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ABSTRACT

Embedded real-time applications in communication sys-
tems have significant timing constraints, thus requiring mul-
tiple computation units. Manually exploring the potential
parallelism of an application deployed on multi-core archi-
tectures is greatly time-consuming. This paper presents an
open source Eclipse-based framework which aims to facilitate
the exploration and development processes in this context.
The framework includes a generic graph editor (Graphiti), a
graph transformation library (SDF4J) and an automatic map-
per/scheduler tool with simulation and code generation capa-
bilities (PREESM). The input of the framework is composed
of a scenario description and two graphs, one graph describes
an algorithm and the second graph describes an architecture.
The rapid prototyping results of a 3GPP Long Term Evolution
(LTE) algorithm on a multi-core digital signal processor illus-
trate both the features and the capabilities of this framework.

Index Terms— Rapid prototyping, static scheduling, auto-
matic code generation, generic graph editor, LTE

1. INTRODUCTION

The recent evolution of digital communication systems
(voice, data and video) has been dramatic. Over the last two
decades, low data-rate systems (such as dial-up modems, first
and second generation cellular systems, 802.11 Wireless local
area networks) have been replaced or augmented by systems
capable of data rates of several Mbps, supporting multime-
dia applications (such as DSL, cable modems, 802.11b/a/g/n
wireless local area networks, 3G, WiMax and ultra-wideband
personal area networks).

As communication systems have evolved, the resulting in-
crease in data rates has necessitated a higher system algorith-
mic complexity. A more complex system requires greater
flexibility in order to function with different protocols in
different environments. Additionally, there is an increased

need for the system to support multiple interfaces and multi-
component devices. Consequently, this requires the optimiza-
tion of device parameters over varying constraints such as per-
formance, area and power. Achieving this device optimiza-
tion requires a good understanding of the application com-
plexity and the choice of an appropriate architecture to sup-
port this application.

An embedded system commonly contains several proces-
sor cores in addition to hardware coprocessors. The embed-
ded system designer needs to distribute a set of signal pro-
cessing functions onto a given hardware with predefined fea-
tures. The functions are then executed as software code on
target architecture ; this action will be called a deployment in
this paper. A common approach to implement a parallel algo-
rithm is is the creation of a program containing several syn-
chronized threads in which execution is driven by the sched-
uler of an operating system. Such an implementation does
not meet the hard timing constraints required by real-time ap-
plications and the memory consumption constraints required
by embedded systems [1]. One-time manual scheduling de-
veloped for single-processor applications is also not suitable
for multiprocessor architectures : manual data transfers and
synchronizations quickly become very complex, leading to
wasted time and potential deadlocks. Furthermore, the task of
finding an optimal deployment of an algorithm mapped onto
a multi-component architecture is not straightforward. When
performed manually, the result is inevitably a sub-optimal so-
lution. These issues raise the need for new methodologies,
which allow the exploration of several solutions, to achieve a
more optimal result.

Several features must be provided by a fast prototyping
process : description of the system (hardware and software),
automatic mapping/scheduling, simulation of the execution
and automatic code generation. This paper draws on previ-
ously presented works [2][3][4] in order to generate a more
complete rapid prototyping framework. This complete frame-
work is composed of three complementary tools based on



Eclipse [5] that provide a full environment for the rapid pro-
totyping of real-time embedded systems : Parallel and Real-
time Embedded Executives Scheduling Method (PREESM),
Graphiti and Synchronous Data Flow for Java (SDF4J).
This framework implements the methodology Algorithm-
Architecture Matching (AAM), which was previously called
Algorithm-Architecture Adequation (AAA) [6]. The focus of
this rapid prototyping activity is currently static code map-
ping/scheduling but dynamic extensions are planned for fu-
ture generations of the tool.

From the graph descriptions of an algorithm and of an ar-
chitecture, PREESM can find the right deployment, provide
simulation information and generate a framework code for
the processor cores [2]. These rapid prototyping tasks can be
combined and parameterized in a workflow. In PREESM, a
workflow is defined as an oriented graph representing the list
of rapid prototyping tasks to execute on the input algorithm
and architecture graphs in order to determine and simulate a
given deployment. A rapid prototyping process in PREESM
consists of a succession of transformations. These transfor-
mations are associated in a data-flow graph representing a
workflow that can be edited in a Graphiti generic graph ed-
itor. The PREESM input graphs may also be edited using
Graphiti. The PREESM algorithm models are handled by the
SDF4J library. The framework can be extended by modifying
the workflows or by connecting new plug-ins (for compila-
tion, graph analyses, and so on).

In this paper, the differences between the proposed frame-
work and related works are explained in Section 2. The
framework structure is described in Section 3. Section 4 de-
tails the features of PREESM that can be combined by users
in workflows. The use of the framework is illustrated by the
deployment of a wireless communication algorithm from the
3rd Generation Partnership Project (3GPP) Long Term Evo-
lution (LTE) standard in Section 5. Finally, conclusions are
given in Section 6.

2. STATE OF THE ART OF RAPID PROTOTYPING
AND MULTI-CORE PROGRAMMING

There exist numerous solutions to partition algorithms onto
multi-core architectures. If the target architecture is homo-
geneous, several solutions exist which generate multi-core
code from C with additional information (OpenMP [7], CILK
[8]). In the case of heterogeneous architectures, languages
such as OpenCL [9] and the Multicore Association Appli-
cation Programming Interface (MCAPI [10]) define ways to
express parallel properties of a code.However, they are not
currently linked to efficient compilers and runtime environ-
ments. Moreover, compilers for such languages would have
difficulty in extracting and solving the bottlenecks of the im-
plementation that appear inherently in graph descriptions of
the architecture and the algorithm.

