
HAL Id: hal-00429397
https://hal.science/hal-00429397v1

Submitted on 2 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A System-Level Architecture Model for Rapid
Prototyping of Heterogeneous Multicore Embedded

Systems
Maxime Pelcat, Jean François Nezan, Jonathan Piat, Jerome Croizer,

Slaheddine Aridhi

To cite this version:
Maxime Pelcat, Jean François Nezan, Jonathan Piat, Jerome Croizer, Slaheddine Aridhi. A System-
Level Architecture Model for Rapid Prototyping of Heterogeneous Multicore Embedded Systems.
Conference on Design and Architectures for Signal and Image Processing (DASIP) 2009, Sep 2009,
nice, France. 8 p. �hal-00429397�

https://hal.science/hal-00429397v1
https://hal.archives-ouvertes.fr

A System-Level Architecture Model for Rapid Prototyping of Heterogeneous
Multicore Embedded Systems

Maxime Pelcat, Jean-François Nezan,
Jonathan Piat and Jérôme Croizer

IETR/INSA Rennes/CNRS UMR 6164
{mpelcat, jnezan, jpiat, jcroizer}@insa-rennes.fr

Slaheddine Aridhi
Texas Instruments, CIV Division

saridhi@ti.com

Abstract

Modern embedded systems tend to consist of multiple
processors like multicore DSP (Digital Signal Processor)
or MPSoC (Multiprocessor System-on-Chip). Static task
scheduling for rapid prototyping of parallel embedded sys-
tems is different from the dynamic monocore scheduling
problem. The communication between cores has a very
high impact on the scheduling and the resulting use of hard-
ware resources. Taking into account communication costs
and competition can increase excessively the time spent in
the prototyping. The System-Level Architecture Model pro-
posed in this paper aims to provide simple system-level de-
scriptions of architectures. The model is expressive enough
to enable simulation of modern architecture behaviors. It
also reduces the complexity of static mapping-scheduling
by precalculating routes between elements.

1 Introduction

Modern multicore embedded systems for mobile phones
must execute many complex algorithms (GPS algorithms,
advanced telecommunication physical and MAC layers, au-
dio and video codecs...) and still maintain their energy con-
sumption below a few Watts. Most embedded systems alike
now have very demanding power consumption constraints.
These constraints prevent the hardware designers from in-
creasing the clock speed of their processors. In order to
gain computational capacity, most of the modern Systems
on Chip (SoC) delegate some algorithms to hardware co-
processors or specialized and power-thrifty cores, leading
to complex heterogeneous architectures.

Developing parallel deployments is not straightforward.
The Algorithm-Architecture-Matching (AAM) methodol-
ogy consists in exploring at compile-time both the algo-
rithm and the architecture of a deployment and optimize
it for speed, memory, etc... The goal is to ease the sys-

tem designer deployment choices. The rapid prototyping
of a deployment is relevant if simple yet expressive models
of both the architecture and the algorithm feed the process.
Thierry Granpierre in [1] and Pengcheng Mu in [2] define
architecture models which are close to the hardware design.
They accurately model data exchanges between processing
elements but lead to complex interconnections and involve
expensive evaluations of data competition in the exploration
process of the deployment. This paper describes an archi-
tecture model that matches the behavior of modern archi-
tectures but keeps a high level of abstraction. The model
will be refered to as the System-Level Architecture Model
(S-LAM) in the rest of the paper. S-LAM offers a simple
description of modern architectures at system-level and de-
creases the multicore simulation complexity.

S-LAM defines special communication components to
express the degree of accuracy needed in the simulation of
a deployment. We focus on the critical aspects of modern
multicore systems, which are the computation speed of their
processing elements and the data transfer cost of their inter-
core transfers. S-LAM is developed as part of a rapid proto-
typing tool named PREESM for Parallel and Real-time Em-
bedded Executives Scheduling Method [3] [4]. PREESM
implements the AAM methodology. The S-LAM model
does not directly feed the rapid prototyping process. The
routes between processing elements are pre-calculated from
the S-LAM description to speed up the mapping/scheduling
process.

Firstly, Section 2 describes S-LAM and its assets and
Section 3 presents the route model. Section 4 then details
the algorithm transforming S-LAM into the route model.
Finally, Section 5 shows how the route model is simulated
and Section 6 gives some experimental results.

