
SPECIAL ISSUE

HDS, a real-time multi-DSP motion estimator for MPEG-4
H.264 AVC high definition video encoding

Fabrice Urban Æ Jean-François Nezan Æ
Mickaël Raulet

Received: 13 June 2008 / Accepted: 2 December 2008 / Published online: 20 January 2009

� Springer-Verlag 2009

Abstract H.264 AVC video compression standard

achieves high compression rates at the cost of a high

encoder complexity. The encoder performances are greatly

linked to the motion estimation operation which requires

high computation power and memory bandwidth. High

definition context magnifies the difficulty of a real-time

implementation. EPZS and HME are two well-known

motion estimation algorithms. Both EPZS and HME are

implemented in a DSP and their performances are com-

pared in terms of both quality and complexity. Based on

these results, a new algorithm called HDS for Hierarchical

Diamond Search is proposed. HDS motion estimation is

integrated in a AVC encoder to extract timings and

resulting video qualities reached. A real-time DSP imple-

mentation of H.264 quarter-pixel accuracy motion

estimation is proposed for SD and HD video format. Fur-

thermore HDS characteristics make this algorithm well

suited for H.264 SVC real-time encoding applications.

Keywords Motion estimation � Digital signal processor �
Real-time � H.264 AVC/SVC

1 Introduction

Eventhough the area of video compression has existed for

many decades, programming a coding algorithm is still a

challenging problem. With the current communication

systems and the improvement of video compression, video

broadcasting is more and more widespread. Off-line

encoders provide good video quality and compression

rates. The actual bottleneck is to provide compressed video

in real-time to communication systems. Real time encoders

have to cope with timing constraints and HD video formats.

Furthermore, the trend of using video everywhere and at

any time leads to implement encoders in embedded sys-

tems with limited hardware resources. All those constraints

have to be solved while keeping a good video quality and

compression rates. The investigation and understanding of

the foundations of video compression is therefore more

important than ever.

In this context, motion estimation (ME) is known to be a

key operation. A highly accurate ME can significantly

reduce the bit-rate of a video stream, but involves a high

computational complexity. The high performance of H.264

is mainly due to improved motion compensation modes

such as variable block-size motion compensation, multiple

reference pictures and Fractional-accuracy motion estima-

tion (FME) [1]. However the introduction of numerous

modes raises the complexity of the codec and makes

real-time H.264 compression challenging, especially for

high-definition video. On top of that H.264 SVC standard

provides scalability features to manage, store and distribute

video content towards multiple kinds of terminals and over

different access technologies. A single SVC bitstream is

used instead of one AVC bitstream per terminal, saving the

global available bandwidth. Integer motion estimation

(IME) has been widely studied in the past few years. Fast

F. Urban (&)

Thomson CR-Video Compression Lab,

1 av. de belle fontaine, CS 17616,

35576 Cesson Sevigne, France

e-mail: fabrice.urban@thomson.net

J.-F. Nezan � M. Raulet

IETR/Image group Lab, UMR CNRS 6164/INSA,

20 av. des Buttes de Coesmes,

35043 Rennes Cedex, France

e-mail: jnezan@insa-rennes.fr

M. Raulet

e-mail: mraulet@insa-rennes.fr

123

J Real-Time Image Proc (2009) 4:23–31

DOI 10.1007/s11554-008-0110-0

algorithms have been developed to reduce the computa-

tional burden with limited quality loss. The goal of this

paper is to study ME algorithms and their use in new

standards in terms of both quality and complexity. It is an

evolution of previous work [2] in that we introduce new

implementation performance results, and a new ME algo-

rithm. An implementation of fast variable block-size is also

presented and new application perspectives are proposed.

Video compression has recently become an important

feature of 3G cell phones, personal digital assistants, and

other battery-powered devices. This kind of devices are

very often based on digital-signal processors (DSP) to

optimize the performance–consumption ratio. Video

codecs are also needed in base stations for inline trans-

coding or in Real-time H.264 HD video encoding solutions.

Here again DSP are widely chosen in multiple components

and/or multiple cores hardware platforms. ME algorithms

have been prototyped onto DSP TI C6x 1Ghz and results

are discussed.