The Poly-Mapper tool from PolyCore Software [11] of-

fers functionalities similar to PREESM but, in contrast to
PREESM, its mapping/scheduling is manual. Ptolemy II [12]
is a simulation tool that supports many models of computa-
tion. However, it also has no automatic mapping and currently
its code generation for embedded systems focuses on single-
core targets. Another family of frameworks existing for data
flow based programming is based on CAL [13] language and
it includes OpenDF [14]. OpenDF employs a more dynamic
model than PREESM but its related code generation does not
currently support multi-core embedded systems.

Closer to PREESM are the Model Integrated Comput-
ing (MIC [15]), the Open Tool Integration Environment
(OTIE [16]), the Synchronous Distributed Executives (Syn-
DEx [17]), the Dataflow Interchange Format (DIF [18]), and
SDF for Free (SDF3 [19]). Both MIC and OTIE can not be
accessed online. According to the literature, MIC focuses on
the transformation between algorithm domain-specific mod-
els and metamodels while OTIE defines a single system de-
scription that can be used during the whole signal processing
design cycle.

DIF is designed as an extensible repository of representa-
tion, analysis, transformation and scheduling of data-flow lan-
guage. DIF is a Java library which allows the user to go from
graph specification using the DIF language to C code gen-
eration. However, the hierarchical Synchronous Data Flow
(SDF) model used in the SDF4J library and PREESM is not
available in DIF.

SDF3 is an open source tool implementing some data-flow
models and providing analysis, transformation, visualization,
and manual scheduling as a C++ library. SDF3 implements
the Scenario Aware Data Flow (SADF [20]), and provides
Multiprocessor System-on-Chip (MP-SoC) binding/schedul-
ing algorithm to output MP-SoC configuration files.

SynDEx and PREESM are both based on the AAM
methodology [6] but the tools do not provide the same fea-
tures. SynDEx is not open source, has its own model of
computation that does not support schedulability analysis and
code generation is possible but not provided with the tool.
Moreover, the architecture model of SynDEx is at a too high
level to account for bus contentions and DMA used in mod-
ern chips (multi-core processors of MP-SoC) in the map-
ping/scheduling.

The features that differentiate PREESM from the related
works and similar tools are :

• The tool is an open source and accessible online,

• The algorithm description is based on a single well-
known and predictable model of computation,

• The mapping and the scheduling are totally automatic,

• The functional code for heterogeneous multi-core em-
bedded systems can be generated automatically,



• The algorithm model provides a helpful hierarchical
encapsulation thus simplifying the mapping/scheduling
[3].

The PREESM framework structure is detailed in the next
section.

3. AN OPEN SOURCE ECLIPSE-BASED RAPID
PROTOTYPING FRAMEWORK

3.1. The Framework Structure

SDF4J

Graphiti

Eclipse framework

Rapid prototyping
Eclipse plug-ins

Generic graph 
editor Eclipse 

plug-in

Dataflow graph 
transformation library

SchedulerGraph 
transformation

Code 
generator

Core

SDF4J

Graphiti

Eclipse framework

Rapid prototyping
Eclipse plug-ins

Generic graph 
editor Eclipse 

plug-in

Dataflow graph 
transformation library

SchedulerGraph 
transformation

Code 
generator

Core

Fig. 1. An Eclipse-based Rapid Prototyping Framework

The framework structure is presented in Figure 1. It is com-
posed of several tools to increase reusability in several con-
texts.

The first step of the process is to describe both the target
algorithm and the target architecture graphs. A graphical ed-
itor reduces the development time required to create, modify
and edit those graphs. The role of Graphiti [21] is to support
the creation of algorithm and architecture graphs for the pro-
posed framework. Graphiti can also be quickly configured to
support any type of file formats used for generic graph de-
scriptions.

The algorithm is currently described as a Synchronous Data
Flow (SDF [22]) Graph. The SDF model is a good solution
to describe algorithms with static behaviour. The SDF4J[23]
is an open source library providing usual transformations of
SDF graphs in the Java programming language. The exten-
sive use of SDF and its derivatives in the programming model
community led to the development of SDF4J as an external
tool. Due to the greater specificity of the architecture descrip-
tion compared to the algorithm description, it was decided to
perform the architecture transformation inside the PREESM
plug-ins.

The PREESM project [24] involves the development of a
tool that performs the rapid prototyping tasks. The PREESM
tool uses the Graphiti tool and SDF4J library to design algo-
rithm and architecture graphs and to generate their transfor-
mations. The PREESM core is an Eclipse plug-in that exe-
cutes sequences of rapid prototyping tasks or workflows. The
tasks of a workflow are delegated to PREESM plug-ins. There
are currently three PREESM plug-ins : the graph transforma-
tion plug-in, the scheduler plug-in and the code-generation
plug-in.

The three tools of the framework are detailed in the next
sections.

