (a, s) = f 0 (a, s) -v 0 (a, s) s 0 I 0 (a, t) dt.
Observe that the integral

(16) E 0 (a) := ∞ 0 I 0 (a, t) dt
exists for all values of a.

Stable domains on C 0,a

We can now investigate the stability properties of the catenoids C 0,a in H 3 .

Lemma 4.5 The half-catenoids D 0,a,± = Y 0 (a, R • ± , [0, 2π]) are stable. As a consequence, a Jacobi field w(a, s), which only depends on the radial variable s on C 0,a , can have at most one zero on R • + and on R • -.

Proof. Use Property 2.1 (3) and the fact that v 0 (a, s) is a Jacobi field which only vanishes at s = 0. 2 Lemma 4.6 The catenoid C 0,a has index at most 1.

Proof. The fact that the index of C a is at most 1 has been proved by [START_REF] Seo | Stable minimal hypersurfaces in the hyperbolic space[END_REF] using the same method as in [START_REF] Tam | Stability properties of the higher dimensional catenoid in R n+1[END_REF]. Alternatively, one could use Jacobi fields associated to geodesics orthogonal to the axis of the catenoids to prove that halfcatenoids Y 0 (a, R, ]ϕ, ϕ + π[) are stable and to show that negative eigenvalues of the Jacobi operator J C0,a on domains of revolution are necessarily associated with eigenfunctions depending only on the parameter s, see [START_REF] Bérard | Minimal hypersurfaces in H n ×R, total curvature and index[END_REF], Theorem 3.5. 2

We can now state the main theorem of this section. Recall that the number E 0 (a) is defined by ( 16) and that the Jacobi fields v 0 (a, s) and e 0 (a, s) are given respectively by ( 13) and [START_REF] Tam | Stability properties of the higher dimensional catenoid in R n+1[END_REF], with the relation (15). Theorem 4.7 Let {C 0,a } a>0 be the family of catenoids in H 3 given by [START_REF] Seo | Stable minimal hypersurfaces in the hyperbolic space[END_REF].

1. The index of the catenoid C 0,a depends on the value of the integral E 0 (a) defined by ( 16). More precisely, if E 0 (a) ≤ 0 then the catenoid C 0,a is stable, if E 0 (a) > 0, then the catenoid C 0,a has index 1.

2. When C 0,a has index 1, there exists a positive z(a) such that the domain

D 0,z(a) = Y 0 (a, ] -z(a), z(a)[, [0, 2π]
) is a stable-unstable.

3. When C 0,a has index 1, there exists some ℓ(a), 0 < ℓ(a) < z(a), such that

D 0,ℓ(a) = Y 0 (a, ] -ℓ(a), ∞[, [0, 2π]
) is a maximal stable, rotation invariant domain.

4. The catenoids {C 0,a } a>0 do not satisfy Lindelöf's property.

5. There exist two numbers 0 < a 2 < a 1 such that for all a > a 1 , the catenoids C 0,a are stable, and for all a < a 2 , the catenoids C 0,a have index 1.

Proof. Assertion 1. As stated in Lemma 4.5, the function e 0 (a, s) can have at most one zero on ]0, ∞[ and at most one zero on ] -∞, 0[. Observe that the function e 0 (a, s) is even and that e 0 (a, 0) = 1. To determine whether e 0 has a zero, it suffices to look at its behaviour at infinity. If E 0 (a) > 0, the function e 0 (a, s) tends to -∞ at infinity so that it has exactly two symmetric zeroes in R. This implies that the index of C 0,a is at least 1. Using Lemma 4.6, we conclude that C 0,a has index 1. If E 0 (a) < 0, the function e 0 (a, s) tends to +∞ at infinity so that it is always positive and the catenoid C 0,a is stable. Assume now that E 0 (a) = 0. We then have the relation

e 0 (a, s) = f 0 (a, s) + v 0 (a, s) ∞ s I 0 (a, t) dt.
Using Equation [START_REF] Sa | Introduction à la géométrie hyperbolique et aux surfaces de Riemann[END_REF], we see that I 0 (a, t) is positive for t large enough provided that cosh 2 (2a) ≤ 3. In that case, it follows that e 0 (a, s) is positive at infinity and hence that C 0,a is stable. If E(a) = 0 and cosh 2 (2a) > 3, we need to look at the behaviour of e 0 (a, s) at infinity more precisely. When s tends to +∞, we have