1

2 The System-Level Architecture Model

2.1 S-LAM in the AAM process

the AAM methodology explains how to generate, from
graph descriptions of an algorithm and an architecture,
a system-level simulation of a deployment and a frame-
work code calling manually-written functions [4]. In the
PREESM rapid prototyping tool, a third input named sce-
nario is added. It makes any algorithm usable in combina-
tion with any architecture. The scenario contains all the in-
formation linking an algorithm and an architecture. It holds
timing informations of the execution of any algorithm ele-
ment (actor) on each architecture component, mapping con-
straints defining which architecture component can execute
each actor, as well as settings for simulation and code gen-
eration.

The rapid prototyping of a deployment in PREESM is
done by applying a workflow to the inputs. Figure 1 de-
scribes a classic workflow which can be applied in the
PREESM tool. The dataflow model chosen to describe ap-
plications in PREESM is a hierarchical timed graph model
[5] derived from the SDF model (Synchronous Data Flow
[6]). SDF has the advantage of allowing formal verification
of static schedulability. A vertex in SDF is called an ac-
tor. The typical number of actors to schedule in PREESM
is between a hundred and a thousand. The typical size of
an architecture is between a few cores and a few dozens of
cores. The purpose of the graph transformations module is
to modify the SDF graph generating clusters [7]. The use of
clusters aims to reduce the number of actors to schedule in
the mapping process and to provide a loop-compressed rep-
resentation in the generated code. Subsequently, the SDF
graph is converted into a Directed Acyclic Graph (DAG),
which has a lower expressivity than SDF graph but is a suit-
able input for the mapping/scheduling [8]. The PREESM
mapping/scheduling process [4] generates a deployment by
statically choosing a core to execute each actor (mapping)
and giving a total order to the actors (scheduling).

As a result of the deployment, code is generated and
a Gantt chart of the execution is displayed. The gener-
ated code consists of a function call per actor, the static
schedule of the actors on each processor, data transfers and
synchronizations between processors. The deployment can
also feed a SystemC-based [9] simulator for accurate de-
ployment simulations. The functions themselves are hand-
written. The three kinds of graphs: algorithm, architec-
ture and workflow are edited by the generic graph editor
Graphiti [10].

The simplicity of the architecture description is a key ar-
gument to justify the use of a system-level exploration tool
like PREESM over a manual approach. Keeping a high ex-
pressiveness is also important because most embedded ar-

H ierarch ica l
S D F

Gantt
chart

graph trans form ation

S D F DA G

M apping/S chedu ling

C ode
genera tion

Algorithm Scenario Architecture

D A G

dep loym ent

Scenario

S-LAM

code

S D F

E xecution
s im ulation

Figure 1. A PREESM rapid prototyping work-
flow

chitectures are now heterogeneous, i.e. they contain several
types of cores and/or inter-core media. These observations
led to the System-Level Architecture Model described in
the next sections.

2.2 The S-LAM operators

An S-LAM description is a topology graph defining the
data exchanges between the cores of a heterogeneous ar-
chitecture. Instead of core, we reuse in this paper the term
operator defined in [1]. The reason is that, there is no dif-
ference between a core and a coprocessor or an Intellectual
Property block (IP) at system-level. They all take input data,
process it and return an output data after a given time. All
the processing elements are named operators in S-LAM and
no more information than their name and type are provided.

The times must be expressed in a single time unit for the
whole system even if several clock domains appear. The
clock rate does not express anymore the time needed to exe-
cute a given actor because of the high complexity of modern
CPUs with pipelines, Very Long Instruction Word (VLIW),
Single Instruction Multiple Data (SIMD), out of order ex-
ecution, cache accesses and sometimes Just-in-time (JIT)
compilation. The result is that, times in S-LAM are given
for each couple (actor, operatortype) in the scenario in-
stead of the the clock rate of each core. IPs, coprocessors
and dedicated cores have the ability to execute a given set
of actors specified in the scenario as constraints. An op-
erator englobes a local memory to store its processed data.

2

Transfering data from one operator to another operator via
an interconnection actually means transfering the data from
one local memory to the other. The next sections explains
how to interconnect operators.