The paper is organized as follows: Sect. 2 is a short state

of the art of existing motion estimation techniques, Sect. 3

describes developed embedded implementations and com-

pares motion estimators on 8 9 8 blocks in terms of

quality and complexity. Section 4 gives more results for

HDS algorithm with interesting AVC/SVC features like

variable block size, subpixel motion vectors and scalabil-

ity. Finally conclusions and future work are given in

Sect. 5.

2 Motion estimation techniques

Motion estimation goal is to find relative motion between

two images in order to eliminate temporal redundancy. For

video compression where the picture is usually divided into

blocks, block matching algorithms (BMA) are most widely

preferred. The basic hypothesis are non-deformable objects

having an apparent translation in the image plane. One

motion vector can then be estimated for each block.

2.1 Block matching

BMA consists in searching for each M 9 N block of the

current picture a match in a reference picture. A distance

measure is computed between the current block and some

candidates. This measure is most often the sum of absolute

differences (SAD) for its implementation simplicity.

The simplest BMA is the full search where every can-

didate within a search window of magnitude p pixels is

considered. It is very computationally intensive. As the

required processing power is too high, a lot of fast algo-

rithms had been proposed using essentially three

optimization techniques.

The first one computes a full SAD the least often as

possible [3, 4]. It is actually possible to eliminate rapidly

bad candidates before the full SAD is computed. These

algorithms reduce drastically the number of calculations;

however, they use a lot of test operations which make the

implementation difficult to optimize and they do not con-

sider memory bandwidth. Thus even if the computation

time is statistically improved, the worst case might lead to

a worse result than full search, which is unacceptable in a

real-time context.

The second one reduces the candidate set by choosing a

most likely search direction as soon as possible, under the

assumption that the error (SAD) surface is monotonic. As

this is not always verified, some algorithms get trapped in

local minima. Chen and Al [5] suggest to search in one

direction at a time, whereas logarithmic search proposed by

Jain and Jain [6] and three step search from Koga and

Linuma [7] begin by a coarse estimation then refine the

result. In [8] motion is estimated recursively. At each step

the SAD for some candidates in a diamond pattern around

current position are computed. The motion is recursively

refined following the decreasing SAD direction.

The third technique takes video sequence contents into

account: motion fields present some continuities (spatially

and temporally), so it is possible to predict the movement

of a block from the neighboring blocks and previous

images. A set of predictors is then available (from the

causal neighborhood). Each of them is then evaluated (by

calculating the SAD with the current block) and a local

search is performed around the best one (which minimizes

the SAD) to refine the movement. A lot of algorithms using

this technique have been developed [9, 10, 11, 12, 13].

They differ by their predictor sets and their local search

patterns. Hierarchical Motion Estimator (HME) [14]

introduces a coarse to fine picture definition decomposition

to add reliable hierarchical predictors.

Enhanced predictive zonal search (EPZS) [10] and HME

are particularly interesting for a DSP implementation. They

are the two finally selected techniques from which a third

one is derived. They are more precisely detailed in the

following.

2.2 EPZS

Enhanced predictive zonal search algorithm is an

improvement of PMVFAST [11] algorithm thanks to new

predictors. The prediction step is consequently more

accurate and the local search (Fig. 1 left) is thus reduced.

Coarse refinement with a large diamond pattern in PMV-

FAST is unnecessary. The best predictor is directly refined

using a small diamond or square pattern (Fig. 1 right). The

improvement of prediction step reduces execution time.

The refinement step consists in a recursive diamond search:

24 J Real-Time Image Proc (2009) 4:23–31

123

the current best vector (initialized with the prediction step)

is compared to its neighbors according to the test pattern

and the best vector becomes the new search center.

An early stopping criterion already present in PMV-

FAST speeds-up the operation by avoiding unnecessary

computations. The process is stopped as soon as the result

is ‘‘good enough’’, i.e. SAD is lower than an adaptive

threshold. The execution time is thus low but highly

depends on the video sequence. This motion estimator has

a low computation load and thus is a good candidate for a

fast software implementation of motion estimation. EPZS

is used in software video encoders such as XviD and JM

H.264 reference software.

In our EPZS implementation, the early stop criterion has

not been implemented in order to get a constant execution

time. As a consequence the quality is slightly increased.

2.3 HME

The hierarchical motion estimator (HME) [14] is based on

a multi-level refinement process where the motion vectors

are first coarsely estimated on a sub-sampled picture. The

algorithm starts by building a pyramid of pictures (Fig. 2).

