
HAL Id: hal-00429374
https://hal.science/hal-00429374v1

Submitted on 2 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A List Scheduling Heuristic with New Node Priorities
and Critical Child Technique for Task Scheduling with

Communication Contention
Pengcheng Mu, Jean François Nezan, Mickael Raulet, Jean-Gabriel Cousin

To cite this version:
Pengcheng Mu, Jean François Nezan, Mickael Raulet, Jean-Gabriel Cousin. A List Scheduling Heuris-
tic with New Node Priorities and Critical Child Technique for Task Scheduling with Communication
Contention. DASIP (Conference on Design and Architectures for Signal and Image Processing), Sep
2009, Nice, France. 8 p. �hal-00429374�

https://hal.science/hal-00429374v1
https://hal.archives-ouvertes.fr

A List Scheduling Heuristic with New Node Priorities and Critical Child
Technique for Task Scheduling with Communication Contention

Pengcheng Mu, Jean-François Nezan, Mickaël Raulet and Jean-Gabriel Cousin
IETR/Image and Remote Sensing Group

CNRS UMR 6164/INSA Rennes
20, avenue des Buttes de Coësmes

35043 RENNES Cedex, France
email: {pmu, jnezan, mraulet, jcousin}@insa-rennes.fr

Abstract

Task scheduling is an important aspect for parallel pro-
gramming. In this paper, the program to be scheduled is
modeled as a Directed Acyclic Graph (DAG), and we tar-
get parallel embedded systems of multiple processors con-
nected by buses and switches. This paper presents im-
provements for list scheduling heuristics with communica-
tion contention. We use new node priorities (top level and
bottom level) to sort nodes and use an advanced technique
of critical child to select a processor to execute a node.
Experimental results show that our method is effective to
reduce the schedule length, and the performance is greatly
improved in the cases of medium and high communication.
Since the communication cost is increasing from medium to
high in modern applications like digital communication and
video compression, our method will work well for schedul-
ing these applications on parallel embedded systems.

1. Introduction

The recent evolution of digital communication and video
compression applications has dramatically increased the al-
gorithm and system complexity. To face this problem, Sys-
tem on a Chip (SoC) with several cores (e.g. multi-core
DSPs) and several hardware accelerators (e.g. Intellectual
Properties) is becoming the basic element to build complex
systems. It is not straightforward to distribute and schedule
tasks of a program over a multi-component system. When
performed manually, the result is usually a suboptimal solu-
tion. There is a need for new task scheduling methodologies
that allow the exploration of several solutions over multi-
processor systems thus producing a near optimal result.

Dataflow programming has been commonly used for
programming on multiprocessor. It consists in modeling a

program as a directed graph of data flowing between opera-
tions. The program in this paper is represented as a Directed
Acyclic Graph (DAG) [8], where nodes represent tasks (i.e.
computations) and edges represent dataflows (i.e. commu-
nications) between tasks. The objective of task scheduling
is to assign computations and communications respectively
to processors and communication links of the target system
in order to get the shortest execution time. The scheduling
could be static, which is done at compile time, or dynamic,
which is done at run time. Static scheduling is more suit-
able than dynamic scheduling for deterministic applications
by leading to lower code size and higher computation effi-
ciency. This paper concerns static scheduling, and all the
task scheduling heuristics in the following parts are static.

The general task scheduling problem is proven to be
NP-hard [8]; therefore, many works try to find heuristics
to go up to the optimal solution. Early task scheduling
heuristics as in [1, 4] do not consider communications. As
the communication increases in modern applications, many
scheduling heuristics have to take communication into ac-
count [8, 3, 14, 15, 6]. Most of these heuristics use fully
connected topology network in which all communications
can be performed concurrently. Different arbitrary proces-
sor networks are then used in [9, 5, 2, 12] to accurately de-
scribe real parallel systems, and the task scheduling takes
into account communication contention on communication
links.