f 0 (a, s) ∼ 2 tanh 2 (2a)e -2s , v 0 (a, s) ∼ cosh(2a) 2 e s , and 
∞ s I 0 (a, t) dt ∼ 2 3/2 (3 -cosh 2 (2a)) 3 cosh 5/2 (2a) e -3s .
It follows that e 0 (a, s) ∼ 4 3 e -2s is positive at infinity and hence that C 0,a is stable. Assertion 2. Saying that C 0,a has index 1 is equivalent to saying that E 0 (a) > 0 and hence that e 0 has two symmetric zeroes. Assertion 3. Given any α > 0, we introduce the Jacobi field e 0 (a, α, s), (17) e 0 (a, α, s) = v 0 (a, α)e 0 (a, s) + e 0 (a, α)v 0 (a, s).

This Jacobi field vanishes at s = -α < 0 so that it cannot vanish elsewhere in ] -∞, 0[ and can at most vanish once in ]0, ∞[. Using Equations ( 17) and ( 15), we can write e 0 (a, α, s) = v 0 (a, α)f 0 (a, s) + v 0 (a, s) e 0 (a, α) -v 0 (a, α)

s 0 I 0 (a, t) dt .
We have e 0 (a, α, -α) = 0 and e 0 (a, α, 0) = v 0 (a, α) > 0 so that e 0 (a, α, 1. Let S be an open interval on which E 0 < 0 (hence the catenoid C 0,a is stable for all a ∈ S). For a ∈ S, the catenaries C 0,a locally foliate the hyperbolic plane H 2 {x1,x3} , see Figure 2 (half-catenaries).

•) van- ishes in ]0, ∞[ if and only if e 0 (a, α) -v 0 (a, α)E 0 (a) < 0 (recall that E 0 (a) = ∞ 0 I 0 (a, t) dt). If C 0,

Let

U be an open interval on which E 0 > 0 (hence the catenoid C 0,a has index 1 for all a ∈ U). For a, b ∈ U, the catenaries C 0,a and C 0,b in H 2 {x1,x3}

intersect exactly at two points and the family {C 0,a } a∈U has an envelope. Furthermore, the points at which C 0,a touches the envelope correspond to the stable-unstable domain D 0,z(a) , see Figure 3 (half-catenaries).

Proof. Define the v-height function of the catenoid C 0,a in H 2 {u,v} by

(18) V 0 (a) = lim t→∞ λ 0 (a, t) = lim s→∞ Λ 0 (a, s).
Lemma 4.9 Let a 2 > a 1 > 0 be two values of the parameter a. The catenaries C 0,a1 and C 0,a2 intersect at most at two symmetric points and they do so if and only if V 0 (a 2 ) > V 0 (a 1 ).

Proof. To prove the Lemma, consider the difference w(t) := λ 0 (a 2 , t) -λ 0 (a 1 , t) for t ≥ a 2 > a 1 . A straightforward computation shows that this function increases from the negative value -λ 0 (a 1 , a 2 ) (achieved for t = a 2 ) to V 0 (a 2 ) -V 0 (a 1 ) (the limit at t = ∞). It follows that w has at most one zero and does so if and only if V 0 (a 2 ) -V 0 (a 1 ) > 0. The Proposition follows from the fact that

V 0 (a) = √ 2 ∞ 0 J 0 (a, t) dt and that V ′ 0 (a) = √ 2E 0 (a)
where E 0 (a) is defined by (16).
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Observation 1. One can also define the x-height function of the catenoid C 0,a by X 0 (a) = lim s ∞ e Λ0(a,s) tanh(y 0 (a, s)

) = e √ 2 R
∞ 0 J0(a,t) dt , where J 0 (a, t) is defined by [START_REF] Mori | Minimal surfaces of revolution in H 3 and their stability properties[END_REF]. Then, the critical points of X 0 (a) correspond to the zeroes of the function E 0 (a). Observation 2. We point out that Theorem 4.7, Assertion 1, provides a criterion (the sign of E 0 (a)) to determine whether the catenoid C 0,a has index 0 or 1 whereas [START_REF] Mori | Minimal surfaces of revolution in H 3 and their stability properties[END_REF][START_REF] Do | Hypersurfaces in spaces of constant curvature[END_REF][START_REF] Seo | Stable minimal hypersurfaces in the hyperbolic space[END_REF] only give sufficient conditions to insure that the index is 0 or 1. Numerical computations show that the following result holds (see [START_REF] Bérard | Lindeloef's theorem for catenoids, revisited[END_REF] and the graph in Figure 4). Proposition 4.10 The function E 0 (a) has exactly one zero a 0 ≈ 0.4955 on ]0, ∞[ which is also the unique critical point of the x-height function X 0 (a).