2.3 Connecting operators in S-LAM

Two operators can not be merely connected by an edge.
Nodes must be inserted in order to provide a data rate to the
interconnections. The vertex and edge types in the System-
Level Architecture Model, shown in Figure 2, are:

• the parallel node: it models a crossbar with a finite data
rate but a perfect capacity to transfer data in parallel,

• the contention node: it models a bus with a finite data
rate and contention awareness,

• the RAM: it models a Random Access Memory. It
must be connected to a communication node. Oper-
ators read and write data through this connection,

• the DMA: it models a Direct Memory Access. A core
can delegate the control of communications to a DMA
via a set-up link. DMA must also be connected to a
communication node,

• the directed (resp. undirected) link: it shows that
data can be transfered between two components in one
(resp. both) direction(s),

• the set-up link: only between an operator and a DMA
or a RAM. It shows that an operator can access a
DMA or RAM resource and gives the time needed for
setting-up.

O perator

C ontention node P ara lle l node

S et-up link

D irec ted link U nd irec ted link

R A M D M A

Communication nodes Data links

Communication enablers Processing element Control link

Figure 2. The elements of S-LAM

In the rest of the paper, Parallel and contention nodes
are both called communication nodes. Directed and undi-
rected links are both called data links. A black dot in a
component in Figure 2 shows that contention is taken into
account. The contention expresses a sequential behaviour.
An operator has contention and it can not execute more than
one actor at a time. A contention node has contention and

it can not transfer more than one data at a time. The ele-
ments with contention are the ones taking time during the
deployment simulation because a scheduling of their actors
or transfers must be computed. Connecting an operator to
a DMA via a set-up link means that the operator delegates
to the DMA the controls of transfers going through com-
munication nodes connected to the same DMA via a data
link.

S-LAM consists in components and interconnections,
each with a type and a few properties. This model natu-
rally fits in the IP-XACT model, an IEEE standard from
the SPIRIT consortium [11] intended to store XML descrip-
tions of any type of architecture.

2.4 Examples of S-LAM descriptions

Figure 3 shows the simplified block diagram of a Texas
Instruments TMS320TCI6488 processor [12]. This tri-core
processor has (among others), co-processors named TCP2
and VCP2 respectively accelerating the turbo decoding and
Viterbi decoding of a bitstream. The processor offers a
DDR2 interface to connect a Double Data Rate RAM and
a standardized serial RapidIO interface to connect another
device.

C 64x+
C ore 0

L2 m em

S w itched C entra l R esources (S C R)

E D M A 3

TC P 2

V C P 2

C 64x+
C ore 1

L2 m em

C 64x+
C ore 2

L2 m em

TCI6488

R ap id IO

DDR2 RIO

Figure 3. Block diagram of a TMS320TCI6488

Figure 4 shows the S-LAM of two TMS320TCI6488 at
1GHz connected via their RapidIO links. In this example,
the choice is made not to consider contention on the SCR;
this choice can be changed with a few clicks in PREESM.
The RapidIO link at 1Gbit/s = 0.125GByte/s = 0.125 Byte/-
cycle is the bottleneck of the architecture. It is represented
by a single contention node. Each GEM operator contains
both a C64x+ core and a local L2 memory. They delegate
both their intra and inter-processor transfers to a DMA. The
local transfers were benchmarked in [13]. The results were

3

a data rate of 2GByte/s and a set-up time of 2700 cycles,
values put here in S-LAM.

SCR RIO SCR

GEM
GEM

GEM

GEM

GEM

GEM

EDMA3 EDMA3
2700c
2700c
2700c

2700c
2700c

2700c

2 B/c 2 B/c

0.125B/c

VCP2 TCP2 VCP2 TCP2

Figure 4. S-LAM description of a board with 2
TMS320TCI6488

As an example of S-LAM expressiveness, Figure 5
shows a unidirectional ring architecture where each oper-
ator can communicate only with one of its neighbors. This
kind of architecture will be used to test the mapping process
in the last section.

Figure 5. S-LAM description of a ring archi-
tecture

The S-LAM gives a simplified description of an archi-
tecture focusing on the real bottlenecks of the design. In or-
der to fasten the rapid prototyping, the S-LAM model does
not directly feed the PREESM mapper/scheduler. It is first
transformed into a so-called route model.