Most of the heuristics above are based on the approach
of list scheduling. Basic techniques are given in [10] for list
scheduling with communication contention. This paper will
give some advanced techniques. Firstly, three new groups
of node priorities will be defined and used to sort nodes in
addition to the two existing groups; secondly, a technique
of using a node’s critical child will be given to improve the
performance for selecting a processor for this node. This
paper will finally combine these two techniques and show

the efficiency in the results.
The paper is organized as follows: Section 2 firstly intro-

duces necessary models and definitions, and then the task
scheduling problem with communication contention is de-
scribed in this section. Our new techniques are explained in
Section 3 in detail, and Section 4 gives experimental results.
The paper is concluded in Section 5 at last.

2. Models and Definitions

The program to be scheduled is called an algorithm and
is modeled as a DAG in this paper. The multiprocessor
target system is called an architecture and is modeled as a
topology graph. These models are detailed as follows.

2.1. DAG Model

A DAG is a directed acyclic graph G = (V,E,w, c)
where V is the set of nodes and E is the set of edges. A
node represents a computation. For two nodes ni, nj ∈ V ,
eij denotes the edge from the origin node ni to the desti-
nation node nj and represents the communication between
these two computations. The weight of node ni (denoted
by w (ni)) represents the computation cost; the weight of
edge eij(denoted by c (eij)) represents the communication
cost. In this model, the set {nx ∈ V : exi ∈ E} of all the
direct predecessors of node ni is denoted by pred (ni); the
set {nx ∈ V : eix ∈ E} of all the direct successors of node
ni is denoted by succ (ni). A node n with pred (n) = ∅ is
named a source node, where ∅ is the empty set. A node n
with succ (n) = ∅ is named a sink node.

The execution of computations on a processor is sequen-
tial and a computation can not be divided into several parts.
A computation can not start until all its input communica-
tions finish, and all its output communications can not start
until this computation finishes. Communications are also
sequential on a communication link, but different computa-
tions and communications can be executed simultaneously
respecting the input and output constraints above. Figure 1
gives a DAG example used in [7] to illustrate performances
of different scheduling heuristics. It is also used in Sec-
tion 4.1 to show the performance of our method.

2.2. Topology Graph Model

A topology graph TG = (N, P, D, H, b) has been used
to model a target system of multiple processors intercon-
nected by communication links and switches [12]. N is the
set of vertices, P is a subset of N , P ⊆ N , D is the set
of directed edges, H is the set of hyperedges, and b is the
relative data rate of edge. The union of the two edge sets
D and H is designated the link set L, L = D ∪H , and an
element of this set is denoted by l, l ∈ L.

2

1114

111
533

n1

n2 n3 n4 n5

n6 n7 n8

n9

10

1

5 6 5

4

4 4 4

1

Figure 1. A DAG example

The topology graph is denoted as TG = (N, P, L, b)
in this paper, and directed edges are not used in a target
system. A vertex p ∈ P represents a processor, and a vertex
n ∈ N, n /∈ P represents a switch. Since directed edges
are not used, a link l ∈ L is actually a hyperedge h, which
is a subset of two or more vertices of N , h ⊆ N, |h| >
1. A hyperedge connects multiple vertices and represents
a half duplex multidirectional communication link (e.g. a
bus). The positive weight b (l), associated with a link l ∈ L,
represents its relative data rate.

Differing from the vertex of processor, a switch is a ver-
tex used only for connecting communication links, and no
computation can be executed on it. Switches are assumed
to be ideal.

Ideal Switch For a switch s, let l1, l2, . . . , ln be all the
communication links connected to s. If two links li1
and li2 of them are not used for the moment, a com-
munication can be transferred on li1 and li2 without
any impact from/to communications on other commu-
nication links connected to s.

Switches are contention-free according to the descrip-
tion above. Separate communication links connected to the
same switch can be used for different communications at the
same time; however, a new communication could not begin
on a link if this link is busy. Communication links are con-
sidered homogeneous in this paper, but processors can be
heterogeneous. Therefore, the relative data rate is assumed
to be 1 for all the links, b (l) = 1,∀l ∈ L, but a computa-
tion usually needs different execution durations on different
types of processors. Figure 2 gives three architecture exam-
ples: (a) three processors sharing a bus; (b) eight processors
connected to a switch by eight buses; and (c) six processors
interconnected by buses and switches. Figure 2(c) models
the C6474 Evaluation Module (EVM)1 which includes two
C6474 multicore DSPs.