Level 0 is the full-resolution picture, the level n ? 1 is

level n low-pass filtered and sub-sampled picture.

A sub-sampled motion field is firstly estimated on the

low resolution picture (highest level), then the motion field

is successively refined. The block size through the pyramid

is constant so that global motions are detected on the

coarsest levels and refinement is achieved when resolution

is increased. At each resolution level, a predictive motion

estimation is performed, as for EPZS, with the difference

that reliable hierarchical predictors are provided from

lower resolution level.

The refinement step is a reduced full search around the

best predictor. In addition to the motion estimation oper-

ations, HME implementation takes into account the

computation of the sub-sampled pictures pyramid. Each

level is a sub-sampled picture of the lower level’s to which

a 3-tap Gaussian low-pass filter is applied.

The local search and predictive mechanism in EPZS and

HME naturally provide a low entropy homogeneous

motion field. This is an advantage for video compression.

2.4 HDS algorithm

The two methods precedently presented have each their

advantages. EPZS is very fast thanks to its recursive dia-

mond search window but large motion vectors can not be

found due to its limited search window. HME search

window is not limited but its local full search requires more

processing power. To combine the interest of both and to

keep their advantages, we propose here a new algorithm

based on a HME and EPZS combination: Hierarchical

Diamond Search (HDS) is a recursive diamond search

applied to a multi-level decomposition.

The multi-level decomposition provides robust predic-

tion. The reduced resolution levels on the top of the

pyramid (Fig. 2) allow the detection of large motion with

only a reduced search window. In the coarsest resolution

level, a reduced full search search is performed to catch

very large motion. Because the image size is reduced, the

impact on computation cost is negligible. As an example,

in high definition, a four-level pyramid with a search range

of ±16 in the coarsest level can catch small objects with

motion as large as 128 pixels of amplitude. The multi-

resolution approach provides robust hierarchical predictors.

At each level the motion is estimated block per block,

and for each block, the motion is first predicted from

hierarchical and spatial predictors. The first kind of pre-

dictors provides large motion detection abilities whereas

the second one provides accurate information on the

neighborhood movements and favors a homogeneous

motion field and fast convergence of the algorithm. The

different predictors are evaluated on a SAD basis and the

best one is selected for a refinement step.

The refinement step consists in recursively trying a

small displacement around the current best motion vector.

This local search is initialized with the results of the pre-

dictive step. Then, at each iteration, a displacement of one

pixel in every direction (eight neighbors) is analyzed. The

best position is chosen as the new search center of the

recursive process. If the best position is already at the

center of the pattern, the search stops. To ensure limited

Fig. 1 EPZS principles

Fig. 2 Pyramid of pictures in HME

J Real-Time Image Proc (2009) 4:23–31 25

123

calculation, the number of iterations can be bounded to a

maximum value.

The hierarchical approach together with fast diamond

search ensure both a robust predictive step and a fast

processing. The resulting motion field is reliable and close

to the physical motion.

3 Real-time implementation on DSP

Real-time motion estimation implementation for MPEG-4

H.264 AVC [15] high definition video encoding is chal-

lenging. With tools such as variable block size, quarter-

sample accuracy and multiple reference pictures, motion

estimation needs high computation power and memory

bandwidth. The detailed implementations of the three

algorithms are given in Table 1. Several SD (576p:

720 9 576) and HD (720p: 1,280 9 720) video sequences

have been used to test HDS performances and compare

them to HME and EPZS ones. The content of sequences

varies from high and complex movement (Formula1,

Football) to small motion (RaidMaroc, Horses).

Results are presented with two distinct criteria: execu-

tion time and motion estimation quality. Quality is more

important in high end solutions such as video broadcasting

whereas for low cost solutions, execution time (or algo-

rithm complexity) must be kept low. In order to provide

consistent results, motion estimators have been imple-

mented and optimized onto a Texas Instrument TMSC6416

DSP at 1 Ghz. For quality comparisons, the motion esti-

mators have been implemented in the JM H.264 video

encoder. In this section only 8 9 8 inter-frame coding

mode is allowed on P frames to eliminate the influence of a

decision algorithm and intensively stress the motion esti-

mator. Others tools will be discussed later on.

