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Abstract. Important progresses have been made in palaeo-
climatological studies by using statistical methods. But they
are in somewhere limited as they take the present as an ab-
solute reference. This is particularly true for the modern
analogue technique. The availability of mechanistic mod-
els to simulate the proxies measured in the sediment cores
gives now the possibility to relax this constraint. In particu-
lar, vegetation models provide outputs comparable to pollen
data (assuming that there is a relationship between plant pro-
ductivity and pollen counts). The input of such models is,
among others, climate. The idea behind paleoclimatological
reconstructions is then to obtain inputs, given outputs. This
procedure, called model inversion, can be achieved with ap-
propriate algorithms in the frame of the Bayesian statistical
theory. But we have chosen to present it in an intuitive way,
avoiding the mathematics behind it. Starting from a rela-
tive simple application, based on an equilibrium BIOME3
model with a single proxy (pollen), the approach has evolved
into two directions: (1) by using several proxies measured
on the same core (e.g. lake-level status and δ13C) when they
are related to a component of the vegetation, and (2) by us-
ing a more complex vegetation model, the dynamic vegeta-
tion model LPJ-GUESS. Examples presented (most of them
being already published) concern Last Glacial Maximum in
Europe and Africa, Holocene in a site of the Swiss Jura, an
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Eemian site in France. The main results are that: (1) pollen
alone is not able to provide exhaustive information on precip-
itation, (2) assuming past CO2 equivalent to modern one may
induce biases in climate reconstruction, (3) vegetation mod-
els seem to be too much constrained by temperature relative
to precipitation in temperate regions. This paper attempts
to organise some recent ideas in the palaeoclimatological re-
construction domain and to propose prospectives in that ef-
fervescent domain.

1 Introduction

For a long time, Quaternary palaeoecologists, and in par-
ticular palynologists, have used intuitive methods to recon-
struct palaeoclimates or paleoenvironments from biological
data. We focus here on pollen bioindicator as it has prof-
ited, during the last two decades, of progresses of outstand-
ing vegetation models. The most common approach was to
compare the present-day distribution of selected species with
the corresponding distribution of climate variables thought
to be determinant for them, according to the niche’s theory.
The species are analyzed separately and related to one cli-
matic variable. But the species respond to a combination
of climatic variables and their distributions are controlled by
different climatic factors in different parts of their ranges.
Moreover, climate parameters are often interrelated. Thus, it
has been necessary to develop methods taking into account
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the ecological complexity of species and assemblages, and
of their relationships with climatic factors. A relatively an-
cient evolution was to work with several climatic variables
and several species (Iversen, 1944; Atkinson et al., 1987).
One of the power of the pollen counts is to give infor-

mation partly related on species abundances, making possi-
ble to develop response models where the abundance of the
species is expressed as a function of the climate (Bartlein
and Prentice, 1986). These statistical models are only valid
on climatic niches presently realized and their extrapolation
to the past could be problematic, when the past is too dif-
ferent from the present (Guiot et al., 2008). Moreover, to
reconstruct climate, it is necessary to inverse these response
models, but this cannot be achieved directly. Usually one
calculates backward statistical relationships between climate
and species, which are usually called transfer functions by
the palaeoclimatologists. They are based on a few assump-
tions:

(1) Climate is the ultimate cause of changes in the paleobi-
ological data.

(2) The ecological properties of the species considered
has not changed between the period analyzed and the
present time, and the relationship between the species
and the climate is thus uniform through time.

(3) The modern observations contain all the necessary in-
formation to interpret the fossil data.

The second and third assumptions originate from the uni-
formatarian principle that the same scientific laws and pro-
cesses are constant throughout space and time (this theory
has been proposed by James Hutton in 1795 and popularised
by Charles Lyell in 1830 “Amid all the revolutions of the
globe the economy of nature has been uniform and her laws
are the only things that have resisted the general movement”).
Without the second assumption, the reconstruction of past
environments becomes impossible. To satisfy the third as-
sumption, it is necessary to collect a large diversity of mod-
ern samples to optimise the chance to cover all the possible
situations of the period studied. But sometimes, non climatic
forcings are so different today that there is no true modern
analogues. An example can easily be given for vegetation. A
number of physiological and palaeoecological studies (e.g.
Jolly and Haxeltine, 1997; Cowling and Sykes, 1999) have
proved that plant-climate interactions are sensitive to the at-
mospheric CO2 concentration, and we know, from ice cores
(EPICA, 2004), that this concentration is presently much
higher than ever during the past 740 000 yr. Consequently
modern samples collected under high CO2 concentration are
hardly good analogues for low CO2 periods. Moreover,
pollen assemblages are noisy and sometimes biased records
of the climate variables, because (1) pollen productivity is
not equal to vegetation productivity, (2) pollen assemblages
are disturbed by pollen grain transportation, (3) a pollen

taxon is not a univocal species, (4) and the species are not
affected by a single climatic variables.
All these problems make difficult the use of statistical

methods based on the reference modern data. We synthe-
sise in this paper recent progresses achieved in the last years
to relax these constraints. One way was the use of mecha-
nistic vegetation models together with pollen data (a similar
approach can followed with other proxies if such models are
available). Another complementary way is the use of several
proxies measured on the same samples. We will show how to
combine both approaches when adequate models are avail-
able and what are the perspectives of what is called model
inversion. The purpose of this paper is not to detail the math-
ematics behind the methods, but to give an intuitive flavor of
the concepts involved by them. The reader can find in the
cited papers more details to satisfy his curiosity.