3.2. Graphiti : A Generic Graph Editor for Editing Ar-
chitectures, Algorithms and Workflows

Graphiti is an open-source plug-in for the Eclipse environ-
ment that provides a generic graph editor. It is written using
the Graphical Editor Framework (GEF). The editor is generic
in the sense that any type of graph may be represented and
edited. Graphiti is used routinely with the following graph
types and associated file formats : CAL networks [13, 25], a
subset of IP-XACT [26], GraphML [27] and PREESM work-
flows [28].

3.2.1. Overview of Graphiti

A type of graph is registered within the editor by a configu-
ration. A configuration is an XML (Extensible Markup Lan-
guage [29]) file that describes :

1. The abstract syntax of the graph (types of vertices and
edges, and attributes allowed for objects of each type),

2. The visual syntax of the graph (colors, shapes, etc.),

3. Transformations from the file format in which the graph
is defined to Graphiti’s XML file format G, and vice-
versa (Figure 2).

Two kinds of input transformations are supported, from
XML to XML and from text to XML (Figure 2). XML is
transformed to XML with Extensible Stylesheet Language
Transformation (XSLT [30]), and text is parsed to its Concrete
Syntax Tree (CST) represented in XML according to a LL(k)
grammar by the Grammatica [31] parser. Similarly, two kinds
of output transformations are supported, from XML to XML
and from XML to text.

XML

Text
XML
CST

XSLT
transformations

G
parsing

(a) reading an input file to G

G XSLT
transformations

XML

Text

(b) writing G to an output file

Fig. 2. Input/output with Graphiti’s XML format G

Graphiti handles attributed graphs [32]. An attributed
graph is defined as a directed multigraph G = (V,E, µ) with
V the set of vertices, E the multiset of edges (there can be
more than one edge between any two vertices). µ is a func-
tion µ : ({G} ∪ V ∪ E) × A 7→ U that associates instances



with attributes from the attribute name set A and values from
U , the set of possible attribute values. A built-in type attribute
is defined so that each instance i ∈ {G} ∪ V ∪ E has a type
t = µ(i, type), and only admits attributes from a set At ⊂ A
given by At = τ(t). Additionally, a type t has a visual syntax
σ(t) that defines its color, shape and size.

To edit a graph, the user selects a file and the matching con-
figuration is computed based on the file extension. The trans-
formations defined in the configuration file are then applied to
the input file and result in a graph defined in Graphiti’s XML
format G as shown in Figure 2. The editor uses the visual
syntax defined by σ in the configuration to draw the graph,
vertices and edges. For each instance of type t the user can
edit the relevant attributes allowed by τ(t) as defined in the
configuration. Saving a graph consists of writing the graph in
G, and transforming it back to the input file’s native format.

3.2.2. Editing a Configuration for a Graph Type

To create a configuration for the graph represented in Fig-
ure 3, a node (a single type of vertex) must be defined. A
node has an unique identifier called id, and accepts a list of
values initially equal to [0] (Figure 4). Additionally, ports
need to be specified on the edges, so the configuration de-
scribes an edgeType element (Figure 5) that carries source-
Port and targetPort parameters to store an edge’s source and
target ports respectively, such as acc, in, and out in Figure 3.

Fig. 3. A sample graph

< v e r t e x T y p e name=" node ">
< a t t r i b u t e s >

< c o l o r r e d =" 163 " g r e e n =" 0 " b l u e =" 85 " / >
< shape name=" roundedBox " / >
< s i z e wid th =" 40 " h e i g h t =" 40 " / >

< / a t t r i b u t e s >
< p a r a m e t e r s >

< p a r a m e t e r name=" i d "
t y p e =" j a v a . l a n g . S t r i n g "
d e f a u l t =" " / >

< p a r a m e t e r name=" v a l u e s "
t y p e =" j a v a . u t i l . L i s t ">

< e l e m e n t v a l u e =" 0 " / >
< / p a r a m e t e r >

< / p a r a m e t e r s >
< / v e r t e x T y p e >

Fig. 4. The type of vertices of the graph shown in Figure 3

<edgeType name=" edge ">
< a t t r i b u t e s >

< d i r e c t e d v a l u e =" t r u e " / >
< / a t t r i b u t e s >
< p a r a m e t e r s >

< p a r a m e t e r name=" s o u r c e p o r t "
t y p e =" j a v a . l a n g . S t r i n g "
d e f a u l t =" " / >

< p a r a m e t e r name=" t a r g e t p o r t "
t y p e =" j a v a . l a n g . S t r i n g "
d e f a u l t =" " / >

< / p a r a m e t e r s >
< / edgeType>

Fig. 5. The type of edges of the graph shown in Figure 3

Graphiti is a stand-alone tool, totally independent of
PREESM. However, Graphiti generates workflow graphs,
IP-XACT and GraphML files that are the main inputs of
PREESM. The GraphML files contain the algorithm model.
These inputs are loaded and stored in PREESM by the SDF4J
library. This library, discussed in the next section, executes
the graph transformations.

3.3. SDF4J : A Java Library for Algorithm Data Flow
Graph Transformations

SDF4J is a library defining several Data-Flow oriented graph
models such as SDF and Directed Acyclic Graph (DAG [33]).
It provides the user with several classic SDF transformations
such as hierarchy flattening, and SDF to Homogeneous SDF
(HSDF [34]) transformations and some clustering algorithms.
This library also gives the possibility to expand optimization
templates. It defines its own graph representation based on
the GraphML standard and provides the associated parser and
exporter class. SDF4J is freely available (GPL licence) for
download.