Catenoid cousins in H 3

Basic formulas

We now consider catenoid cousins, i.e. rotation surfaces with constant mean curvature 1 in H 3 (-1). In this case, the mean curvature equation ( 4) reads

(19) sinh(2t) = d dt f t (t) sinh(t) cosh 2 (t) 1 + cosh 2 (t)f 2 t (t) 1/2 .
which yields for some constant d ∈ R. For a solution to exist, d needs to be positive so that we may assume that 2d = e -2a for some a ∈ R and we obtain (20)

f t (t) sinh(t) cosh 2 (t) 1 + cosh 2 (t)f 2 t (t) 1/2 = 1 2 cosh(2t) -d,
f t = e a cosh(2t) -e -2a √
2 cosh(t) cosh(2t)cosh(2a) , t ≥ |a|.

◮ We now limit ourselves to the embedded case and assume that a > 0. ◭ Equation (20) yields embedded catenary cousins {C 1,a } a>0 , given by (21) λ 1 (a, t) = t a e a cosh(2τ ) -e -2a √ 2 cosh(τ ) cosh(2τ )cosh(2a) dτ, for t ≥ a,

where the lower index 1 refers to H = 1. Notice that the function λ 1 describes the upper halves of catenary-like curves. We compute the arc-length function

(22) S 1 (a, t) = e a √ 2 cosh(2t) -cosh(2a), cosh(2t) = 2e -2a S 2 1 (a, t) + cosh(2a), t ≥ a.
As in Section 4.2, we obtain the following result. 1. The function y 1 is smooth, even, and satisfies cosh(2y 1 (a, s)) = 2e -2a s 2 + cosh(2a).

2. The function Λ 1 is smooth, odd, and satisfies Λ 1 (a, s) = λ 1 (a, y 1 (a, s)) for s ≥ 0.

3. For a > 0, the maps R ∋ s → y 1 (a, s), Λ 1 (a, s) ∈ H 2 {u,v} are arc-length parametrizations of the family of embedded catenary cousins {C 1,a } a>0 which generate the family {C 1,a } a>0 of embedded catenoid cousins.

4. The parametrization of the family {C 1,a } a>0 in H 3 {x1,x2,x3} is given by (25) Y 1 (a, s) = e Λ1(a,s) tanh(y 1 (a, s)) ω θ e Λ1(a,s) 1 cosh(y1(a,s)) .

Jacobi fields on C 1,a

As in Section 4.2, we define the vertical and variation Jacobi fields on C 1,a . Lemma 4.12 The vertical Jacobi field v 1 is a smooth odd function of s. It is given by v 1 (a, s) = cosh(y 1 (a, s))y 1,s (a, s) = e -a s s 2 + e 2a sinh 2 (a)

-1/2 and satisfies v 1 (a, 0

) = 0, v 1 (a, ∞) = e -a .
The variation Jacobi field e 1 (a, s) on C 1,a is given by e 1 (a, s) = cosh y 1 (a, s) Λ 1,a y 1,s -Λ 1,s y 1,a (a, s).

which we can write as e 1 (a, s) = v 1 (a, s)Λ 1,a (a, s)cosh(y 1 (a, s))y 1,a (a, s)Λ 1,s (a, s).

Using Proposition 4.11 and Lemma 4.12, we find the formula (26) cosh(y 1 ) Λ 1,s y 1,a = sinh 2 (2a) -4e -4a s 4 4 e -2a s 2 + cosh 2 (a) e -2a s 2 + sinh 2 (a)

.

By (24), we can write Λ 1 (a, s) as s 0 A(a, t) dt, where the integrand A(a, t) is given by ( 27)

         A(a, t) = 2e a t 2 + e 3a sinh(2a) 2 t 2 + e 2a cosh 2 (a) t 2 + e 2a sinh 2 (a) 1/2 , = A 1 (a, t) 2A 2 (a, t)A 1/2 3 (a, t)
, where the second equality defines the functions A i . One can now compute the derivative of A(a, t) with respect to the variable a.