2 The methods

Even if the inversion of statistical response models should
be the “natural” way to proceed to reconstruction past cli-
mate, the large majority of works published in the three last
decades were based on a very simple ”one-step” concept. A
very popular method is the modern analogue technique.

2.1 Modern analogues technique (MAT)

MAT is illustrated by the schema of Fig. 1a. This schema
does not reflect the exact way in which the algorithm is built,
but it facilitates the comparison with the other methods. The
caption of the figure explains the five steps. To implement
it, it is necessary to define a distance index. Usually a the
Euclidian distance of the square-root of the pollen frequen-
cies (chord distance) is used (Overpeck et al., 1985). The
number of analogues depends on a threshold above which
the similarity is considered as too poor. The reconstructed
climate is provided as a weighted mean of the climate of the
analogues (according to the inverse of the distance index). It
is accompanied by an error bar based on the climatic range
of the analogues. This error bar cannot be considered as a
confidence interval sensu stricto as it depends on the number
of good analogues available and not directly on the tolerance
of vegetation to a climatic range nor on the noise in the data.
Advantages and limits of the method are discussed in Guiot
and DeVernal (2007).

2.2 Vegetation modelling

A pollen assemblage (or spectrum) is assumed to reflect the
composition and structure of the regional vegetation. It is
composed by a large number of taxa which can be grouped
into what is usually called plant functional types (PFT, i.e.
groups of plant species of similar characteristics and re-
sponding in a similar way to climate). This has the advantage
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Fig. 1. Sketch of the modern analogues methods (MAT) and inverse proxy modelling (IPM). A.MAT starts from (1) a matrix of proxy
assemblages and a fossil assemblage (2) which is compared to all the modern proxy assemblages using a distance index; the few most similar
ones are identified, they are called the best analogues, (3) they are located on a map, (4) the corresponding climatic variables are selected
among the climate database and (5) averaged to provide the reconstructed climate variables. B. IPM starts (1) from a climatic scenario (a
vector of climatic variables), randomly generated (R), which is (2) introduced into the proxy model, and produces (3) a simulated proxy
assemblage; (4) the fossil assemblage is compared to simulated pollen assemblages; if the matching is acceptable, the climatic scenario is
kept, if not acceptable, it is rejected; (5) a new climatic scenario is randomly selected and the procedure (1 to 4) is repeated; (6) when a
sufficient number of virtual climatic scenarios is obtained, the procedure is stopped and distribution histograms of the scenarios retained are
build. It is possible to change other inputs of the model, such as the CO2 or insolation, and to study the proxy model sensitivity to that
variable. For both approaches, the steps are idealised to facilitate the their intercomparison. The practical algorithms operate generally in
slightly different way.

to reduce the size of the assemblages and overall to be coher-
ent with vegetation model outputs, according to the work of
Prentice et al. (1996).
There exists a large variety of vegetation models. Some

of them need a fine knowledge of climate to estimate vege-
tation. They are hardly usable at a continental scale where
often monthly climatic records are available. This explain
why paleostudies have used relative simple biogeochemical
models. The most popular model was BIOME3 (Haxeltine
and Prentice, 1996) or a modified version BIOME4 (Kaplan
et al., 2003). It is a process-based terrestrial biosphere model
which includes a photosynthesis scheme that simulates ac-
climation of plants to changed atmospheric CO2 by optimi-
sation of nitrogen allocation to foliage and by accounting for
the effects of CO2 on net assimilation, stomatal conductance,
leaf area index (LAI) and ecosystem water balance. It as-
sumes that there is no nitrogen limitation. The inputs of the
model are soil texture, CO2 rate, absolute minimum temper-
ature (Tmin), monthly mean temperature (T ), monthly to-
tal precipitation (P ) and monthly mean sunshsine (S), i.e.
the ratio between the actual number of hours with sunshine
over the potential number (with no clouds). From these in-

put variables, the model computes bioclimatic variables, and
from them, the maximum sustainable leaf area index and the
net primary production (NPP, in kgm−2 yr−1) for the PFT’s
able to live in this input climate. Competition among PFT’s
is simulated by using the optimal NPP of each PFT as an
index of competitiveness. The most important PFT’s in Eu-
rope are: temperate broadleaved evergreen trees (tbe), tem-
perate summergreen trees (ts), temperate evergreen conifer
trees (tc), boreal evergreen trees (bec), boreal deciduous trees
(bs), temperate grass (tg), woody desert plant type (wd), tun-
dra shrub type (tus), cold herbaceous type (clg), lichen/forb
type (lf). The pollen PFT’s are sometimes more precise and
pollen information is sufficient to recognize several varieties
of the same model PFT, for example pollen is able to sepa-
rate warm and cool ts. The use of such models in the pale-
oclimatological context and the simulation of the CO2 effect
on ecosystems are particularly well reviewed in Prentice and
Harrison (2009).
BIOME3 and BIOME4 are equilibrium models. LPJ-

GUESS is a noticeable improvement as the dynamics of
the vegetation stands are taken into account (Smith et al.,
2001). While, in the equilibrium models, two runs with the
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same climate gives always the same vegetation output, in a
dynamic model, random processes as competition between
species, and mortality introduce stochasticity in the outputs.
In LPJ-GUESS, cohorts of trees of different species, age and
structure compete for light and soil resources on a number of
replicated patches of plants. Either PFT (Sitch et al., 2003)
or species (Hickler et al., 2004) may be simulated. Gar-
reta et al. (2009) used the species version which includes 18
species. LPJ-GUESS has standard inputs, i.e. with monthly
values of precipitation, temperature and cloudiness. For each
study site, past and present, precipitation and temperature
chronologies were interpolated from the CRU TS 1.2 dataset
(New et al., 2002), which has a spatial resolution of 10�.
For cloudiness, they fitted a relationship between monthly
cloudiness and both monthly precipitation and temperature
per site.