3.3.1. SDF4J SDF Graph model

An SDF graph is used to simplify the application specifica-
tions. It allows the representation of the application behavior
at a coarse grain level. This data flow representation models
the application operations and specifies the data dependencies
between these operations.

An SDF graph is a finite directed, weighted graph G =<
V,E, d, p, c > where :

• V is the set of nodes. A node computes an input data
stream and outputs the result.

• E ⊆ V ×V is the edge set, representing channels which
carry data streams.

• d : E → N ∪ {0} is a function with d(e) the number of
initial tokens on an edge e.



• p : E → N is a function with p(e) representing the num-
ber of data tokens produced at e’s source to be carried by
e.

• c : E → N is a function with c(e) representing the num-
ber of data tokens consumed from e by e’s sink node.

op1
3

3

op2
2 2

op32 2

op4
4

4

Fig. 6. A SDF graph

This model offers strong compile-time predictability prop-
erties, but has limited expressive capability. The SDF imple-
mentation enabled by the SDF4J supports the hierarchy de-
fined in [3] which increases the model expressiveness. This
specific implementation is straightforward to the programmer
and allows user-defined structural optimizations. This model
is also intended to lead to a better code generation using com-
mon C patterns like loop and function calls. It is highly ex-
pandable as the user can associate any properties to the graph
components (edge, vertex) to produce a customized model.

3.3.2. SDF4J SDF Graph transformations

SDF4J implements several algorithms intended to transform
the base model or to optimize the application behavior at dif-
ferent levels.

• The hierarchy flattening transformation aims to flatten
the hierarchy (remove hierarchy levels) at the chosen
depth in order to later extract as much as possible par-
allelism from the designer’s hierarchical description.

op1
3 op2

1 op1
1

1

1

op2
1

op2
1

op2
1

Fig. 7. A SDF graph and its HSDF transformation

• The HSDF transformation (Figure 7) transforms the
SDF model to an HSDF model in which the amount of
tokens exchanged on edges are homogeneous (produc-
tion = consumption). This model reveals all the potential
parallelism in the application but dramatically increases
the amount of vertices in the graph.

• The internalization transformation based on [35] is an
efficient clustering method minimizing the number of
vertices in the graph without decreasing the potential
parallelism in the application.

• The SDF to DAG transformation converts the SDF or
HSDF model to the DAG model which is commonly
used by scheduling methods [33].

3.4. PREESM : A Complete Framework for Hardware
and Software Codesign

In the framework, the role of the PREESM tool is to perform
the rapid prototyping tasks. Figure 8 depicts an example of a
classic workflow which can be executed in the PREESM tool.
As seen in Section 3.3, the data flow model chosen to describe
applications in PREESM is the SDF model. This model, de-
scribed in [22], has the great advantage of enabling the for-
mal verification of static schedulability. The typical number
of vertices to schedule in PREESM is between one hundred
and several thousand. The architecture is described using IP-
XACT language, an IEEE standard from the SPIRIT consor-
tium [26]. The typical size of an architecture representation
in PREESM is between a few cores and several dozen cores.
A scenario is defined as a set of parameters and constraints
that specify the conditions under which the deployment will
run.
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Fig. 8. Example of a workflow graph : From SDF and IP-
XACT descriptions to the generated code

As can be seen in Figure 8, prior to entering the schedul-
ing phase, the algorithm goes through three transformation
steps : the hierarchy flattening transformation, the HSDF
transformation and the DAG transformation (see Section



3.3.2). These transformations prepare the graph for the static
scheduling and are provided by the Graph Transformation
Module (see Section 4.1). Subsequently, the DAG - converted
SDF graph - is processed by the scheduler [36]. As a result
of the deployment by the scheduler, code is generated and
a Gantt chart of the execution is displayed. The generated
code consists of scheduled function calls, synchronizations
and data transfers between cores. The functions themselves
are hand-written.

The plug-ins of the PREESM tool implement the rapid pro-
totyping tasks that a user can add to the workflows. These
plug-ins are detailed in next section.

4. THE CURRENT FEATURES OF PREESM

4.1. The Graph Transformation Module

In order to generate an efficient schedule for a given algorithm
description, the application defined by the designer must be
transformed. The purpose of this transformation is to reveal
the potential parallelism of the algorithm and simplify the
work of the task scheduler. To provide the user with flexi-
bility while optimizing the design, the entire graph transfor-
mation provided by the SDF4J library can be instantiated in
a workflow with parameters allowing the user to control each
of the three transformations. For example, the hierarchical
flattening transformation can be configured to flatten a given
number of hierarchy levels (depth) in order to keep some of
the user hierarchical construction and to maintain the amount
of vertices to schedule at a reasonable level. The HSDF trans-
formation provides the scheduler with a graph of high po-
tential parallelism as all the vertices of the SDF graph are
repeated according to the SDF graph’s basic repetition vec-
tor. Consequently, the number of vertices to schedule is larger
than in the original graph. The clustering transformation pre-
pares the algorithm for the scheduling process by grouping
vertices according to criteria such as strong connectivity or
strong data dependency between vertices. The grouped ver-
tices are then transformed into a hierarchical vertex which is
then treated as a single vertex in the scheduling process. This
vertex grouping reduces the number of vertices to schedule,
speeding up the scheduling process. The user can freely use
available transformations in his workflow in order to control
the criteria for optimizing the targeted application and archi-
tecture.