A route is used to transfer data from one processor to an-
other in the target system. It is a chain of links connected

1http://focus.ti.com/docs/toolsw/folders/print/tmdxevm6474.html

P1

P2

P3

L1

(a)

P2

P4

P6

L8

L6L2

L3

L7

L5L4

P8

S1

P1 P7

P5P3

L1

(b)

P1

P2

P3

S1 S2

P4

P6

P5

L1 L6

L2

L3

L7 L5

L4

(c)

Figure 2. Architecture examples

by switches from the origin processor to the destination pro-
cessor. For example, L1 → L7 → L4 is a route from P1
to P4 in Figure 2(c). Routing is an important aspect of task
scheduling. Since the scheduling is static, a route between
two processors is also considered as static and is determined
at compile time. It is possible to determine routes once and
to store them in a table, then the routing during the schedul-
ing becomes looking up the table.

2.3. Task Scheduling with Communication
Contention

A schedule of a DAG is the association of a start time
and a processor with each node of the DAG. When the
communication contention is considered, a schedule also
includes allocating communications to links and associat-
ing start times on these links with each communication. A
communication needs the same duration on each link be-
cause of the homogeneity of links. However, a computation
usually needs different durations on different processors be-
cause processors are heterogeneous. Therefore, the average
duration of a computation on different types of processors
is used to present the node weight.

Following terms describe a schedule S of a DAG G =
(V,E, w, c) over a topology graph TG = (N, P, L, b). The
start time of a node ni ∈ V on a processor p ∈ P is de-
noted by ts (ni, p); the finish time is given by tf (ni, p) =
ts (ni, p) + w (ni, p), where w (ni, p) is the execution du-
ration of ni on p. A node can be constrained to some
processors of the target system. The set of processors on
which ni can be executed is denoted by Proc (ni), and the
processor on which ni is actually allocated is denoted by
proc (ni). The finish time of a processor is the maximum
finish time among all the nodes allocated on this processor,
tf (p) = max

proc(ni)=p
{tf (ni, proc (ni))}, and the schedule

length of S is the maximum finish time among all the pro-
cessors in the system, sl (S) = max

p∈P
{tf (p)}.

The communication represented by an edge exists only
when its origin node and destination node are not allocated
on the same processor. The start time of an existing edge
eij ∈ E on a link l ∈ L is denoted by ts (eij , l); the fin-
ish time of eij is given by tf (eij , l) = ts (eij , l) + c (eij).

A node (computation) can start on a processor at the time
when all the node’s input edges (communications) finish.
This time is called the Data Ready Time (DRT) and is
denoted by tdr (nj , p) = max

eij∈E
{tf (eij , l)}, where l is a

link on which eij is allocated. DRT is the earliest time
when a node can start. If nj is a node without input edge,
tdr (nj , p) = 0,∀p ∈ P .

Node Scheduling Condition For a node ni, let
[A, B] , A,B ∈ [0,∞] be an idle time interval
on the processor p. ni can be scheduled on p within
[A, B] if max {A, tdr (ni, p)} + w (ni, p) ≤ B.
The start time of ni on p is given by
ts (ni, p) = max {A, tdr (ni, p)}.

Communications are handled in the way of cut-through
on a route because of the circuit switching. Therefore, an
edge eij is aligned on all the links of the route lR1 →
lR2 → . . .→ lRk

with ts (eij , lR1) = ts (eij , lR2) = . . . =
ts (eij , lRk

). The start time and finish time of eij on all
the links of the route are denoted uniformly by ts (eij) and
tf (eij) with tf (eij) = ts (eij) + c (eij).

Edge Scheduling Condition For a DAG G = (V,E,w, c)
and a topology graph TG = (N, P, L, b), let lR1 →
lR2 → . . . → lRk

be a route for an edge eij ∈
E and let [A, B] , A,B ∈ [0,∞] be a common
idle time interval on all the links of this route.
eij can be scheduled on this route within [A, B] if
max {A, tf (ni, proc (ni))} + c (eij) ≤ B. The
start time of eij on this route is given by ts (eij) =
max {A, tf (ni, proc (ni))}.