3.1 DSP optimizations

HME and EPZS have been implemented and optimized for

TI C64x DSP. Loops have been optimized using SIMD

vectorization and loop unrolling. Compilation process have

been optimized with specific key-words like ‘‘#pragma’’,

‘‘restrict’’, ‘‘inline’’ and ‘‘const’’, and memory accesses

have been enhanced using cache, on-chip memory and

Enhanced direct memory access peripheral (EDMA)

transfers. Execution times have been reduced by a factor of

five compared to the original code with only straightfor-

ward compilation optimizations. Results will be detailed in

the following section.

To compute the multi-resolution image pyramid, a sepa-

rable filter has been implemented. The chosen 3-tap low-pass

filter is optimized together with the sub-sampling in order to

compute only needed samples (every other pixel horizontally

and vertically) and reduce constraints on memory band-

width. Furthermore, memory access is also optimized for

high definition resolution where data is located in external

memory. In this case, computations are performed concur-

rently with memory accesses using the on-chip EDMA.

H.264 FME feature allows the use of quarter-sample

precision motion vectors. The compression efficiency is

highly improved at the cost of a higher computational

complexity. The picture definition is increased by interpo-

lating successively at half-sample accuracy with a 6-tap

filter and at quarter-pel accuracy with a linear filter. The

quarter-pel precision can be achieved by different means;

the first one is to search directly in the interpolated picture

with a search window four times as large horizontally and

vertically. The second one consists in two steps [16]: the

motion estimation is firstly performed at pixel accuracy then

refined at sub-pixel accuracy. This last method allows to

compute sub-pixel samples ‘‘on the fly’’ meaning that half

and quarter pixel positions are interpolated only when

needed. As a consequence computations are slightly

increased whereas memory bandwidth is drastically reduced

which is a good trade-off for a DSP implementation. To

reduce further execution times, the sub-pixel interpolation

filters may be replaced by linear filtering which reduces

computations while slightly reducing interpolation accu-

racy. This latter point is not discussed further here.

3.2 Execution times

Figure 3 gives the execution times for three implemented

motion estimators on SD (720 9 576) and HD (1,280 9

720) progressive image sequences. For each algorithm,

pixel and quarter-pixel accuracy versions have been con-

sidered. Motion Estimation is performed onto 8 9 8

blocks. Regardless the resolution and accuracy, EPZS

Motion estimator is faster than HME and HDS. It can be

partly explained by the computation of the multi-resolution

pyramid and the motion estimation of lower levels. In

addition, HME also has more predictors and a zonal search

inducing more computations.

Table 1 Implementation details

Zonal search Predictors

EPZS: 1 resolution level

8-neighbors pattern Diamond search 1 temporal

No early stop 4 spatial

HME: 4 resolution levels

Full search ±16 at lowest resolution 5 hierarchical

Reduced full search (±3) 4 spatial

HDS: 4 resolution levels

Full search ±16 at lowest resolution 5 hierarchical

8-neighbors pattern Diamond search 4 spatial

26 J Real-Time Image Proc (2009) 4:23–31

123

EPZS and HDS implementations at quarter-sample

accuracy reach respectively more than 30 and 25 frames

per second on a DSP for high definition video. For a HME

implementation at 30 frames per seconds, the processing

power of at least two DSPs is needed, for example in a two-

stage pipeline composed of hierarchical levels in the first

stage and one full resolution level in the second. The full

search executed at a given level in HME leads to more

calculations than HDS Diamond Search. Both HME and

HDS hierarchical algorithms are more complex than EPZS.

3.3 Motion estimation quality

In order to evaluate the quality of motion vector fields for

each technique, each motion estimator has been integrated

in an H.264 encoding software. For the comparison pur-

pose, P and I frame are allowed, with one I frame every 25

frames. In P frames only 8 9 8 inter-frame mode is acti-

vated to stress the motion estimator and compare only

motion field quality, with no decision interfering. Rate

control has also been deactivated so that rate/distortion

curves based on PSNR reflect the ability of the motion

estimator to find a good match.

A few sequences have been encoded to evaluate the

compression performances of h.264 encoding with the

motion estimators. SD formula1 and HD football are high

motion sequences with traveling and many moving objects.