3 The route model

3.1 The route model in the AAM process

The PREESM rapid prototyping tool maps and schedules
statically an algorithm onto an architecture. The PREESM
mapper/scheduler evaluates many deployments while mak-
ing its mapping and scheduling choices. This problem is
NP complete [14] and must be solved by heuristics [4]. The
heuristic part makes the mapping choices and generates de-
ployments while the Architecture Benchmark Computing
(ABC) part simulates the deployments. This structure was
presented in [4] and is extended in this paper to handle S-
LAM architectures (Figure 6).

num ber of cores

R oute
m odel

heuris tics

A rch itecture
B enchm ark

C om puting (AB C)
dep loym ent

cost

D A G

Mapping/Scheduling

dep loym ent

R oute m odel
genera tion

S -LA M S cenario

Figure 6. The route model in the AAM process

Simulating the data transfers during mapping and
scheduling makes the simulation of the deployments quite
complex because vertices representing transfers are dynam-
ically added to and deleted from the graph. Adding new
cores to the architecture should not increase the mapping
and scheduling complexity exponentially. To achieve this
goal, the S-LAM is transformed into the route model before
mapping and scheduling as illustrated figure 6.

3.2 The inter-operator routes

A route step represents an interconnection between two
operators. A route is a list of route steps and represents a
way to transfer data between two operators, directly con-
nected or not. A direct route between two operators is a
route containing a single route step. It means that the data
is transfered directly from one operator to another without
being copied by an intermediate operator. In a totally con-
nected architecture, there is always a direct route between
two given operators. In a more general case, we need to
build routes to handle the multiple transfers of the same data
along a route in the generated code.

Given the S-LAM model of Section 2, there are three
types of route steps interconnecting operators. The types,
shown in Figure 7 are:

• The message passing route step: the source operator
sends data to the target operator via message passing.
The data flows through one or several route steps be-
fore reaching the target,

• The DMA route step: the source operator delegates the
transfer to a DMA that sends data to the target operator
via message passing,

• The shared memory route step: the source writes data
into a shared memory and the target then reads the

4

Dma route step

 src

Message passing route step

S et-up tim e

R A M

 …
tg t

s rc

tg t

s rc

Shared memory route step
tg t

D M A

D ata ra te

D
ata rates

D
ata rates

D
ata rates

 …

 …

Figure 7. The types of route steps

data. The position of the RAM element (the communi-
cation node to which it is connected) is important be-
cause it selects the communication nodes used while
writing and the ones used while reading.

Routes can be created from these routes steps to inter-
connect operators. The route model contains two parts:
an operator set containing all the operators in the archi-
tecture and a map named routing table assigning the best
route to each couple of operators (source, target). The
route model speeds up the deployment simulations because
it gives immediately the best route between two operators
without looking through the S-LAM graph. The transfor-
mation of S-LAM into route model is explained in next sec-
tion.

4 Transforming S-LAM into the route model

S-LAM was developed in order to simplify the multi-
core scheduling problem of the PREESM tool. We will now
study the route precalculation that implies this complexity
reduction.

4.1 Overview of the transformation

The route model generation from figure 6 is detailed in
figure 8. Transforming S-LAM into routes is done in three
steps: route steps are generated first, followed by the gen-
eration of direct routes and finally by the composed routes.
Each step is detailed in the following.

4.2 Generating a route step

From a source operator, a target operator and a list of
communication nodes connecting these operators, we can

 R oute m odel genera tion

R oute
m odel

D irec t rou tes
genera tion

S -LA M

C om posed routes
genera tion

R oute steps
genera tion

R outing tab le

S et of opera tors

Figure 8. The route model generation

generate a route step with one of the types defined in Section
3.2. While creating the route step, the communication nodes
are scanned and connections to DMA or RAM vertices are
searched to determine the type of the current route step. If a
DMA is found, its incoming set-up links are searched and if
none of them have the same source as the current route step,
the DMA is not taken into account. Transfers not driven by
DMA are thus allowed and they can share a communication
node with DMA-driven transfers. Contentions between all
transfers on a given communication node can be simulated.

4.3 Generating direct routes from the
graph model

Using the route step generation, the direct route gener-
ation looks through the graph starting from each operator
src. The algorithm displayed in Figures 9 and 10 scans the
communication nodes and keeps lists of the previously vis-
ited nodes. When an operator tgt is met, it generates a route
step using the method in Section 4.2. If the new route step
has a lower cost than the one (if any) in the table, a new
route containing only the new step is put into the table. The
cost of a route is defined as the sum of the costs of its route
steps. The cost of a route step depends on the route step
type and is calculated using a typical data size set in the
scenario.