2.3 Inversion modelling and Bayesian approach

As indicated by Fig. 1a, the statistical method to estimate
climate starts from pollen assemblages and goes back to cli-
mate. Vegetation models start from climate and go to veg-
etation. The idea proposed by Guiot et al. (2000) is then to
use massive computation algorithms to “inverse” the model,
starting from vegetation and going back to climate. It is not
an analytical inversion, but an iterative procedure where one
converges progressively towards the climate which has pro-
duced the observed vegetation (Fig. 1b). The caption of the
figure explains the steps of the method. The climatic space
is randomly sampled to produce a large variety of climatic
scenarios which are introduced in the vegetation model to
simulate the corresponding vegetation composition and pro-
ductivity. The simulated pollen assemblages are compared
to the fossil assemblage and those matching reasonably well
are retained. The corresponding climatic scenarios are then
considered to be compatible with the observed vegetation.
They are used to build histograms, which are estimates of
probability distribution functions of a climate able to gen-
erate such a vegetation. The outputs of the model do not
correspond exactly to the pollen assemblages. A transforma-
tion is necessary and it is a major tricky point of the method.
Several tested approaches are presented in the following sec-
tions. This transformation is assimilated to the model box in
the figure.
The second tricky point is the number of input climatic

parameters. The used vegetation models use 36 monthly cli-
mate inputs above described, which define the scenario. One
has to modify them randomly to browse the climatic space,
but its size is too high to converge to the true solution. So,
we decided to reduce them to a small number of represen-
tative variables (Tjan, Tjul, Pjan, Pjul), from which all the
other climatic variables are deduced. A sine function is ad-
justed to the two temperature variables and another to the
two precipitation variables, enabling an interpolation of the
missing months. The sunshine percentage of each month is

estimated by a linear regression from the temperature and
precipitation of the same month. See Guiot et al. (2000) for
more details. To provide a comparison between sites and
time periods, climate variables are expressed as “anomalies”
or �climate, i.e. differences between proposed climate and
the modern climate at the considered site.
The third tricky point is then to define what is considered

as a matching. Bayesian theory provides a framework for
such a definition (Robert and Casella, 1999). In this context,
it uses main concepts of prior and posterior. The prior is the
information, summarised under the form of a distribution,
which is available prior to the data analysis. The posterior
is the information that we will deduce from the data and a
hierarchical model. In that respect, the hierarchical model
is not restricted to the vegetation model, but it the function
which relates the prior to the posterior. In statistical terms,
it is the probability of pollen assemblage Y conditional on
climate C. It is noted p(Y |C)=

�
p(Y |V )p(V |C)dV where

p(V |C) is the vegetation model which links vegetation V to
climate C and p(Y |V ) is the function which links pollen to
vegetation. The prior is an initial guess of the probability
distribution of the climate. It can be given by the knowledge
we have from other paleoclimatic data, or from, if nothing is
available, from the knowledge which has been accumulated
in that science. The distribution law is then an uniform law
defined on that range.
Bayesian statistics have been conceptually introduced in

paleoclimatology by Korhola et al. (2002) and Haslett et al.
(2006), but without any reference to a mechanistic model.
They underlined that such an approach is slow despite mak-
ing unreasonable compromises on the models employed.
With a mechanistic model, it is even slower. The reason is
that, to draw the posterior, one has to use Monte-Carlo algo-
rithms which need thousands of iterations. These algorithms
– coherently with the Bayesian inference – provide an inte-
gration over the climate parameter space instead of an op-
timisation. A popular type of such algorithms is known as
Monte Carlo Markov Chain (MCMC) algorithm. Let us con-
sider a multi-dimensional mathematical space where each di-
mension represents a climatic variable. A vector of param-
eters is an element of the multi-dimensional climate space.
The Metropolis-Hastings algorithm is an iterative method
which browses the climate space according to an acceptance-
rejection rule (Metropolis et al., 1953; Hastings, 1970). The
output of this algorithm is a “path” or “chain” of climate
parameters describing the posterior distribution of climate
parameter. The MCMC algorithm can be considered as an
equilibrium inversion method, compatible with equilibrium
vegetation models as BIOME3.
To realise the temporal inversion of the dynamic model

LPJ-GUESS, a statistical framework has been developed
around a temporal hierarchical model and a Sequential
Monte Carlo (SMC or particle filter Doucet et al. (2001)) in-
ference algorithm, because (1) the random character of the
vegetation simulated by LPJ-GUESS prohibits the use of the
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“static” MCMC approach and, (2) the need of dimension re-
duction in the reconstructed climate space, which is equal
to the number of samples in the reconstructed climatic time-
series.