A a (a, t) = A 1,a (a, t)

2A 2 (a, t)A 1/2 3 (a, t) - A 1 (a, t)B 2 (a) 2A 2 2 (a, t)A 1/2 3 (a, t) - A 1 (a, t)B 3 (a)
4A 2 (a, t)A 2A 2 (a, t)A

1/2 3 (a, t) - A 1 (a, t)B 2 (a) 2A 2 2 (a, t)A 1/2 3 (a, t) • • • - A 1 (a, t)B 3 (a) 4A 2 (a, t)A 3/2 3 (a, t) , i.e. ( 28 
)        A a (a, t) = B(a, t) -C(a, t), where B(a, t), C(a, t) > 0, for a > 0, t ∈ R, B(a, t) ∼ e a |t| , at infinity, C(a, t) = O( 1 |t| 3 ), at infinity.
Finally, with the above notations, we can write the variation Jacobi field as e 1 (a, s) = -e 4a sinh 2 (a) cosh 2 (a) -s 4 s 2 + e 2a cosh 2 (a) s 2 + e 2a sinh 2 (a)

-v 1 (a, s) s 0 C(a, t) dt + v 1 (a, t) s 0 B(a, t) dt
We have proved, Lemma 4.13 The variation Jacobi field e 1 is a smooth, even function of s which can be written as

(29) e 1 (a, s) = -f 1 (a, s) + v 1 (a, s) s 0 B(a, t) dt,
where the function f 1 is a smooth, even function of s, such that f 1 (a, 0) = 

We can now state the main theorem of this section. Recall that the Jacobi fields v 1 (a, s) and e 1 (a, s) are given respectively by Lemmas 4.12 and 4.13. Theorem 4.16 Let {C 1,a , a > 0} be the family of embedded catenoid cousins in H 3 given by the parametrization Y 1 , Equation (25). are stable-unstable.

3. In particular, the embedded catenoid cousins {C 1,a } a>0 satisfy Lindelöf's property: the upper and lower halves of the embedded catenoid cousins D 1,a,± are maximal rotationally symmetric domains.

4. The index of the catenoid C 1,a is equal to 1.

Proof. Assertion 1. As we have seen in Lemma 4.14, the function e 1 (a, s) can have at most one zero on ]0, ∞[ and at most one zero on ] -∞, 0[. By Lemma 4.13, the function e 1 (a, s) is even, e 1 (a, 0) = -1 and e 1 (a, ∞) = ∞. It follows that e 1 (a, s) has exactly two symmetric zeroes in R. Assertion 2. Given any α > 0, we introduce the Jacobi field e 1 (a, α, s), (30) e 1 (a, α, s) = v 1 (a, α)e 1 (a, s) + e 1 (a, α)v 1 (a, s).

This Jacobi field vanishes at s = -α < 0 so that it cannot vanish elsewhere in ] -∞, 0[ and can at most vanish once in ]0, ∞[. Using Lemma 4.13, we can write e 1 (a, α, s) = -v 1 (a, α)f 1 (a, s) + v 1 (a, s) e 1 (a, α) + v 1 (a, α) s 0 B(a, t) dt .

It follows that e 1 (a, α, -α) = 0, e 1 (a, α, 0) < 0 and lim s→∞ e 1 (a, α, s) = +∞, and hence that e 1 (a, α, •) must vanish at least once. Assertion 3. This is a consequence of Assertion 2. Assertion 4. This assertion follows from Assertion 1 and from Lemma 4.15. This has also been proved, using different methods, by Lima and Rossman [START_REF] Lopes | On the index of constant mean curvature 1 surfaces in hyperbolic space[END_REF]. 2

Further results

One can also study rotation surfaces with constant mean curvature H, 0 ≤ H < 1 in H 3 (-1). This is similar to the case of minimal surfaces. More precisely, H-rotation surfaces in H 3 (-1), with 0 ≤ H < 1, come in a one-parameter family C H,a . For some values of a the surfaces are stable, for other values of a they have index 1. Furthermore, they do not satisfy Lindelöf's property. The computations are much more complicated but similar to the minimal case. The functions involved depend continuously on the parameter H, for 0 ≤ H < 1.

The method described in the previous sections can be applied to study the stable domains on higher dimensional catenoids (minimal rotation hypersurfaces or constant mean curvature 1 rotation hypersurfaces) in H n+1 or other homogeneous spaces.