3. List Scheduling Heuristic

Algorithm 1 gives the commonly used static list schedul-
ing heuristic. This algorithm is composed of three proce-
dures of Sort Nodes(), Select Processor() and
Schedule Node(). This section describes improve-
ments for the first two procedures compared with the classic
methods given in [12].

Algorithm 1: List Scheduling(G, TG)
Input: A DAG G = (V,E,w, c) and a topology graph

TG = (N, P, L, b)
Output: A schedule of G on TG
NodeList← Sort Nodes(V);1

for each n ∈ NodeList do2

pbest ← Select Processor(n, P);3

Schedule Node(n, pbest);4

end5

3.1. Sorting Nodes with Five Groups of
Node Priorities

Nodes are firstly sorted into a static list by the proce-
dure of Sort Nodes() in the heuristic. Since the or-
der of nodes in the list affects much the schedule result,
many different priority schemes have been proposed to sort
nodes [9, 6]. Experiments in [11] show that list schedul-
ing with static list sorted by bottom level outperforms other
compared contention aware algorithms. Our list scheduling
heuristic uses the bottom level and top level to sort nodes,
and three new groups of top level and bottom level are pro-
posed to take communication contention into account.

The top level of a node is the length of the longest path
from the beginning of the DAG to this node, excluding
the weight of this node; the bottom level of a node is the
length of the longest path from this node to the end of the
DAG, including the weight of this node. Our procedure of
Sort Nodes() sorts nodes into a list of NodeList ac-
cording to the following rule:

Rule for Sorting Nodes Nodes are sorted by the decreas-
ing order of their bottom levels; if two nodes have
equal bottom levels, the one with greater top level is
placed before the other; if both the bottom level and the
top level are equal, these nodes are sorted randomly.

Two groups of top level and bottom level have been used
as node priorities and are named respectively as computa-
tion top level (tlcomp) and bottom level (blcomp), top level
(tl) and bottom level(bl). Besides the two existing groups,
this paper proposes three new groups, which are named as
input top level (tlin) and bottom level (blin), output top level
(tlout) and bottom level (blout), input/output top level (tlio)
and bottom level (blio). Figure 3 illustrates the dependency
between nodes to define different top levels and bottom lev-
els, where the dotted nodes and edges are used to define the
top levels and bottom levels of ni. The formalized defini-
tions of top levels and bottom levels are given as follows.

• Computation top level and bottom level (Figure 3(a))

The computation top level of a node is the length of
the longest path from the beginning of the DAG to this
node including only the weights of nodes; the compu-
tation bottom level of a node is the length of the longest
path from this node to the end of the DAG including
only the weights of nodes. The weights of edges are
not taken into account in the computation top level and
bottom level. They are defined recursively as follows:

tlcomp (ni) =

0, if ni is a source node

max
nk∈pred(ni)

{tlcomp (nk) + w (nk)} ,

others

blcomp (ni) =

w (ni) , if ni is a sink node

max
nk∈succ(ni)

{blcomp (nk)}+ w (ni) ,

others

• Top level and bottom level (Figure 3(b))

The top level and bottom level take into account addi-
tionally the weights of edges on the path by contrast
with the computation top level and bottom level. They
are defined recursively as follows:

tl (ni) =

0, if ni is a source node

max
nk∈pred(ni)

{tl (nk) + w (nk) + c (eki)} ,

others

bl (ni) =

w (ni) , if ni is a sink node

max
nk∈succ(ni)

{bl (nk) + c (eik)}+ w (ni) ,

others

• Input top level and bottom level (Figure 3(c))

The input top level and bottom level take into account
weights of nodes on the path as well as weights of all
the input edges of a node on the path. They are defined
recursively in Equation 1 and 2.

• Output top level and bottom level (Figure 3(d))

The output top level and bottom level take into account
weights of nodes on the path as well as weights of all
the output edges of a node on the path. They are de-
fined recursively in Equation 3 and 4.

• Input/output top level and bottom level (Figure 3(e))

The input/output top level and bottom level take into
account weights of nodes on the path as well as
weights of all the input and output edges of a node on
the path. They are defined recursively in Equation 5
and 6.