These sequences highlight the matching ability of motion

estimators. SD RaidMaroc and HD horses are slow motion

sequences with few moving objects in favor of low entropy

motion fields. All these sequences are common content and

must be well handled by the encoder. Figure 4 shows the

rate/distortion curves corresponding to the first 200 pictures

of two sequences: SD fomula1 and HD football. For each

sequence, the quality (mean PSNR) is plotted against the

mean bit-rate. Figure 5 sums up results for several SD and

HD video sequences. It represents the data-rate increase

reached at a given quality (constant PSNR). It is expressed

using the difference with the data-rate reached with the

encoding software based on HME motion estimation

solution.

These results show that EPZS algorithm lead to a bit-

rate increase of almost 20% for high motion sequences,

which is unacceptable for high-end solutions. With results

comparable to HME (less than 4% bit-rate increase on the

worst case and 1.5% decrease on the best case), HDS

appears to be a good trade-off between encoding perfor-

mances and processing time. This illustrates the ability of

HDS to find an appropriate vector in case of high motion

sequences and a low entropy motion field in case of slow

motion. Hierarchical algorithms have a more robust pre-

diction step whereas EPZS has a limited search range and

relies on temporal prediction. Therefore, HME and HDS

perform a lot better than EPZS at scene cuts.

The reduced range of the motion vectors well handled

by EPZS is a limitation in high motion sequences. More-

over, the displacement between a frame to encode and a

reference frame will be increased when using B pictures,

and even more in case of hierarchical GOP structure

because the motion vector amplitude increases. Therefore,

EPZS-based techniques need to be associated to a vector-

tracing technique [17] to reach efficient vector prediction.

It may involve the estimation of motion fields not used by

the video encoder but by the motion estimator prediction

step only, thus increasing processing load.

Motion estimation performances of HME and HDS are

comparable, and outperform EPZS algorithm. Performances

improvement of HDS over EPZS is worth its slight increase

in computational complexity. HDS motion estimation

algorithm is therefore chosen for the rest of this paper.

4 MPEG-4 H.264 motion estimation features

On one hand, variable block-size and quarter-pixel motion

compensation bring effective compression gain among the

Fig. 3 Execution time comparison of the motion estimators

(a) (b)Fig. 4 Rate/distortion curves

for SD and HD sequences

J Real-Time Image Proc (2009) 4:23–31 27

123

various coding tools of AVC [18]. On the other hand, the

computational complexity of the motion estimation oper-

ation is consequently highly increased, making real-time

implementation of this operation challenging for high

definition video. Scalable extension of H.264 encoding

(SVC) allows partial transmission of a video stream thanks

to temporal, spatial or quality scalability. Spatial scalability

increases motion estimation constraints with the need to

compute motion fields at different resolution levels. This

section discusses algorithm optimizations of these two

specificities.

4.1 Variable block-size and quarter-pixel

Despite the need for complex interpolation operations, the

quarter-pixel vector refinement is required in a high-end

video coder. Variable block-size, however, magnifies the

implementation constraints. For motion compensation in

the H.264 standard, 16 9 16 pixel macro-blocks can be

divided in 16 9 8, 8 9 16 or 8 9 8 partitions. The last one

can be further split in 8 9 4, 4 9 8 or 4 9 4 blocks.

Choosing small blocks improves motion compensation but

increases the coding cost as more motion vectors need to be

transmitted. For high definition video, it has been shown

that block-size smaller then 8 9 8 brings little compression

improvement considering the complexity it brings. Con-

sequently, this section describes a variable motion

estimator handling 16 9 16 to 8 9 8 block sizes.

The straightforward implementation of the variable

block-size motion estimator leads to the solution presented

in Fig. 6a: the scheme for one block-size is repeated for

every block-size. The main drawback is the increased

amount of computation and memory bandwidth.

The first optimization is to start motion estimation

including multi-resolution levels with one block-size at

integer-pixel accuracy. The results serve then as accurate

prediction for other block sizes and hierarchical level

motion fields are reused without re-computation.A good

initial block-size must be not too big to catch small objects

motion and not too small to be less sensitive to noise.

Moreover a block size closer to the deduced other sizes

(4 9 4 to 16 9 16) statistically improves prediction

accuracy. Therefore, we chose 8 9 8 size as a first motion

estimation step.

Second, fractional-pixel refinement implies heavy

interpolation operations and matching evaluation. In vari-

able block-size, every output vector must be refined to

quarter pixel accuracy to avoid compression performances

drop. To reduce computation complexity, we choose to

select the best motion compensation partition after pixel-

accuracy results in order to refine only one block-size per

macro-block and thus avoid unnecessary calculation

(Fig. 6b). Therefore it drastically reduces computation

burden with limited impact if any on compression

performances.