As can be seen in the workflow displayed in Figure 8, the
graph transformation steps are followed by the static schedul-
ing step.

4.2. The PREESM Static Scheduler

Scheduling consists of statically distributing the tasks that
constitute an application between available cores in a multi-
core architecture and minimizing parameters such as final la-
tency. This problem has been proven to be NP-complete [37].

A static scheduling algorithm is usually described as a mono-
lithic process, and carries out two distinct functionalities :
choosing the core to execute a specific function and evalu-
ating the cost of the generated solutions.

The PREESM scheduler splits these functionalities into
three sub-modules [4] which share minimal interfaces : the
task scheduling, the edge scheduling and the Architecture
Benchmark Computer (ABC) sub-modules. The task schedul-
ing sub-module produces a scheduling solution for the ap-
plication tasks mapped onto the architecture cores and then
queries the ABC sub-module to evaluate the cost of the pro-
posed solution. The advantage of this approach is that any
task scheduling heuristic may be combined with any ABC
model, leading to many different scheduling possibilities. For
instance, an ABC minimizing the deployment memory or en-
ergy consumption can be implemented without modifying the
task scheduling heuristics.

The interface offered by the ABC to the task scheduling
sub-module is minimal. The ABC gives the number of avail-
able cores, receives a deployment description and returns
costs to the task scheduling (infinite if the deployment is im-
possible). The time keeper calculates and stores timings for
the tasks and the transfers when necessary for the ABC.

The ABC needs to schedule the edges in order to calculate
the deployment cost. However, it is not designed to make
any deployment choices ; this task is delegated to the edge
scheduling sub-module. The router in the edge scheduling
sub-module finds potential routes between the available cores.

The choice of module structure was motivated by the be-
havioral commonality of the majority of scheduling algo-
rithms.

Task 
Scheduling

Architecture
Benchmark

Computer (ABC) 
Task schedule 

cost

DAG IP-XACT + Scenario

Scheduler

number of cores 

Edge Scheduling 

Time Keeper 

Router
Task schedule 

Edge
schedule

Fig. 9. Scheduler module structure

4.2.1. Scheduling heuristics

Three algorithms are currently coded, and are modified ver-
sions of the algorithms described in [38].

• A list scheduling algorithm schedules tasks in the order
dictated by a list constructed from estimating a critical
path. Once a mapping choice has been made, it will



never be modified. This algorithm is fast but has limi-
tations due to this last property. List scheduling is used
as a starting point for other refinement algorithms.

• The FAST algorithm is a refinement of the list scheduling
solution which uses probabilistic hops. It changes the
mapping choices of randomly chosen tasks ; i.e. it asso-
ciates these tasks to another processing unit. It runs until
stopped by the user and keeps the best latency found.
The algorithm is multi-threaded to exploit the multi-core
parallelism of a host computer.

• A genetic algorithm is coded as a refinement of the
FAST algorithm. The n best solutions of FAST are used
as the base population for the genetic algorithm. The
user can stop the processing at any time while retain-
ing the last best solution. This algorithm is also multi-
threaded.

The FAST algorithm has been developed to solve complex
deployment problems. In the original heuristic, the final order
of tasks to schedule, as defined by the list scheduling algo-
rithm, was not modified by the FAST algorithm. The FAST
algorithm only modifies the mapping choices of the tasks.
In large-scale applications, the initial order of the tasks per-
formed by the list scheduling algorithm becomes occasionally
sub-optimal. In the modified version of the FAST scheduling
algorithm, the ABC recalculates the final order of a task when
the heuristic maps a task to a new core. The task switcher
algorithm used to recalculate the order simply looks for the
earliest appropriately sized hole in the core schedule for the
mapped task.

List
Scheduling

FASTGenetic
algorithms

Latency/cadence/memory driven Only latency-driven 

ACCURATE

FAST

Task 
scheduling

ABC

DAG IP-XACT + Scenario

Scheduler

Edge
scheduling

Fig. 10. Switchable scheduling heuristics

4.2.2. Scheduling architecture model

The current architecture representation was driven by the need
to accurately model multi-core architectures and hardware co-
processors with inter-cores message-passing communication.

This communication is handled in parallel to the computa-
tion using Direct Memory Access (DMA) modules. This
model is currently used to closely simulate the Texas Instru-
ments TMS320TCI6487 processor (see Section 5.3.2). The
model will soon be extended to shared memory communica-
tions and more complex interconnections. The term operator
represents either a processor core or a hardware coprocessor.
Operators are linked by media, each medium representing a
bus and the associated DMA. The architectures can be either
homogeneous (with all operators and media identical) or het-
erogeneous. For each medium, the user defines a DMA set-up
time and a bus data rate. As shown in Figure 9, the architec-
ture model is only processed in the scheduler by the ABC and
not by the heuristic and edge scheduling sub-modules.

4.2.3. Architecture Benchmark Computer

Scheduling often requires much time. Testing intermediate
solutions with precision is an especially time-consuming op-
eration. The ABC sub-module was created by reusing the use-
ful concept of time scalability introduced in SystemC Trans-
action Level Modeling (TLM) [39]. This language defines
several levels of system temporal simulation, from untimed
to cycle-accurate precision. This concept motivated the devel-
opment of several ABC latency models with different timing
precisions. Three ABC latency models are currently coded :

• The loosely-timed model takes into account task and
transfer times but no transfer contention.

• The approximately-timed model associates each inter-
core communication medium with its constant rate and
simulates contentions.