The three new priorities take into account the commu-
nication contention between nodes in comparison with the
two existing priorities which have been used in the list
scheduling without communication contention. Table 1
gives all the five groups of top levels, bottom levels and the
resulting static lists for the DAG given in Figure 1. Since the
bottom level reflects the time needed from this node to the
end of the graph, our new bottom levels reflect better the re-
ality in the case of communication contention. Experiments
in Section 4 will show that using the combination of these
priorities improves the performance for list scheduling with
communication contention.

n pred

n i

nsucc
tlcomp

n pred

n i

nsucc
bl comp

(a)

n pred

n i

nsucc
tl

n pred

n i

nsucc
bl

(b)

n pred

n i

nsucc
tl in

n pred

n i

nsucc
blin

(c)

n pred

n i

nsucc
tlout

n pred

n i

nsucc
bl out

(d)

n pred

n i

nsucc
tl io

n pred

n i

nsucc
blio

(e)

Figure 3. Five groups of node priorities

tlin (ni) =

{
0, if ni is a source node

max
nk∈pred(ni)

{tlin (nk) + w (nk)}+
∑

eli∈E

c (eli) , others (1)

blin (ni) =

w (ni) , if ni is a sink node

max
nk∈succ(ni)

{
blin (nk) +

∑
elk∈E

c (elk)

}
+ w (ni) , others (2)

tlout (ni) =

0, if ni is a source node

max
nk∈pred(ni)

{
tlout (nk) + w (nk) +

∑
ekl∈E

c (ekl)

}
, others (3)

blout (ni) =

{
w (ni) , if ni is a sink node

max
nk∈succ(ni)

{blout (nk)}+
∑

eil∈E

c (eil) + w (ni) , others (4)

tlio (ni) =

0, if ni is a source node

max
nk∈pred(ni)

{
tlio (nk) + w (nk) +

∑
ekl∈E

c (ekl)− c (eki)

}
+
∑

eli∈E

c (eli) , others (5)

blio (ni) =

w (ni) , if ni is a sink node

max
nk∈succ(ni)

{
blio (nk) +

∑
elk∈E

c (elk)− c (eki)

}
+
∑

eil∈E

c (eil) + w (ni) , others (6)

3.2. Processor Selection

Classic list scheduling heuristics select the processor al-
lowing the earliest finish time for a node. This rule gives
probably a locally optimized result. The critical child of a
node is used to solve this problem for scheduling with un-
bounded number of processors in [6]. Our paper uses the
concept of critical child for list scheduling with bounded
number of processors in the case of communication con-
tention. The critical child is defined differently as follows:

Critical Child Given a static node list NodeList, the crit-
ical child of node ni is denoted by cc (ni) and is one
of ni’s successors which emerges firstly in NodeList.

The critical child of ni may be different if NodeList dif-
fers. Using critical child makes the processor selection take
into account not only the predecessors of a node, but also its

most important successor. Our method of using the critical
child to select processor is given in Algorithm 2. Since it
is possible that cc (ni) is not a free node with all its prede-
cessors scheduled during the processor selection for ni, the
scheduling of cc (ni) only takes into account its scheduled
predecessors in the procedure of Select Processor()
for ni.

3.3. Node and Edge Scheduling

The method of scheduling a node ni onto a processor p
is given in Algorithm 3, and Algorithm 4 gives the method
for edge scheduling. Since an edge eij is scheduled only
when its origin node ni has been scheduled, the scheduling
of this edge needs additionally the processor p on which the
destination node nj of eij to be scheduled.