3 Applications

The method is illustrated starting, in one side from the equi-
librium vegetation model BIOME3 towards the dynamic veg-
etation model LPJ-GUESS and, in the other side, from a sin-
gle proxy (pollen) towards a double proxy constraint. This is
sketched in Fig. 2 with a double axis. The second proxy is, in
one case, lake levels data and, in the other one, isotopic data,
each proxy giving information on different aspects of the cli-
mate. Finally, we will conclude on the directions that palaeo-
climatology should follow to fully exploit the increasely di-
verse and improved set of archives and proxies.
All these results concern annual temperature and precipita-

tion. Even if these variables are not those which are the most
determinant for vegetation, they are the average of the input
variables and are then the most synthetic. Moreover, annual
precipitation is that one which concerns both lake-levels and
vegetation. We have thought that it was better to present them
instead of more bioclimatic variables (growing degree-days,
water availability ...), even if for a better interpretation of the
results, it is necessary to look also the bioclimatic variables.

3.1 Application A: Europe at the Last Glacial Maxi-
mum

The first application uses BIOME3 constrained by pollen
data (application A in Fig. 2) for the Last Glacial Maximum
(LGM, 21±2 kaBP) in Europe. The data and the method
are fully described in Guiot et al. (2000). The model out-
puts are transformed into pollen PFT’s scores by an Artifi-
cial Neural Network (ANN) calibrated on a modern dataset
(Tarasov et al., 1998). Unlike standard transfer function, the
relationship is not calculated between climate and pollen, but
between vegetation and pollen, the bridge between climate
and vegetation being given by BIOME3. The measure of
fit between the vegetation model outputs (NPP) and the ob-
servations (pollen PFT scores) is a likelihood index. It as-
sumes a probability model for the simulation “errors”, here a
Gaussian model. It is then proportional to the sum of square
discrepancies between ANN-transformed NPP and observed
pollen PFT scores. The priors are given by an uniform dis-
tribution law on [−30, +5◦C] for temperature anomalies and
[−60, 60%] for precipitation relative anomalies.
A dataset of 15 LGM samples is considered. We present

two experiments. The first experiment is done with a high
level of CO2 (340 ppmv) close to the atmospheric concen-
tration existing during the modern data sampling. The sec-
ond experiment with a low level of CO2 (200 ppmv), such
is measured in the ice cores for the LGM (Petit et al.,

1999). The results are presented according to the latitude
(Fig. 3). Annual temperature shows an increased gradient
from the southernmost site (about 35◦ N) towards the north-
ernmost (48◦ N), and, for the annual precipitation, a de-
creased gradient. It is 0.81±0.35◦C/◦latitude for temperature
and −29±12mm/◦latitude for precipitation. It means that a
temperature decrease larger in the south than in the north is
necessary to transform forest into steppes and, in the north, a
stronger precipitation decrease is necessary. When the LGM
CO2 level is applied, the gradients become unsignificant for
both variables. So the CO2 lowering is large enough to re-
duce forest extent: under a high CO2 level, temperature must
fall sufficiently to reduce the growing season under a certain
level, and under a low CO2 level, the forest reduction is due
to both temperature lowering and carbon limitation. There is
then a real bias in ignoring the true level of CO2 for climate
reconstruction (when statistical methods are used instead of
mechanistic models). This bias reaches 3◦C in southernmost
sites but not more than 1◦C in nothernmost ones, meaning
that CO2 becomes more limiting than temperature far away
from the ice cap.

3.2 Application B: Eurasia and Africa at the LGM

Wu et al. (2007a) have improved the method. First BIOME3
has been replaced by BIOME4 (Kaplan et al., 2003). Sec-
ond, the ANN-relationship between NPP simulations of the
model PFT’s and pollen PFT scores has been replaced by a
correspondence matrix between the model biomes and the
biome scores calculated from pollen. This matrix is an em-
pirical result based on modern data and theoretical definition
of the biomes (see the original paper for more information).
The method has been applied to LGM of Eurasia and Africa
(application B in Fig. 2).
The estimated anomalies of the climatic parameters for the

LGM period are shown in Fig. 4. The left part of the each
graphic concerns Africa. There is a large dispersion which
can mainly be explained by a large dispersion of the ele-
vations. Wu et al. (2007a) have shown a strong altitudinal
gradient of precipitation. For the modern level of CO2, one
cannot fit a linear relationship of temperature to latitude in
Africa, but yet in Europe, the relationship is negative: high
latitude sites had a temperature anomaly of about−12◦C and
southern sites anomalies of −10 to −5◦C. The gradient is
negative while it was positive in Fig. 3. It is likely due to the
better ability of BIOME4 to simulate the LGM vegetation,
which is intermediate between cool steppes and tundra. A
biome called steppe-tundra was introduced in the most recent
version of the model, which fits then much better to the data.
Even if that biome does not exist explicitly in the pollen data,
it exists cryptically when tundra and steppic scores are of
the same magnitude. The reconstructed anomalies under low
CO2 concentration are not significantly different from the re-
constructed anomalies under high CO2 concentration. Wu
et al. (2007a) found a clear bias for winter temperature, i.e.
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blue circles show the mode of the distribution and the red line the
linear relationship between the mode and the latitude.
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Fig. 4. Annual temperature and precipitation anomalies (i.e.
deviations form present value) at the Last Glacial Maximum
(21 ka±2 kaBP) in function of latitude. The regions covered are
Europe and Africa (42 sites). The grey scale indicates the probabil-
ity distribution, the blue circles show the mode of the distribution
and the red line the linear relationships between these modes and
the latitude of the sites, one for sites south of 10◦ N and one for
sites north of 30◦ N.
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about 10◦C colder under higher CO2, but nothing for summer
temperature. The only bias that is found for annual temper-
ature concerns Mediterranean sites, with an annual tempera-
ture rather lower under high CO2.
In Africa, temperature was not very different from present