• The accurately-timed model adds set-up times which
simulate the duration necessary to initialize a parallel
transfer controller like Texas Instruments Enhanced Di-
rect Memory Access (EDMA [40]). This set-up time is
scheduled in the core which sends the transfer.
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+ setup times 
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Fig. 11. Switchable ABC models



The task and architecture properties feeding the ABC sub-
module are evaluated experimentally, and include media data
rate, set-up times and task timings. ABC models evaluating
parameters other than latency are planed in order to minimize
memory size, memory accesses, cadence (i.e. average run-
time), and so on. Currently, only latency is minimized due to
the limitations of the list scheduling algorithms : these costs
cannot be evaluated on partial deployments.

4.2.4. Edge scheduling sub-module

When a data block is transferred from one operator to another,
transfer tasks are added and then mapped to the correspond-
ing medium. A route is associated with each edge carrying
data from one operator to another, which possibly may go
through several other operators. The edge scheduling sub-
module routes the edges and schedules their route steps. The
existing routing process is basic and will be developed fur-
ther once the architecture model has been extended. Edge
scheduling can be executed with different algorithms of vary-
ing complexity, which results in another level of scalability.
Currently, two algorithms are implemented :

• The simple edge scheduler follows the scheduling order
given by the task list provided by the list scheduling al-
gorithm.

• The switching edge scheduler reuses the task switcher
algorithm discussed in Section 4.2.1 for edge scheduling.
When a new communication edge needs to be scheduled,
the algorithm looks for the earliest hole of appropriate
size in the medium schedule.

The scheduler framework enables the comparison of differ-
ent edge scheduling algorithms using the same task schedul-
ing sub-module and architecture model description. The main
advantage of the scheduler structure is the independence of
scheduling algorithms from cost type and benchmark com-
plexity.

4.3. Generating code from a static schedule

Using the AAM methodology from [6], a code can be gen-
erated from the static scheduling of the input algorithm on
the input architecture (see workflow in Figure 8). This code
consists of an initialization phase and a loop endlessly repeat-
ing the algorithm graph. From the deployment generated by
the scheduler, the code generation module generates a generic
representation of the code in XML. The specific code for the
target is then obtained after an XSLT transformation. The
code generation flow for a Texas Instruments tri-core proces-
sor TMS320TCI6487 (see Section 5.3.2) is illustrated by Fig-
ure 12.

PREESM currently supports the C64x and C64x+ based
processors from Texas Instruments with DSP-BIOS Oper-
ating System [41] and the x86 processors with Windows

Operating System. The supported inter-core communica-
tion schemes include TCP/IP with sockets, Texas Instruments
EDMA3 [42] and RapidIO link [43].

An actor is a task with no hierarchy. A function must be
associated with each actor and the prototype of the function
must be defined to add the right parameters in the right order.
A CORBA Interface Definition Language (IDL) file is associ-
ated with each actor in PREESM. An example of an IDL file
is shown in Figure 13. This file gives the generic prototypes
of the initialization and loop function calls associated with a
task. IDL was chosen because it is a language-independent
way to express an interface.

module a n t e n n a _ d e l a y {
t y p e d e f long c p l x ;
t y p e d e f s h o r t param ;
i n t e r f a c e a n t e n n a _ d e l a y {

vo id i n i t ( i n c p l x a n t I n ) ;
vo id loop ( i n c p l x a n t I n ,

o u t c h a r wai tOut , i n param a n t S i z e ) ;
} ;

} ;

Fig. 13. Example of an IDL prototype

Depending on the type of medium between the operators
in the PREESM architecture model, the XSLT transforma-
tion generates calls to the appropriate predefined communi-
cation library. Specific code libraries have been developed to
manage the communications and synchronizations between
the target cores [2].

5. RAPID PROTOTYPING OF A SIGNAL
PROCESSING ALGORITHM FROM THE 3GPP LTE

STANDARD

The framework functionalities detailed in the previous sec-
tions are now applied to the rapid prototyping of a signal pro-
cessing application from the 3GPP LTE radio access network
physical layer.

5.1. The 3GPP LTE Standard

The 3GPP [44] is a group formed by telecommunication or-
ganizations to standardize the third generation (3G) mobile
phone system specification. This group is currently develop-
ing a new standard : the Long Term Evolution (LTE) of the
3G. The aim of this standard is to bring data rates of tens of
megabits per second to wireless devices. The communication
between the User Equipment (UE) and the evolved base sta-
tion (eNodeB) starts when the user equipment (UE) requests a
connection to the eNodeB via random access preamble (Fig-
ure 14). The eNodeB then allocates radio resources to the
user for the rest of the random access procedure and sends
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a response. The UE answers with a L2/L3 message contain-
ing an identification number. Finally, the eNodeB sends back
the identification number of the connected UE. If several UEs
sent the same random access preamble at the same time, only
one connection is granted and the other UEs will need to send
a new random access preamble. After the random access pro-
cedure, the eNodeB allocates resources to the UE and uplink
and downlink logical channels are created to exchange data
continuously. The decoding algorithm, at the eNodeB, of the
UE random access preamble is studied in this section. This al-
gorithm is known as the Random Access CHannel Preamble
Detection (RACH-PD).