Table 1. Different levels and static orders
ni tlcomp blcomp order tl bl order tlin blin order tlout blout order tlio blio order
n1 0 11 (1) 0 23 (1) 0 41 (1) 0 35 (1) 0 55 (1)
n2 2 8 (4) 6 15 (2) 6 35 (2) 19 16 (2) 19 36 (2)
n3 2 8 (3) 3 14 (4) 3 26 (4) 19 14 (4) 19 26 (4)
n4 2 9 (2) 3 15 (3) 3 27 (3) 19 15 (3) 19 27 (3)
n5 2 5 (8) 3 5 (8) 3 5 (8) 19 5 (8) 19 5 (8)
n6 5 5 (7) 10 10 (6) 11 21 (6) 24 10 (7) 24 21 (7)
n7 5 5 (6) 12 11 (5) 20 21 (5) 24 11 (5) 34 21 (5)
n8 6 5 (5) 8 10 (7) 9 21 (7) 24 10 (6) 25 21 (6)
n9 10 1 (9) 22 1 (9) 40 1 (9) 34 1 (9) 54 1 (9)

NodeList 1 NodeList 2 NodeList 2 NodeList 3 NodeList 3

Algorithm 2: Select Processor(ni, P)
Input: A node ni ∈ V and the set P of all processors
Output: The best processor pbest for the input node ni

Choose the critical child cc (ni);1

BestF inishT ime←∞;2

for each p ∈ Proc (ni) do3

FinishT ime← Schedule Node(ni, p);4

MinFinishT ime←∞;5

if cc (ni) 6= null then6

for each p′ ∈ Proc (cc (ni)) do7

FinishT ime← Schedule Node(cc (ni),8

p′);
if FinishT ime < MinFinishT ime9

then
MinFinishT ime← FinishT ime;10

end11

end12

else13

MinFinishT ime← FinishT ime;14

end15

if MinFinishT ime < BestF inishT ime then16

BestF inishT ime←MinFinishT ime;17

pbest ← p;18

end19

end20

4. Experimental Results

This section gives experimental results of our proposed
list scheduling heuristic compared to the classic one given
in [12]. The architecture in Figure 2(a) and 2(b) are respec-
tively used for the comparison in Section 4.1 and 4.2.

4.1. Comparison with an Example

The DAG given in Figure 1 is used in this section to show
that using the critical child and different priorities improves

Algorithm 3: Schedule Node(ni, p)
Input: ni ∈ V and a processor p ∈ P
Output: The finish time of ni on p
for each nl ∈ pred (ni) , proc (nl) 6= p do1

Schedule Edge(eli, p);2

end3

Calculate DRT of node ni;4

Find the earliest idle time interval for node ni on5

processor p respecting the node scheduling condition;
Calculate the finish time of ni on p;6

Algorithm 4: Schedule Edge(eij , p)
Input: eij ∈ E and a processor p ∈ P on which the

node nj is to be scheduled
Output: None
if ni is scheduled then1

if proc (ni) 6= p then2

Determine the route R from proc (ni) to p;3

Find the earliest common idle time interval on4

all the links of R respecting the edge
scheduling condition;

end5

end6

the schedule performance. Table 1 has given all the five
groups of top levels, bottom levels and the resulting static
lists for this DAG. The critical child for each node is ob-
tained according to these static lists.

Figure 4(a) gives the schedule result of the classic heuris-
tic with nodes sorted by bl and tl, and the schedule length
is 21. Using the critical child technique with the three dif-
ferent node lists in Table 1 gives different schedule results.
The schedule result for the node list sorted by blcomp and
tlcomp is shown in Figure 4(b) with the schedule length of
18. Since the node list sorted by bl and tl is same as that
sorted by blin and tlin, the same schedule result is obtained

and shown in Figure 4(c) with the schedule length of 18.
Figure 4(d) gives the schedule result for the same node list
sorted by blout and tlout and by blio and tlio. The sched-
ule length is 17 and is better than the two former sched-
ule lengths of 18. All the three schedule results of using
the critical child technique are better than that of the classic
heuristic.