values. Precipitation shows a much more structured pro-
file. Under high CO2, anomalies were close to zero in
South Africa and between −1000 and 0mm/yr at equator,
depending on the elevation. Under low CO2concentration,
the reconstruction in the southern part of the continent was
similar, and in the central part, the dispersion was higher:
−1200 to 0mm/yr. If we focus on high elevation sites
(>1500m), the precipitation mode, for 340 ppmv, was at
about 1000mm/year and is replaced, with 200 ppmv, by a
large double peak from 1100 to 700mm/year. In fact, Wu
et al. (2007b) have shown that the disappearance of forest
above 2000m elevation can be explained partly by a precip-
itation decrease and partly by a CO2 lowering. Wu et al.
(2007a) analysed the water stress variable α, which is the
ratio of actual and potential evapotranspiration and is closely
related to the stomatal area and the water use efficiency. They
found that its maximum probability ranges within [−40,
−28%] for high CO2 and within [−40, −8%] for low CO2.
There is then an oversetting of CO2, if we use a high CO2
concentration, inducing an overestimation of the water stress.
Several solutions are possible for the LGM climate in re-

gions where a mixture of steppes and tundra existed. As
these biomes have no clear analogues today, a reconstruc-
tion based on statistical methods will tend to choose the least
poor matching, or fail to find a matching (Peyron et al., 1998;
Jost et al., 2005). These analogues were taken in tundra or
very cold steppes, resulting in very low reconstructed tem-
peratures. By using a mechanistic model and probability dis-
tributions, the results are multi-modal and the most probable
mode is different according to the CO2 concentration. All
possible solutions at LGMCO2 levels can be explored. Com-
plementary proxies are, in this case, of great help to precise
the best suitable solution.

3.3 Application C: lake levels and an equilibrium vege-
tation model

The third example is a single site application with a core cov-
ering a part of the Holocene and Younger Dryas (YD) for
which pollen assemblages and lake-lavels data are available.
This application illustrates the effect expected from the use of
a second proxy to precise climate components not optimally
accessible from pollen data alone (application C in Fig. 2).
The palaeo-lake Le Locle (47◦03� N, 6◦43� E) has been

dried at the last century. It is located at 915m a.s.l. in the high
Swiss Jura. The pollen and lake-level data used in this study
were obtained are described in Magny et al. (2001). The lake
level status curve indicates that the YD was characterized by
a trend toward a lake-level lowering and strong instability
(Fig. 5). The early Holocene had three major phases of low

levels, before 10 kaBP, between 9 and 8.5 kaBP, and after
7 kaBP. Concerning the vegetation history (represented by
the deciduous trees curve and the total of tree pollen (Fig. 5),
the Younger Dryas was characterized by rather large per-
centages of trees (Pinus, Betula) together with about 10%
of Artemisia. Early Holocene was characterized by an in-
crease of Corylus, then Ulmus and Quercus. Nothing in the
vegetation history can be related to the rise in lake level at ca.
8400–8300 cal yr BP.
First, we use the method as defined in Sect. 3.1, pollen be-

ing used alone to constrain the model and CO2 assumed to
be constant and equal to the pre-industrial value 280 ppmv.
The priors for January and July temperature are assumed to
be uniform between−8 and +4◦C (in anomalies) and for pre-
cipitation, between −40 and +40% of modern conditions. It
is called the “pollen experiment” (ExP) (Fig. 6). The YD
was characterised by a temperature lower than present by
8◦C. Annual precipitation did not seem to have any trend
across the whole studied period. The second experiment
(pollen-CO2 experiment, ExPC) is obtained by providing to
the model the atmopsheric CO2 as reconstructed from the
Taylor Dome ice core (Indermühle et al., 1999) (Fig. 6). It
has the largest effect on the reconstruction of temperature –
an anomaly of 5◦C instead an anomaly of 8◦C with ExP –
when its concentration is the lowest. This is enlightened by
the differences ExPC-ExP between probability distributions
of ExPC and that of ExP: the modes of ExP (in blue) are sys-
tematically lower than the modes of ExPC (in red). As for
the LGM, this shows that, when the true value of CO2 is not
taken into account, there is a bias in the temperature recon-
struction, the effect being maximum during the YD, when
the CO2 was the lowest. The effect on precipitation seems
to be negligible (the blue and red distributions being flat and
not contrasted).
The last experiment (pollen-CO2-lakes experiment, Ex-

PCL) is obtained by constraining the model with pollen, CO2
and lake-levels (Fig. 6). The integration of lake-levels is not
straightforward. A solution has been proposed by Cheddadi
et al. (1996), called the constrained analogue method. The
lake-levels were compared, for each iteration, to the pre-
cipitation minus evapotranspiration (P−E), closely related
to run-off. Both quantities are substracted by their modern
value at the study site. we call �L, the anomaly of lake-
level and �(P−E) the anomaly of P−E. Even if the match-
ing between simulated and observed pollen assemblages are
acceptable, the iterations where