 

 

 

 

UE eNodeB

Random Access Preamble

Random Access Response

L2/L3 message

Message for early contention resolution

Fig. 14. Random access procedure

5.2. The RACH Preamble Detection

The RACH is a contention-based uplink channel used mainly
in the initial transmission requests from the UE to the eNodeB
for connection to the network. The UE, seeking connection
with a base station, sends its signature in a RACH preamble
dedicated time and frequency window in accordance with a
predefined preamble format. Signatures have special auto-
correlation and inter-correlation properties that maximize the
ability of the eNodeB to distinguish between different UEs.

Preamble 
bandwidth 

GP2GP1
time 

RACH burst 

2x N-sample preamble 
n ms

Fig. 15. The random access slot structure

The RACH preamble procedure implemented in the LTE eN-
odeB can detect and identify each user’s signature and is de-
pendent on the cell size and the system bandwidth. Assuming
that the eNodeB has the capacity to handle the processing of
this RACH preamble detection every millisecond in a worst
case scenario.

The preamble is sent over a specified time-frequency re-
source, denoted as a slot, available with a certain cycle pe-
riod and a fixed bandwidth. Within each slot, a Guard Period
(GP) is reserved at each end to maintain time orthogonality
between adjacent slots [45]. This preamble-based random ac-
cess slot structure is shown in Figure 15.

The case study in this article assumes a RACH-PD for a
cell size of 115 km. This is the largest cell size supported
by LTE and is also the case requiring the most processing
power. According to [46], preamble format#3 is used with
21,012 complex samples as a cyclic prefix for GP1, followed
by a preamble of 24,576 samples followed by the same 24,576
samples repeated. In this case the slot duration is 3 ms which
gives a GP2 of 21,996 samples. As per Figure 16, the algo-
rithm for the RACH preamble detection can be summarized
in the following steps [45].

1. After the cyclic prefix removal, the preprocessing (Pre-
proc) function isolates the RACH bandwidth, by shifting
the data in frequency and filtering it with downsampling.
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Fig. 16. Random Access Channel Preamble Detection (RACH-PD) Algorithm

It then transforms the data into the frequency domain.

2. Next, the circular correlation (CirCorr) function cor-
relates data with several pre-stored preamble root se-
quences (or signatures) in order to discriminate between
simultaneous messages from several users. It also ap-
plies an IFFT to return to the temporal domain and cal-
culates the energy of each root sequence correlation.

3. Then, the noisefloor threshold (NoiseFloorThr) function
collects these energies and estimates the noise level for
each root sequence.

4. Finally, the peak search (PeakSearch) function detects all
signatures sent by the users in the current time window.
It additionally evaluates the transmission timing advance
corresponding to the approximate user distance.

In general, depending on the cell size, three parameters of
RACH may be varied : the number of receive antennas, the
number of root sequences and the number of times the same
preamble is repeated. The 115 km cell case implies 4 anten-
nas, 64 root sequences, and 2 repetitions.

5.3. Architecture Exploration

5.3.1. Algorithm Model

The goal of this exploration is to determine through simula-
tion the architecture best suited to the 115km cell RACH-PD
algorithm. The RACH-PD algorithm behavior is described as
a SDF graph in PREESM. A static deployment enables static
memory allocation, so removing the need for runtime mem-
ory administration. The algorithm can be easily adapted to
different configurations by tuning the HSDF parameters. Us-
ing the same approach as in [47], valid scheduling derived
from the representation in Figure 16 can be described by the
compact expression : (8Preproc) (4(64(InitPower

(2((SingleZCProc)(PowAcc))))PowAcc))
(64NoiseF loorThreshold)PeakSearch

We can separate the preamble detection algorithm in 4
steps :

1. Preprocessing step : (8Preproc)

2. Circular correlation step : (4(64(InitPower
(2((SingleZCProc)(PowAcc))))PowAcc))

3. Noise floor threshold step : (64NoiseF loorThreshold)

4. Peak search step : PeakSearch

Each of these steps is mapped onto the available cores
and will appear in the exploration results detailed in Sec-
tion 5.3.4. The given description generates 1,357 operations ;
this does not include the communication operations neces-
sary in the case of multi-core architectures. Placing these
operations by hand onto the different cores would be greatly
time-consuming. As seen in Section 4.2 the rapid prototyp-
ing PREESM tool offers automatic scheduling, avoiding the
problem of manual placement.

5.3.2. Architecture Exploration

The four architectures explored are shown in Figure 17. The
cores are all homogeneous Texas Instrument TMS320C64x+
Digital Signal Processors (DSP) running at 1 GHz [48]. The
connections are made via DMA links. The first architecture is
a single-core DSP such as the TMS320TCI6482. The second
architecture is dual-core, with each core similar to that of the
TMS320TCI6482. The third is a tri-core and is equivalent to
the new TMS320TCI6487 [40]. Finally, the fourth architec-
ture is a theoretical architecture for exploration only, as it is a
quad-core. The exploration goal is to determine the number
of cores required to run the random RACH-PD algorithm in
a 115 km cell and how to best distribute the operations on the
given cores.
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5.3.3. Architecture Model

To solve the deployment problem, each operation is assigned
an experimental timing (in terms of CPU cycles). These tim-
ings are measured with deployments of the actors on a single
C64x+. Since the C64x+ is a 32-bit fixed-point DSP core,
the algorithms must be converted from floating-point to fixed-
point prior to these deployments. The EDMA is modelled
as a non-blocking medium (see Section 4.2.2) transferring
data at a constant rate and with a given set-up time. As-
suming the EDMA has the same performance from the L2
internal memory to the L2 internal memory as the EDMA3 of
the TMS320TCI6482 (see [42], then the transfer of N bytes
via EDMA should take approximately) : transfer(N) =
135 + (N ÷ 3.375) cycles. Consequently, in the PREESM
model, the average data rate used for simulation is 3.375
GBytes/s and the EDMA set-up time is 135 cycles.