P1

0 5 10 15 20 25

P2

P3

L1

21

n1 n2 n7 n5

n4 n6

n3 n8

n9

e1,4e1,3 e2,6 e4,8 e7,9 e8,9

(a) Classic heuristic

P1

0 5 10 15 20 25

P2

P3

L1

18

n1 n4 n2 n7 n6 n9

n3 n8

n5

e1,3e1,5 e4,8 e8,9

(b) Critical child with NodeList 1

P1

0 5 10 15 20 25

P2

P3

L1

n1

n4

n2 n7 n9

n3

n8

n5

n6

e1,4e1,3 e3,8 e8,9

18

e1,5

(c) Critical child with NodeList 2

P1

0 5 10 15 20 25

P2

P3

L1

17

n1 n2 n7 n8 n9

n4 n6

n3 n5

e1,4e1,3e1,5e2,6 e3,8e4,8 e6,9

(d) Critical child with NodeList 3

Figure 4. Schedule results

4.2. Comparison with Random DAGs

Random graphs are commonly used to compare schedul-
ing algorithms in order to get statistical results which are
more persuasive than the result for a particular graph. We
implement a graph generator based on SDF3 [13] to gen-
erate random SDF graphs except that the SDF graphs are
constrained to be DAGs (same rate between two operations,
no cycles). A random DAG is described in five aspects:
the number of nodes, the average in degree, the average
out degree, the random weights of nodes and the random
weights of edges. The average in degree and out degree
are assumed to be same. The weights of nodes vary ran-
domly from wmin to wmax. The communication to compu-
tation ratio (CCR) is used to generate random weights of

edges. The CCR is defined as the average weight of edges
divided by the average weight of nodes in this paper, that is

CCR =
1
|E|

∑
e∈E

c(e)

1
|V |

∑
n∈V

w(n)
. The weights of edges are generated

randomly from wmin×CCR to wmax×CCR. The CCR’s
typical values of 0.1, 1 and 10 represent respectively the
low, medium and high communication situations.

A list scheduling heuristic can use all the five groups of
node priorities to get different results. We combine the five
groups of node priorities with a heuristic and choose the
best result; the whole process is called a combined heuristic.
The schedule length of the combined heuristic is compared
to the classic list scheduling heuristic with nodes sorted by
bl and tl. The acceleration factor (acc) is defined as acc =

slclassic

slcompared
to show the speed-up of the compared heuristic.

Figure 5 gives the average acc of the combined heuris-
tic with critical child. Weights of nodes are generated ran-
domly from 100 to 1000, and 1000 random DAGs for each
group are tested to obtain the statistical results.

(50;2) (50;3) (50;4) (100;2) (100;3) (100;4) (200;2) (200;3) (200;4)
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

Combined heuristic with critical child for random DAGs

CCR=0,1
CCR=1
CCR=10

(Number of nodes; Average in/out degree)

Av
er

ag
e

ac
ce

le
ra

tio
n

fa
ct

or

Figure 5. Average acc of combined heuristic
with critical child

The average acc increases as CCR increases, and the
schedule result is sped up by using the combined heuris-
tic in the cases of CCR = 1 and CCR = 10. The av-
erage acc also increases as the number of average in/out
degree increases when CCR = 10. The reason for this
phenomenon is that the critical child technique helps to se-
lect better processors for nodes with multiple predecessors.
The greater the in/out degree is, the better the critical child
works. Since the modern applications like digital communi-
cation and video compression usually have CCR > 1, our
method will be suitable for scheduling these applications on
parallel embedded systems.

4.3. Time Complexity

The classic list scheduling heuristic has the time com-
plexity of O

(
PE2O (routing) + V 2

)
, where P , V and E

are respectively the number of processors, the number of
nodes and the number of edges. The time complexity in-
creases by a factor of P by using the critical child, but the

combination with different node priorities does not increase
the time complexity. Therefore, the time complexity of our
combined heuristic is O

(
P
(
PE2O (routing) + V 2

))
.

Figure 6 shows the time used to schedule different sizes
of DAGs on architectures with different numbers of pro-
cessors by our combined heuristic. All the DAGs have the
average in/out degree of 4, and all the processors are con-
nected to a switch. As shown in Figure 6(a) and Figure 6(b),
the time increases as the square of V and also as the square
of P . We run our heuristic on a Pentium Dual-Core PC at
2.4GHz, and it takes about 3 minutes to schedule a DAG
with 500 nodes on an architecture of 16 processors. In fact,
a complicated embedded application usually has less than
500 nodes in models of coarse and medium grain, and P
is usually much smaller than V and E in a parallel embed-
ded system. Therefore, the increase of time complexity is
reasonable and acceptable for rapid prototyping.