(|�L| ≤ 0.5) and (|�(P−E)|>200mm)

(�L>0.5) and (�(P−E)< − 100mm)

(�L< − 0.5) and (�(P−E)>100mm) (1)

are eliminated. The thresholds used in that equation are in
some way arbitrary and obtained by trials and errors. Ched-
dadi et al. (1996) found that the results were not too much
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Fig. 5. Location of Lake Le Locle in Swiss Jura. The upper right graphic represents the proportion of tree pollen and the proportion of
deciduous tree pollen in the pollen diagram. The middle right graphic represents the lake-levels. The lower right graphic represents the CO2
concentration in the ice core bubbles of Taylor Dome (Indermühle et al., 1999). Time scales are in calibrated years BP.

ExP ExPC ExPCL 

ExPC-ExP ExPCL-ExP 

Fig. 6. Results of three experiments on Lake Le Locle. Two variables are constructed, annual temperature and precipitation. Grey sale
indicates the probability distributions. The green curve indicates the modal curves. ExP shows the results when pollen alone is used in the
inverse modelling; ExPC, when pollen is used with variable CO2 concentraton (Indermühle et al., 1999); ExPCL, when pollen is used with
variable CO2 and with the lake levels constraints. The “blue/red” graphic represent the difference between probability distribution of two
experiments. The curves represents the modal curves.

sensitive to the choice of these values. Fig. 6 shows that the
reconstructed variations of temperature do not change, but
those of precipitation follow much better those of the lake
levels, with also a decrease of the uncertainties (indicated by
a narrowing of the probability distribution). The probabil-
ity distribution differences (ExPCL-ExP) shows that ExPCL

distributions are narrower than the ExP modes (blue areas on
both sides of the red area indicate large distributions). So
when pollen is used alone, the precipitation reconstruction
have much larger uncertainties.
These experiments prove again then that CO2 must be

taken into account at least during periods where it is low.
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Another point is that precipitation, in temperate regions (at
least), can not be inferred with a sufficient confidence from
vegetation proxies only. Vegetation uses a part of precipi-
tation falling on the ecosystems, a significant part runs off
and consequently, a complementary proxy is needed to in-
fer correctly the total amount of water available within the
ecosystem.

3.4 Application D: δ13C proxy and equilibrium vegeta-
tion model

We present now a another single site application with a core
approximately covering the Eemian warm period (128 to
100 kaBP) for which pollen diagram and δ13C of organic
matter are available. This application illustrates the effect
expected from the use of a second proxy of vegetation to
decrease uncertainties of pollen data alone. It corresponds
to application D of Fig. 2. The procedure used is based on
BIOME4 model (as in Sect. 3.2). The likelihood function LH
assumes a Gaussian probability distribution for the errors of
δ13C.

LH = − (δ13Co − δ13Cs)
2

S2
(2)

where subscripts o and s correspond to target and simu-
lated values respectively and where 1/S2 is the whole model
precision, the inverse of the model error variance. It is
an adjustable number which measures the quality of the fit
between model outputs and data (Hatté and Guiot, 2005).
When pollen data are also available, it is possible to use
biome assignment to the sample to make an additional se-
lection of the runs. If the simulated biome matches with the
biome obtained from pollen, the iteration is kept, if not, it is
rejected. Hatté et al. (2009) have compared the results ob-
tained with biome alone (which is a single pollen approach)
and with carbon isotopes constrained by pollen biomes. The
method is validated in Hatté et al. (2009).
We reproduce here the results obtained for La Grande

Pile sequence. This site is located at 47◦44� N, 6◦30� E,
330m a.s.l. with annual precipitation of 1080mm, a mean
annual temperature of 9.5◦C, and a seasonal range of about
18◦C between the warmest and the coldest months. The data
are presented in Rousseau et al. (2006).
For each sample of the La Grande Pile core, an input vec-

tor is defined and composed by (1) the δ13C of the sam-
ple, (2) the target biomes as the two with the highest scores
achieved by the biomisation procedure (further information
in Rousseau et al., 2006), (3) the atmospheric CO2 concen-
tration based on Petit et al. (1999) record interpolated at La
Grande Pile time-scale and (4) soil type and texture. The
reconstructed annual temperature and precipitation are based
on iteration with value of LH higher than -0.5, corresponding
to an accepted error of maximum 0.7 ‰ for δ13C.
Mean annual temperature and annual precipitation recon-

structed by inverse modelling constrained by both pollen
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Fig. 7. Temperature and Precipitation reconstruction at La Grande
Pile during Eemian period. Mean annual temperature and annual
precipitation reconstructed by biome(s) and δ13C inverse modelling
are represented by a grey scale color for the probability distribution
and its modal curve (in blue). They are bracketed (in green) by
the domain that encompasses both potential climatic niches of both
most likely biomes. Modified from Hatté et al. (2009).

biomes and δ13C are bracketed by the ranges which should
be obtained by pollen biome constrains alone (Fig. 7). The
added-value of double constraints is particularly clear for
precipitation reconstruction: single constraint infers a con-
stant value with large uncertainties ([−600, +200mm/yr] in
precipitation anomaly) and a double constraint decrease un-
certainty by 2 to 4. Furthermore, reconstructed temperature
ranges are often decreased by a factor 2. This confirms the
conclusion of previous section that pollen alone cannot give
a sufficiently precise reconstruction of precipitation. This
shows also that the use of two proxies decrease the uncer-
tainty on reconstruction of both variables and inverse mod-
elling is an elegant way to integrate several proxies related to
vegetation. Nevertheless, we must note that the uncertainty
provided by pollen biome is higher than uncertainty provided
by the whole PFT assemblage, as in the previous subsections.