Figure 7 shows the typical result of this computational

reduction on compression performances. Variable block-

size is activated on the encoder. For the reduced selection

variable block-size algorithm, the block size is chosen at

the motion estimator, otherwise we let the encoder decide.

The rate/distortion curve shows clearly the improvement of

quarter-pixel refinement for variable block-size on com-

pression performances. The impact of the reduced selection

algorithm appears to be very limited and negligible.

Figure 8 is a comparison of execution times on the TI

DSP. Thanks to the reduced selection quarter-pixel

refinement, the motion estimation process is accelerated by

a factor of two compared to the full selection implemen-

tation without modifying the hardware. The overhead of

sub-pixel refinement is thus minimized compared to the

full sub-pixel refinement.

Fig. 5 Encoding results for SD (576p) and HD (720p) video

Full selection Reduced selection(a) (b)

Fig. 6 Variable block-size implementation Fig. 7 HDS variable block size mode on HD sequence Football

28 J Real-Time Image Proc (2009) 4:23–31

123

The reduced selection solution drastically lowers the

computational complexity of variable block-size and

quarter pixel motion estimation for video compression with

very low impact on compression performances if any. For

one reference frame, this solution reaches 30 frames per

second on one DSP in standard definition. For high defi-

nition, a solution involving two DSPs reaches real time for

720p at 30 fps.

4.2 Scalability

In this article motion estimation is studied for H.264 AVC

compression. Nevertheless, the performances of ME for

SVC may be deduced from these results. The SVC exten-

sion is built on H.264 AVC and re-uses most of its

innovative components. As a distinctive feature, SVC

generates an H.264 AVC compliant base layer and one or

several enhancement layer(s). The base layer bitstream

corresponds to a minimum quality, frame rate, and reso-

lution, and the enhancement layer bitstreams represent the

same video at gradually increased quality (fidelity scala-

bility) and/or increased resolution (spatial scalability) and/

or increased frame rate (temporal scalability) (Fig. 9).

Several layer decompositions have been studied in sca-

lim@ges1 project to optimize the quality reached for each

SVC layer. This french project has elaborated scenarii in

[19]. In this project, the one selected for digital television is

made of three SVC layers. Layer 3 handles a HD 720p at

6 Mbits/s. The video is downsampled by two horizontally

and vertically (dyadic decomposition) to reach a

640 9 360 resolution at 1.5 Mbits/s for the SVC layer 2

and a 320 9 180 resolution at 500 kbits/s for H.264 AVC

compatible base layer (Layer 1). ME has to be done on

each SVC layer. With EPZS for example, ME is done on

each layer independently. So each layer will require one or

several reference frames where ME is computed. This

solution is the most memory and time consuming.

The dyadic decomposition corresponds to the pyramid

computed in HME and HDS. To optimize both motion

estimation and compression operations, we propose to use

a unified multi-resolution decomposition for these two

operations with an appropriate motion estimator. HDS

algorithm provides hierarchical predictors that can be used

in SVC layers. Consequently, there is no more computation

time overhead for HDS compared to EPZS because motion

estimation has to be done for each SVC layer. In this

context HDS provides better quality and saves computation

resources. Hierarchical prediction in the motion estimation

process favors lower motion vector cost for spatial

enhancement layers of SVC.

A multi-resolution decomposition is computed once for

both motion estimation and compression. It uses either the

low-pass filter used in the SVC reference software [20],

well suited for non-dyadic mode but very complex for a

real-time implementation, or the one implemented in HDS

to save computation time. The motion estimator can then

be tightly coupled to the encoding loop to use actually

encoded vectors as spatial and hierarchical predictors. The

motion vector costs are consequently reduced. Using the

proposed unified decomposition reduces computation

complexity, and in the same time it should improve com-

pression performances.