100 200 300 400 500
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

P=16
P=12
P=8
P=4

V

Ti
m

e
(m

s)

(a)

2 4 6 8 10 12 14 16
0

20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

Time complexity

V=500
V=300
V=100

P

Ti
m

e
(m

s)

(b)

Figure 6. Time complexity

5. Conclusions

This paper presents three new groups of node priorities
(top level and bottom level) and a technique of critical child
for list scheduling with communication contention. The
new priorities take the communication contention into ac-
count and are used to sort nodes in order to get different
node lists. The technique of critical child helps to select
a better processor for a node. The combination of differ-
ent node lists and the critical child technique gives different
schedule results for a given DAG, and the best one is chosen
at last. Experimental results show that using different node
lists and the critical child technique is effective to shorten
the schedule length for most of the randomly generated
DAGs in the cases of medium and high communication.
Since the communication cost is increasing from medium to
high in modern digital communication and video compres-
sion applications, our method will work well for scheduling
these applications on embedded parallel systems.

References

[1] T. L. Adam, K. M. Chandy, and J. R. Dickson. A comparison
of list schedules for parallel processing systems. Commun.
ACM, 17(12):685–690, 1974.

[2] T. Grandpierre, C. Lavarenne, and Y. Sorel. Optimized rapid
prototyping for real-time embedded heterogeneous multi-
processors. In Proceedings of 7th International Workshop
on Hardware/Software Co-Design, CODES’99, Rome, Italy,
May 1999.

[3] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee.
Scheduling precedence graphs in systems with interproces-
sor communication times. SIAM J. Comput., 18(2):244–257,
1989.

[4] H. Kasahara and S. Narita. Practical multiprocessor schedul-
ing algorithms for efficient parallel processing. IEEE Trans.
Comput., 33(11):1023–1029, 1984.

[5] Y.-K. Kwok and I. Ahmad. Bubble scheduling: A quasi dy-
namic algorithm for static allocation of tasks to parallel ar-
chitectures. In SPDP ’95: Proceedings of the 7th IEEE Sym-
posium on Parallel and Distributeed Processing, page 36,
Washington, DC, USA, 1995. IEEE Computer Society.

[6] Y.-K. Kwok and I. Ahmad. Dynamic critical-path schedul-
ing: An effective technique for allocating task graphs onto
multiprocessors. IEEE Transactions on Parallel and Dis-
tributed Systems, 7(5):506–521, May 1996.

[7] Y.-K. Kwok and I. Ahmad. Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. ACM
Computing Surveys, 31(4):406–471, 1999.

[8] V. Sarkar. Partitioning and Scheduling Parallel Programs
for Multiprocessors. The MIT Press, 1989.

[9] G. Sih and E. Lee. A compile-time scheduling heuristic for
interconnection-constrained heterogeneous processor archi-
tectures. IEEE Transactions on Parallel and Distributed Sys-
tems, 4:175–187, Feb. 1993.

[10] O. Sinnen. Task Scheduling for Parallel Systems. Wiley,
2007.

[11] O. Sinnen and L. Sousa. List scheduling: Extension for
contention awareness and evaluation of node priorities for
heterogeneous cluster architectures. Parallel Computing,
30(1):81–101, Jan. 2004.

[12] O. Sinnen and L. Sousa. Communication contention in task
scheduling. IEEE Transactions on Parallel and Distributed
Systems, 16(6):503–515, June 2005.

[13] S. Stuijk, M. Geilen, and T. Basten. SDF3: SDF For Free.
In Application of Concurrency to System Design, 6th In-
ternational Conference, ACSD 2006, Proceedings, pages
276–278. IEEE Computer Society Press, Los Alamitos, CA,
USA, June 2006.

[14] M.-Y. Wu and D. Gajski. Hypertool: A programming aid for
message-passing systems. IEEE Transactions on Parallel
and Distributed Systems, 1(3):330–343, 1990.

[15] T. Yang and A. Gerasoulis. Dsc: scheduling parallel tasks on
an unbounded number of processors. IEEE Transactions on
Parallel and Distributed Systems, 5(9):951–967, Sept. 1994.