Figure 1 :

 1 Figure 1: Catenaries, n ≥ 2 and n ≥ 3
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 3 {x1,x2,x3} is just the position vector. The vertical Jacobi field is the function v Y (a, s) = g h (Y, N Y ), where N Y is the unit normal vector to the immersion Y . The following results are straightforward. Property 4.1 The vertical Jacobi field v Y (a, s) = g h (Y, N Y ) is an odd function of s given by v Y (a, s) = cosh(y(a, s))y s (a, s).Property 4.2 The variation Jacobi field e Y (a, s) is an even function of s given by e Y (a, s)

  a is stable, then clearly e 0 (a, α, •) cannot vanish twice in R. Assume that C 0,a has index 1 or, equivalently, that E 0 (a) > 0. In that case, e 0 (a, •) has exactly one positive zero z(a). (i) For α > z(a), e 0 (a, α) < 0 so that e 0 (a, α) -v 0 (a, α)E 0 (a) < 0 and e 0 (a, α, •) has a positive zero β (which must satisfy β < z(a)). (ii) For α = z(a), e 0 (a, α, s) = v 0 (a, α)e 0 (a, s) has two zeroes ±z(a). (iii) For 0 < α < z(a), we can argue as follows. Consider the Jacobi field w(a, t) = e 0 (a, t) -E 0 (a)v 0 (a, t). At t = 0, we have w(a, 0) = 1 and at t = z(a), we have w(a, z(a)) < 0 because e 0 (a, z(a)) = 0, E 0 (a) > 0 and v 0 (a, z(a)) > 0. It follows that w(a, t) has a unique zero in ]0, z(a)[ and hence that there exists a value ℓ(a) > 0 such that D 0,ℓ(a) = Y 0 (a, ] -ℓ(a), ∞[, [0, 2π]) is a maximal stable rotation invariant domain. Assertion 4. This follows immediately from the previous assertion. Assertion 5. The first part of the Assertion follows from Lemma 4.4 which implies that e(a, s) never vanishes when a > a 1 . To prove the second part of Assertion 3, we can either use the fact that E 0 (a) tends to +∞ when a tends to zero from above or use the criteria given in[START_REF] Do | Hypersurfaces in spaces of constant curvature[END_REF] (Corollary 5.13, p. 708) or[START_REF] Seo | Stable minimal hypersurfaces in the hyperbolic space[END_REF] (Corollary 4.2).2We have the following geometric interpretation of Theorem 4.7.
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 2 Figure 2: Foliating Figure 3: Intersecting
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 4 Figure 4: Graph of E 0 (a)

Proposition 4 . 0 2e -2a t dt 2e -2a t 2 +e a 2t 2 +

 4022 [START_REF] Seo | Stable minimal hypersurfaces in the hyperbolic space[END_REF] For a > 0 and s ∈ R, define the functions y 1 (a, s) and Λ 1 (a, s) by the formulas (23) y 1 (a, s) = a + s e 2a sinh(2a) dt 2 t 2 + e 2a cosh 2 (a) t 2 + e 2a sinh 2 (a).

3 / 2 3

 32 (a, t) , where B 2 (a) = ∂ a e 2a cosh 2 (a) , B 3 (a) = ∂ a e 2a sinh 2 (a) . It follows that A a (a, t) = 2e a t 2 + e 3a (3 sinh(2a) + 2 cosh(2a))

1 . 2 .

 12 The Jacobi field e 1 (a, s) has exactly one positive zero z 1 (a) and the domains D 1,a,z1(a) = Y 1 (a, ] -z 1 (a), z 1 (a)[, [0, 2π]) are stable-unstable domains. For any α > 0, there exists a β(α) > 0 such that the domainsD 1,a,-α,β(α) = Y 1 (a, ] -α, β(α)[, [0, 2π])

  Stable domains on the embedded catenoid cousinsWe can now investigate the stability properties of the embedded catenoids cousins {C 1,a } a>0 in H 3 (-1). Lemma 4.14 The upper and lower halves D 1,a,± = Y 1 (a, R • ± , [0, 2π]) of the embedded catenoid cousins are stable. As a consequence, a Jacobi field w(a, s), which only depends on the radial variable s, on C 1,a can have at most one zero on R • + and on R • -.
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