3.5 Application E: dynamic vegetation model

This section intends to illustrate the use of a dynamic veg-
etation model, LPJ-GUESS, with a single proxy, i.e. pollen
assemblages. As the model is dynamic, this application deals
with the temporal characteristics of the data, such as already
suggested by Haslett et al. (2006). Vegetation is not only
assumed to be dependent on the contemporaneous climate
but also on the previous vegetation. Autocorrelation in the
time-series is considered as an important information. More-
over, the dynamic model is not a deterministic model (two
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runs with the same inputs do not produce exactly the same
results). MCMC algorithm are then not applicable. Garreta
et al. (2009) have proposed to use a particle filter technique
more adapted to time-series and stochastic processes.
We do not use here PFT’s scores but a restricted vector

of 14 arboreal pollen taxa (Abies, Alnus, Betula, Carpinus,
Corylus, Fagus, Fraxinus, Picea, Pinus, evergreen Quercus,
deciduous Quercus, Tilia, Ulmus and Populus) and a 15th
herbaceous taxon, summing all the herbaceous taxa. This
choice has the maximum of coherency with the 18 species
defined in LPJ-GUESS. Garreta et al. (2009) applied their
method to a fossil core (Meerfelder maar) (Litt et al., 2009),
but we just present here the validation of the method with
modern samples. The monthly temperature and precipitation
were deduced from a 6-dimensional climate parameter vec-
tor: C=(TJan, TJul, Pwin, Pspr, Psum, Paut), which is slightly
different on what has been done in the previous sections. The
first two variables are temperature anomalies (in ◦C) from
January and July for 1901–2000. The four other ones were
seasonal (winter, spring, summer and autumn) precipitation
relative anomalies (in %).
To simulate vegetation at time tj>ti , with ti and tj con-

secutive time periods (corresponding to the resolution of the
core), the vegetation model starts with Vti and runs for tj−ti
years. If tj−ti is short, vegetation simulated at tj is strongly
forced by vegetation Vti and then, implicitly, by climate Cti .
This constraint gives a time-coherence to vegetation and then
to reconstructed climate, and helps to produce “histories” or
“dynamics” or joint distributions of vegetation and climate.
This constraint can be seen as a smoother of the local bias
within independent reconstructions.
A key element of the inversion model is the relationship

between simulated vegetation and pollen data. In the previ-
ous sections, this has been calculated either with a statisti-
cal non linear relationship or with a correspondence matrix.
Here it is approximated by a kernel surface (or a response
surface) where the pollen taxon is expressed as a function of
the taxonomically closest model taxon. This kernel was cali-
brated on a dataset of 1209 surface samples covering Europe
and North Africa. It is illustrated for Alnus (Fig. 8) where
the maximum weight is found where the coherency is best
between data and model (here, in the region of low pollen
and NPP values and in the region of mean pollen values and
NPP around 0.02). Where pollen values are high (>4), model
is enable to simulate high NPP.
The results of the method are shown as (smoothed) poste-

rior distributions of each climatic variable. It is illustrated
for an Andalucian site (Fig. 9). Mean discrepancies be-
tween posterior medians and expected values of the 6 recon-
structed parameters are negligible by comparison with inter-
val widths: the differences between the modes are <5◦C for
temperature and close to 0% for precipitation. There is then
a bias for temperature. But, this kind of analysis has not re-
ally a sense for a single site. To really evaluate the biases, it
is necessary to repeat this validation for several sites. It has

Fig. 8. Alnus distribution: the points are the modern sites, the x-
axis is the ? transform of pollen percents=log(Palnus/PGrSh) (P for
percent), the y-axis is the simulated Alnus using LPJ-GUESS (in
kg carbonm−2 year−1) from CRUTS-1.2 (New et al., 2000) climate
interpolated at each site; the color scale represents the surface fitted
to the density of sites (red meaning maximum density).

been done for 30 sites in Europa and Garreta et al. (2009)
have shown that the mean bias was<1◦C and 3% in absolute
value. Thus, the method seems to be unbiased.
To provide a valuable information, the posterior distribu-

tions must be narrower than the prior ones. It is the case
for temperature where the lower limit of temperature dis-
tribution goes from −15◦C to −5◦C in January and from
−10◦C to −6◦C in July (Fig. 9). Precipitation posteriors are
not narrower than their priors, a result which shows that im-
provements, in both the vegetation model and the inversion
scheme, are still necessary. Some of them concern a better
modelling of the relationship between pollen dispersion and
plant productivity.