5 Conclusion

A state of the art of motion estimation techniques has been

drawn. HME and EPZS techniques present good quality

and computational complexity. They have been prototyped

on a 1 Ghz TI C64x DSP and integrated in an H.264 video

encoder. Their performances concerning both their execu-

tion time and result quality have been compared. EPZS can

reach 30 frames per second for HD definition at quarter-

pixel accuracy an up to 77 frames per second at pel

accuracy. It is a good candidate for a low cost video

encoder. HME needs more computational power, but is a

good candidate for a high-end video encoder. Compression

gain brought by quarter-pel accuracy is worth its compu-

tationally expensive implementation. HME regularity

would make its implementation interesting onto highly

parallel hardware implementations (FPGA, ASIC) whereas

HDS appears to be more interesting for software imple-

mentations. HDS is a good compromise between motion

estimation quality and computation complexity.

For variable block size motion estimation the scheme

used for 8 9 8 blocks can be duplicated for each block

size. The overhead due to the hierarchical levels processing

of HDS is then reduced because it can be done only once

for 8 9 8 block size and serve as hierarchical predictors for

all the other block size searches.

Fig. 8 HDS Variable block-size implementation comparison

1 Scalim@ges is a project from the ‘‘Media and Network‘‘ Cluster in

France.

J Real-Time Image Proc (2009) 4:23–31 29

123

The results presented in this paper shows that Motion

Estimation for a H.264 coder using full features can be

realized in real time for SD video. A 30 frames per second

quarter-sample precision motion estimator for HD H.264

video encoding can be prototyped onto two DSP using

HDS. As a result, a complete HD real time coder can now

be mapped onto a multicore DSP like TI TMS320TCI6487.

Another future work will be the study of HDS in a H264

SVC context.

References

1. Richardson, I.E.G.: H.264 and MPEG-4 video compression:

video coding for next-generation multimedia. Wiley, New York

(2003)

2. Urban, F., Poullaouec, R., Nezan, J.F., Déforges, O.: Real-time

multi-dsp motion estimator for mpeg-4 avc/h.264 high definition

video. In: International Conference on Signals and Electronic

Systems, (2006)

3. Li, W., Salari E.: Successive elimination algorithm for motion

estimation. IEEE Trans. Image Process. 4, 107–110 (1995)

4. Chen, Y.-S., Hung, Y.-P., Fuh, C.-S.: Fast block matching algo-

rithm based on the winner-update strategy. IEEE Trans. Image

Process. 10, 1212–1222 (2001)

5. Chen, M.J., Chen, L.G., Chiueh, T.D.: One-dimensional full

search motion estimation algorithm for video coding. IEEE

Trans. Circuits Syst. Video Technol. 4, 504–509 (1994)

6. Jain, J.R., Jain, A.K.: Displacement measurement and its appli-

cation in interframe coding. IEEE Trans. Commun. COM-
29(12), 1799–1808 (1981)

7. Koga, T., Linuma, K., Hirano, A., Iijima, Y., Ishiguro, T.: Motion

compensated interframe coding for video conferencing. In: Pro-

ceedings of National Telecommunication Conference, vol.

NTC81, pp. G5.3.1–G5.3.5 (1981)

8. Tham, J., Ranganath, S., Ranganath, M., Kassim, A.: A novel

unrestricted center-biased diamond search algorithm for block

motion estimation. IEEE Trans Circ Syst video Technol 8(4),

369–377 (1998)

9. Hosur, P., Ma, K.: Motion vector field adaptive fast motion

estimation. In: Second International Conference on Information,

Communications and Signal Processing (ICICS’99) (1999)

10. Tourapis, A.M.: Enhanced predictive zonal search for single and

multiple frame motion estimation. In: Proceedings of Visual

Communications and Image Processing. pp. 1069–1079 (2002)

11. Tourapis, A.M., Au, O.C., Liou, M.L.: Predictive motion vector

field adaptive search technique (PMVFAST). In: Proceedings of

Visual Communications and Image Processing (VCIP’01) (2001)

12. Chen, Z., Zhou, P., He, Y.: Fast motion estimation for JVT. JVT-

G016.doc (2003)

13. Virk, K., Khan, N., Masud, S., Nasim, F., Idris, S.: Low com-

plexity recursive search based motion estimation algorithm for

video coding applications. In: Proceedings of 13th European

Signal Processing Conference, Antalya, Turkey (2005)

14. Chupeau, B., Robert, P., Pecot, M., Guillotel, P.: Multiscale

motion estimation. In: Workshop on Advanced Matching in

Vision and Artificial Intelligence, Munich, 5th, 6th June (1990)

15. Joint Video Team of ITU-T and ISO/IEC 14496-10 ‘‘Draft of

version 4 of H.264/AVC’’ Tech. Rep., Nov (2004)

16. Choi, W.I.L., Jeon, B., Jeong, J.: Fast motion estimation with

modified diamond search for variable motion block sizes. In:

International Conference on Image Processing, vol. 2, pp. 371–

374 (2003)

17. Mattavelli, M., Zoia, G.: Vector-tracing algorithms for motion

estimation in large search windows. IEEE Trans Circuit Syst.