1)foreach operator s r c in operators
2) foreach interconnection i in

outgoing and undirected edges of s r c
3) if the edge other end is a node n
4) add the node n to a list l of

already visited nodes;
5) call exploreroute(src ,n, l);
6) endif;
7) endforeach;
8)endforeach;

Figure 9. Direct routes generation

5

/* this recursive function scans the
communication nodes and adds a route
when reaching a target operator*/
9)function exploreroute

(operator src ,node n, nodelist l)
10)foreach interconnection i in

outgoing and undirected edges of n
11) if the edge other end is a node n2
12) create a new list l 2 containing

all the elements of l;
13) add n2 to l 2;
14) call exploreroute(src ,n2, l 2);
15) elseif the other end of the edge is

an operator t g t
16) generate a route step from src , t g t and

the list of nodes l;
17) get the table current best route

between s r c and t g t ;
18) if the new route step has a lower cost

than the table route step;
19) set it as the table best route

from s r c to t g t ;
20) endif;
21) endif;
22)endforeach;
23)endfunction;

Figure 10. Exploring a direct route

The complexity of the algorithm is O(NC2) where N
is the number of operators in the graph and C the number
of communication nodes. After the direct route generation,
the routing table contains all the direct routes between in-
terconnected operators.

4.4 Generating the complete routing table

In our model, the operators are not necessarily totally in-
terconnected. The routes with multiple route steps are then
built using a Floyd-Warshall algorithm [15] provided Figure
11. The route between a source src and a target tgt is com-
puted by composing previously existing routes and keeping
the one with the lowest cost.

The Floyd-Warshall algorithm keeps the best route be-
tween two given operators with a complexity of O(N3) and
is proved to be optimal for such a routing table construc-
tion. The complexity of the routing table computation is
not really problematic in our case because the architectures
are always a few cores and the routing table construction of
a reasonably interconnected architecture with 20 cores was
benchmarked at under 1s compared to mapping/scheduling
requiring several minutes (see Section 6). The route model
simply consists in this table and the set of operators in the
input S-LAM model. If the table is not completed, i.e. a

1)foreach operator k in operators
2) foreach operator s r c in operators
3) foreach operator t g t in operators
4) get the table best route from s r c to k;
5) get the table best route from k to t g t ;
6) compose the 2 routes in a new route

from s r c to t g t ;
7) evaluate the composition;
8) compare the table best route

from s r c to t g t with the composition;
9) if the composition has a lower cost
10) set it as the table best route

from s r c to t g t ;
endif;

11) endforeach;
12)endforeach;
13)endforeach;

Figure 11. Floyd-Warshall algorithm: com-
puting the routing table

couple of operators (src, tgt) exists which best route does
not exist in the routing table, then the architecture is not
totally connected via routes. The PREESM mapper and
scheduler does not handle such architectures. Thanks to
the S-LAM model, PREESM can stop and return an error
before starting the mapping and scheduling process. The
definition of routes allows us to study transfers simulation
in PREESM.

5 Simulating a deployment using the route
model

As shown in Figure 6, the PREESM mapper/scheduler is
divided between mapping heuristics and deployment eval-
uation [4]. The most common scheduling case is to evalu-
ate and minimize the deployment latency. A Gantt chart of
the deployment execution is then constructed. Depending
on the route step type, different transfer simulations are in-
serted into the Gantt chart in addition to actor simulations.
The next sections describe the simulation of a tranfer of a
number of bytes for each type of route step.