4 The main results relevant to palaeoclimatology

This paper has shown the progresses which have been made
in the last ten years by introducing more mechanisms in the
climate reconstructions. The hypotheses behind classical ap-
proaches say that we may find in the modern world, sim-
ilarities for the past and then explain the past in one loca-
tion as a realization of a present situation somewhere else
in the world. This is clearly the basis of the analogue ap-
proaches, but also of all statistical approaches based on a
modern dataset considered as a training dataset (regression
based methods, artificial neural networks ...). Mechanistic
models, able to simulate a proxy in function of climate, give
us the chance to work around this hypothesis at the condi-
tion to replace similarity of data by uniformity of processes.
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Fig. 9. Verification of the method on modern pollen data of an Andalucian site. Prior (blue lines) and posterior (red lines) univariate
distributions of the 6 climate variable weighted with the particle importance and smoothed: monthly January and July temperature (in ◦C of
anomaly), seasonal winter, spring, summer and autumn total precipitation (in % of anomaly).

It implies that such models were strongly based on mech-
anisms and not only a set of linear or non linear equations
calibrated on modern datasets. Vegetation models is among
this category.
Pollen data have the chance that vegetation models based

on physiological laws have been developed more than fifteen
years ago (Prentice et al., 1992). Having such model avail-
able is not the only condition. These models must also be
enough simple to work with accessible inputs (climate, soil
structure ...). It has been the leading mind of most of the veg-
etation models developed since this pioneer work. This pa-
per has shown how to go from a relatively simple equilibrium
model (BIOME3) to a dynamic model as LPJ-GUESS. These
models give the possibility to work under conditions very
different from the modern ones. It is clearly the case for the
atmospheric CO2 concentration often lower than the contin-
uously increasing present one (200 ppmv during the glacial
periods, around 280 ppmv during the interglacials and more
than 370 ppmv today). The seasonality changes are also an
interesting point. It is induced by variations of earth orbit
around the sun (see the pioneer work of Berger, 1978). This
feature is implicitly partly taken into account by the inversion
procedure, through its effect on temperature and precipita-
tion, as different priors are set for winter and summer. But so-
lar radiation influences also directly photosynthesis and this
should also been taken into account in the future.
Our results enable to draw several important points:

1) there may be a significant bias in not taking into account
the difference of CO2 between modern and past time pe-
riods. Particularly, during the glacial periods where the

difference is maximum, CO2 fall is partly responsible
of the destruction of forest in Mediterranean area. Not
taking it into account, the results tend to attribute it to a
too important temperature fall. The tundra-steppe veg-
etation of central and southern Europe is interpreted as
a tundra vegetation when statistical methods are used,
while a mechanistic model as BIOME4 interpret it as a
cool steppe, less cold than the tundra, especially in sum-
mer. Some biases can also exist during less cold periods
(Younger Dryas and even Holocene).

2) The use of lake-levels to constrain the reconstruction
from pollen data reduces the uncertainty associated with
the fact that pollen in temperate zones is a temperature
indicator rather a precipitation proxy. The results, us-
ing lake Le Locle pollen data and lake levels proxies,
have shown that, not only uncertainty is reduced but also
larger variations are reconstructed across the Holocene.

3) δ13C is another proxy strongly related to precipitation.
The results on the Grande Pile Eemian have confirmed
that the joined use of pollen and carbon isotopes reduces
also the uncertainties on precipitation reconstruction.

4) The use of a dynamics model confirms the main role of
temperature in the vegetation shifts in Europe. This ap-
proach is still in development and some improvements
are necessary to make the method fully operationnal. A
first result here, which maybe confirms points 2 and 3
above, is that the effect of precipitation seems to be un-
derestimated in LPJ-GUESS or BIOME4.
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5 Conclusions

Vegetation models are an elegant solution to integrate sev-
eral proxies. They simulate quantities which may be related
to pollen data. They simulate also fractionation of δ13C in the
plant which can be compared with isotopic measurements in
the sediment bulk. They simulate also water absorbed by
the plant and water running off. The run-off, represented by
precipitation minus evapotranspiration, can be directly com-
pared to lake-levels data when the core is lacustrine. As often
lake recharge is done in winter and water useful for vegeta-
tion must be available in the growing season, the use of both
proxies give a complementary enlightening of two comple-
mentary aspects of the climate, which enables also to study
various seasonalities.
Despite these points, this inverse vegetation modelling ap-

proach is not the panacea. First, because it is a model-based
approach, it is highly dependent on the quality of the proxy
model. Second, it requires a great deal of computation time,
which will increasingly become a problem in adapting the
technique to more sophisticated models. Third, the outputs
of the model are not directly comparable with the pollen data
without a pollen dispersion modelling. Further verification is
required by adapting this approach to other vegetation mod-
els. It remains important, however, to use this approach in
parallel with classical statistical approaches. The compari-
son of results is a major key in understanding relationships
between paleoclimates and palaeovegetation.
Finally, it is expected a lot in building an integrated model

of the pollen accumulation in the core: this model should
include all the processes such as vegetation development,
pollen dispersion, catchment basin erosion, sediment accu-
mulation, diagenesis, chronology uncertainties... A lot of
work is still to be done.
Dedication: André Berger has not only been a pioneer in

the theory of paleoclimates. He has stimulated a lot of scien-
tists around him. He early understood the necessity to obtain
quantified information on the past climates. Concerning the
first author of this paper, he was his PhD supervisor and he
pushed him to develop such quantified approaches for ter-
restrial archives. The first author dedicates this article to an
inspiring colleague and friend.
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