5.3.4. Architecture choice

4 cores + EDMA

3 cores + EDMA

2 cores + EDMA

1 core

Loosely timed
Approximately timed
Accurately timed

Real-time limit of 4ms

Fig. 18. Timings of the RACH-PD algorithm schedule on
target architectures

The PREESM automatic scheduling process is applied for
each architecture. The workflow used is close to that of Fig-
ure 8. The simulation results obtained are shown in Figure 18.
The list scheduling heuristic is used with loosely-timed,
approximately-timed and accurately-timed ABCs. Due to

the 115 km cell constraints, preamble detection must be pro-
cessed in less than 4 ms.

The experimental timings were measured on code execu-
tions using a TMS320TCI6487. The timings feeding the sim-
ulation are measured in loops, each calling a single function
with L1 cache activated. For more details about C64x+ cache,
see [48]. This represents the application behaviour when lo-
cal data access is ideal and will lead to an optimistic simu-
lation. The RACH application is well suited for a parallel
architecture, as the addition of one core reduces the latency
dramatically. Two cores can process the algorithm within a
time frame close to the real-time deadline with loosely and
approximately timed models but high data transfer contention
and high number of transfers disqualify it when accurately
timed model is used.

The 3-core solution is clearly the best one : its CPU loads
(less than 86% with accurately-timed ABC) are satisfactory
and do not justify the use of a fourth core, as can be seen in
Figure 18. The high data contention in this case study justifies
the use of several ABC models ; simple models for fast results
and more complex models to dimension correctly the system.

5.4. Code Generation

Developed Code libraries for the TMS320TCI6487 and au-
tomatically generated code created by PREESM (see Section
4.3) were used in this experiment. Details of the code libraries
and code optimizations are given in [2]. The architecture of
the TMS320TCI6487 is shown in Figure 19. The communi-
cation between the cores is performed by copying data with
the EDMA3 from one core local L2 memory to another core
L2 memory. The cores are synchronized using inter-core in-
terruptions. Two modes are available for memory sharing :
in symmetric mode, each CPU has 1MByte of L2 memory
while in asymmetric mode, core-0 has 1.5Mbyte, core-1 has
1MByte and core-2 0.5MByte.

From the PREESM generated code, the size of the stat-
ically allocated buffers are 1.65 Mbytes for one core, 1.25
Mbytes for a second core and 200 kBytes for a third core.
The asymetric mode is chosen to fit this memory distribution.
As the necessary memory is higher than the internal L2, some
buffers are manually chosen to go in the external memory and
the L2 cache [40] is activated. A memory minimization ABC
in PREESM would help this process, targeting some memory
objectives while mapping the actors on the cores.

Modeling the RACH-PD algorithm in PREESM while
varying the architectures (1,2,3 and 4 cores-based) enabled
the exploration of multiple solutions under the criterion of
meeting the stringent latency requirement. Once the target
architecture is chosen, PREESM can be setup to generate a
framework code for the simulated solution. As highlighted
and explained in the previous paragraph, the statically allo-
cated buffers by the generated code where higher than the
physical memory of the target architecture. This necessitated
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Fig. 19. TMS320TCI6487 architecture

moving manually some of the non critical buffers to external
memory. This generated code, representing a priori a good
deployment solution, when executed on the target had an av-
erage load of 78% per core while meeting the real time dead-
line. Hence, the goal of decoding a RACH-PD every 4 ms on
the TMS320TCI6487 is thus successfully accomplished. A
simplified view of the code execution is shown in Figure 20.
The execution of the generated code had led to a realistic as-
sessment of a deployment very close to that predicted with
accurately timed ABC where the simulation had shown an
average load per core around 80%. These results show that
prototyping the application with PREESM allows by simu-
lation to assess different solutions and to give the designer a
realistic picture of the multi-core solution before solving com-
plex mapping problems. This global result needs to be tem-
pered because one week-effort of manual memory optimiza-
tions and also some manual constraints were necessary to ob-
tain such a fast deployment. New ABCs computing the costs
of semaphores for synchronizations and the memory balance
between the cores will reduce this manual optimizations time.

6. CONCLUSIONS

The intent of this paper was to detail the functionalities
of a rapid prototyping framework comprising the Graphiti,
SDF4J, and PREESM tools. The main features of the frame-
work are the generic graph editor, the graph transformation
module, the automatic static scheduler, and the code gener-
ator. With this framework, a user can describe and simu-
late the deployment, choose the most suitable architecture for
the algorithm and generate an efficient framework code. The
framework has been succesfully tested on RACH-PD algo-
rithm from the 3GPP LTE standard. The RACH-PD algorithm
with 1357 operations was deployed on a tri-core DSP and the
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Fig. 20. Execution of the RACH-PD algorithm on a
TMS320TCI6487

simulation was validated by the generated code execution. In
the near future, an increasing number of CPUs will be avail-
able in complex System on Chips. Developing methodologies
and tools to efficiently partition code on these architectures is
thus an increasingly important objective.
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