5.1 The message passing route step simu-
lation with contention nodes

Part 1 of Figure 12 shows the simulation of a single mes-
sage passing transfer between actor1 mapped on src and ac-
tor2 mapped on tgt. The transfer blocks the two contention
nodes in the route step during the transfer time. The data
rate of the transfer (in Byte per cycle) is the lowest data rate

6

src
2
3

tg t

ac tor1

A ctor2

4 B /c 3 B /c 5 B /c 4 B /c

T rans fer at 3 B /c

D M A setup = 700c
O verhead o f 700c

s rc
tg t

ac tor1
A ctor2

2 B /c 3 B /c 5 B /c 4 B /c
T rans fer at 2 B /c; no contention

s rc 3 tg t 4 2 1

s rc
1
3

tg t

ac tor1

A ctor2

2 B /c 3 B /c 5 B /c 4 B /c
T rans fer at 2 B /c and contention

s rc
2
3

tg t

ac tor1

A ctor2

R ead ing a t 1 B /c
W riting a t 2 B /c
c

s rc 3 tg t 4 2 1

s rc 3 tg t 4 2 1

s rc 3 tg t 4 2 1

R A M

M
es

sa
g

e
p

as
si

n
g

w
it

h
 c

o
n

te
n

ti
o

n
W

it
h

o
u

t
co

n
te

n
ti

o
n

D
M

A
-d

ri
ve

n
tr

an
sf

er
Sh

ar
ed

 m
em

o
ry

tr
an

sf
er

1

2

3

4

2 B /c 3 B /c 2 B /c 1 B /c

Figure 12. Impact of route types in the simu-
lation of a transfer

of the communication nodes (which is the bottleneck of the
communication).

5.2 The message passing route step simu-
lation without contention nodes

If no contention node is present like in Part 2 of Figure
12, there is no line in the Gantt chart for the transfer but
the actor2 is delayed until the transfer is complete. This
model is equivalent to the ones used by Yu-Kwong Kwok in
his mapping and scheduling algorithms [16]. Consequently,
parallel nodes take into account the transfer delays but just
ignore the contentions.

5.3 The DMA route step simulation

The simulation of a DMA transfer is shown in Part 3
of Figure 12. The set-up transfer overhead is mapped onto
the source operator and the transfer is then equivalent to
a message passing. In practice the overhead corresponds

to the set-up time of the DMA, i.e. the time to write the
transfer description into the DMA registers.

5.4 The shared memory route step simu-
lation

The simulation of a shared memory transfer is shown in
Part 4 of Figure 12. First, the source operator writes the
data to the shared memory and then the target operator reads
it. The left-hand side communication nodes are occupied
during the writing and the right-hand side ones during the
reading. The writing and reading data rates can be different.
They are limited by the maximum data rates of the memory
and of the communication nodes.

6 Experimental results

The simulation accuracy of the transfers is tested by gen-
erating code with PREESM for a 3GPP Long Term Evo-
lution (LTE [17]) algorithm called Random Access CHan-
nel Preamble Detection (RACH-PD) [13]. The target ar-
chitecture is the previously presented TMS320TCI6488.
This algorithm has 240 vertices and 457 edges. The
RACH-PD algorithm is parallelized on two cores of the
TMS320TCI6488 leading to 68 synchronized EDMA3
transfers. The correctness of the algorithm results is tested.
The PREESM latency estimation is 6.92 Mcycles and the
achieved latency is 6.75 Mcycles. The error of 2.5% results
from the sum of errors on task execution times, on trans-
fers times, on synchronizations and on the duration of some
automatically generated memory copies. The rapid proto-
typing process gives a good approximation of the algorithm
execution.

m app ing /scheduling tim e (in s)

0

20

40

60

80

100

120

4 9 14 19

num ber o f co res in the ring a rchitecture

Figure 13. mapping/scheduling time of an
LTE algorithm on ring architectures with in-
creasing number of cores

Deployments are simulated under PREESM to demon-
strate the suitability of the routing process. The algorithm
is the 3GPP LTE uplink physical layer reception in a base
station. Our description of this algorithm is highly parallel

7

and contains 398 actors and 542 transfers. The architec-
tures are unidirectional rings like in Figure 5 with increas-
ing number of cores between 4 and 20. The result of this
test is shown in Figure 13. We see that the time needed
to map and schedule the algorithm increases linearly with
the number of cores N thanks to the pre-calculated routes.
Such a result in O(N) could not be obtained if an increas-
ing architecture graph would be scanned for each transfer
evaluation. As evoked in Section 4.4, the routing time re-
mains negligible compared to the mapping and scheduling
process for the target number of cores. This result shows
the suitability of the pre-calculated route model.