Video Technol. 10(8), 1426–1437 (2000)

Multi-resolution decomposition

Hierarchical motion estimation

Level 2

Level 1

Level 0

P
re

d
ic

to
rs

Im ages

S V C encoder

Motion
vectors

Motion
vectors SVC LAYER 1

AVC compatible
encoder

Progressive SNR
refinement

texture coding

SVC LAYER 2
AVC compatible

encoder

Progressive SNR
refinement

texture coding

Multiplex

Inter-layer prediction Scalable
Bitstream

AVC compatible
base layer bitstream

Fig. 9 SVC global view

30 J Real-Time Image Proc (2009) 4:23–31

123

18. Sullivan, G., Wiegand, T.: Video compression—from concepts to

the H.264/AVC standard. Proc. IEEE 93, 18–31 (2005)

19. ISO/IEC JTC1/SC29/WG11: ‘‘Svc verification test report,’’

MPEG, Antalya, Tech. Rep. N9577, January (2007)

20. ISO/IEC JTC1/SC29/WG11: ‘‘Mpeg-4 video verification models

version 18.0,’’ MPEG, Pisa, Tech. Rep. N3908, January (2001)

Author Biographies

Fabrice Urban is a research

engineer at Thomson Corporate

Research in Rennes (France).

He received his postgraduate

certificate in signal, telecom-

munications, images, and radar

sciences from Rennes Univer-

sity in 2004, and his Engi-

neering degree in electronic and

computer engineering from

INSA, Rennes Scientific and

Technical University in 2004.

He received his Ph.D. degree in

electronics and industrial infor-

matics in 2007 from the INSA. His research interests include

implementation and prototyping of motion estimation algorithms on

multi-component platform.

Jean-François Nezan is an

Assistant Professor at National

Institute of Applied Sciences of

Rennes (INSA) and a member

of the IETR laboratory in

Rennes. He received his post-

graduate certificate in signal,

telecommunications, images,

and radar sciences from Rennes

University in 1999, and his

engineering degree in electronic

and computer engineering from

INSA-Rennes Scientific and

Technical University in 1999.

He received his Ph.D. degree in electronics in 2002 from the INSA.

His main research interests include image compression algorithms

and multi-DSP rapid prototyping. He is involved in the ISO/IEC

JTC1/SC29/WG11 standardization activities (better known as MPEG)

especially in the Reconfigurable Video Coding (RVC) working group.

Mickaël Raulet received his

postgraduate certificate in

signal, telecommunications,

images, and radar sciences from

Rennes University in 2002, and

his Engineering degree in elec-

tronic and computer engineering

from National Institute of

Applied Sciences (INSA),

Rennes Scientific and Technical

University. In 2006, he received

a Ph.D. degree from INSA in

electronics and signal process-

ing in collaboration with the

software radio team of Mitsubishi Electric ITE (Rennes, France). He

is currently in the Institute of Electronics and Telecommunications of

Rennes (IETR) where he is a research engineer in rapid prototyping of

standard video compression on embedded architectures (multi DSP

architectures). Since 2007, he is involved in the ISO/IEC JTC1/SC29/

WG11 standardization activities (better known as MPEG) as a Re-

configurable Video Coding Expert. His interests include video

standard compression and telecommunication algorithms and rapid

prototyping on multi-DSP architectures from Texas Instruments.

J Real-Time Image Proc (2009) 4:23–31 31

123

	HDS, a real-time multi-DSP motion estimator for MPEG-4�H.264 AVC high definition video encoding
	Abstract
	Introduction
	Motion estimation techniques
	Block matching
	EPZS
	HME
	HDS algorithm

	Real-time implementation on DSP
	DSP optimizations
	Execution times
	Motion estimation quality

	MPEG-4 H.264 motion estimation features
	Variable block-size and quarter-pixel
	Scalability

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