7 Conclusion and perspectives

We described here a simple yet accurate System-Level
Architecture Model. It is designed to keep a high expres-
siveness and to focus on the data transfer bottlenecks of
the architecture. This architecture model can be efficiently
transformed into a route model before feeding a rapid pro-
totyping process. The route model speeds up the process of
mapping and scheduling an algorithm onto an architecture.

PREESM makes the static mapping and scheduling
choices and generates a deployment. This deployment can
then be sent to a SystemC-based simulation tool. The tool
computes cycle accurate simulations of code executions and
completes the rapid prototyping process. Using PREESM
and SystemC together combines the high-level S-LAM ar-
chitecture model for mapping and scheduling heuristics and
the cycle accurate SystemC model for the evaluation of the
chosen deployment. The combination of both models pro-
vides a precise and fast rapid prototyping process.

References

[1] Thierry Grandpierre, Modélisation d’architectures
paralleles hétérogenes pour la génération automa-
tique dexécutifs distribués temps réel optimisés, Ph.D.
thesis, INRIA, 2000.

[2] Pengcheng Mu, Rapid Prototyping Methodology for
Parallel Embedded Systems, Ph.D. thesis, INSA
Rennes, 2009.

[3] “PREESM : Available Online,”
http://sourceforge.net/projects/preesm/.

[4] Maxime Pelcat, Pierrick Menuet, Slaheddine Aridhi,
and Jean-Francois Nezan, “Scalable Compile-Time
scheduler for multi-core architectures,” in DATE,
2009.

[5] Jonathan Piat, Shuvra S. Bhattacharyya, Maxime Pel-
cat, and Mickael Raulet, “Multi-core code generation

from interface based hierarchy,” in DASIP (to appear),
2009.

[6] E.A. Lee and D.G. Messerschmitt, “Synchronous data
flow,” Proceedings of the IEEE, vol. 75, no. 9, pp.
1235–1245, 1987.

[7] Jos Luis Pino and Edward A Lee, “Hierarchical
static scheduling of dataflow graphs onto multiple pro-
cessors,” IEEE International Conference on Acous-
tics, Speech, and Signal Processing, pp. 2643—2646,
1995.

[8] Jos Luis Pino, Shuvra S Bhattacharyya, and Edward A
Lee, “A hierarchical multiprocessor scheduling frame-
work for synchronous dataflow graphs,” Labora-
tory, University of California at Berkeley, pp. 95—36,
1995.

[9] “Open SystemC initiative web site,”
http://www.systemc.org/home/.

[10] “Graphiti Editor : Available Online,”
http://sourceforge.net/projects/graphiti-editor/.

[11] “The SPIRIT consortium, IP-XACT v1.4: A specifi-
cation for XML meta-data and tool interfaces,” Mar.
2008.

[12] “TMS320TCI6488 DSP platform, texas instrument
product bulletin (sprt415),” 2007.

[13] Maxime Pelcat, Slaheddine Aridhi, and Jean Fran-
cois Nezan, “Optimization of automatically generated
multi-core code for the LTE RACH-PD algorithm,”
0811.0582, Nov. 2008, DASIP 2008, Bruxelles : Bel-
gique (2008).

[14] Michael R. Garey and David S. Johnson, Comput-
ers and Intractability; A Guide to the Theory of NP-
Completeness, W. H. Freeman and Co., 1990.

[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein, Introduction to Algorithms,
The MIT Press, 2nd edition, Sept. 2001.

[16] Yu-Kwong Kwok, High-performance algorithms of
compile-time scheduling of parallel processors, Ph.D.
thesis, Hong Kong University of Science and Technol-
ogy, 1997.

[17] “3GPP technical specification group radio access net-
work; evolved universal terrestrial radio access (E-
UTRA) (Release 8), 3GPP, TS36.211 (V 8.1.0),”
2008.

8

	Introduction
	The System-Level Architecture Model
	S-LAM in the AAM process
	The S-LAM operators
	Connecting operators in S-LAM
	Examples of S-LAM descriptions

	The route model
	The route model in the AAM process
	The inter-operator routes

	Transforming S-LAM into the route model
	Overview of the transformation
	Generating a route step
	Generating direct routes from the graph model
	Generating the complete routing table

	Simulating a deployment using the route model
	The message passing route step simulation with contention nodes
	The message passing route step simulation without contention nodes
	The DMA route step simulation
	The shared memory route step simulation

	Experimental results
	Conclusion and perspectives

