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HOUDA MOKRANI
HOUDA.MOKRANI@ETU.UNIV-ROUEN.FR

Abstract. In this work, we discuss the asymptotic behavior of solutions for semi-linear
parabolic equations on the Heisenberg group with a singular potential. The singularity
is controlled by Hardy’s inequality, and the nonlinearity is controlled by Sobolev’s in-
equality. We also establish the existence of a global branch of the corresponding steady
states via the classical Rabinowitz theorem.
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1. Introduction

In this work, we study a class of parabolic equations on the Heisenberg group Hd. Let
us recall that the Heisenberg group is the space R2d+1 with the (non commutative) law of
product

(x, y, s) · (x′, y′, s′) =
(
x + x′, y + y′, s + s′ + 2

(
(y|x′)− (y′|x)

))
.

The left invariant vector fields are

Xj = ∂xj + 2yj∂s, Yj = ∂yj − 2xj∂s, j = 1, · · · , d and S = ∂s =
1
4
[Yj , Xj ].

In the sequel, we shall denote Zj = Xj and Zj+d = Yj for j ∈ {1, · · · , d}. We fix here
some notations :

z = (x, y) ∈ R2d, w = (z, s) ∈ Hd, ρ(z, s) =
(|z|4 + |s|2)1/4

where ρ is the Heisenberg distance. Moreover, the Laplacian-Kohn operator on Hd and
Heisenberg gradient are given by

∆Hd =
n∑

j=1

X2
j + Y 2

j ; ∇Hd = (Z1, · · · , Z2d).

Let Ω be an open and bounded domain of Hd, we define thus the associated Sobolev
space by

H1(Ω,Hd) =
{

f ∈ L2(Ω) ; ∇Hdf ∈ L2(Ω)
}

and H1
0 (Ω,Hd) is the closure of C∞

0 (Ω) in H1(Ω,Hd).
1
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We are concerned in the following semi-linear parabolic problem

(1.1)





∂tu−∆Hdu− µ
|z|2
ρ4

u = λu+ | u |p−2 u, w ∈ Ω, t > 0,

u(0, w) = u0(w), w ∈ Ω,

u
∣∣∣
∂Ω

= 0, t > 0,

where λ is a real constant and 2 < p < 2∗; the index 2∗ = 2 + 2
d is the critical index of

Sobolev’s inequality on the Heisenberg group [6, 9, 10, 18]:

(1.2) ‖u‖L2∗ (Ω) ≤ CΩ‖u‖H1(Ω,Hd),

for all u ∈ H1
0 (Ω,Hd).

The following Hardy inequality is first proved in [11, 7]:

(1.3) µ̄

∫

Ω

|z|2
ρ(w)4

|u(w)|2dw ≤ ‖∇Hdu‖2
L2(Ω)

for all u ∈ H1
0 (Ω,Hd). By the work of Kombe [19], we have the following improved Hardy

inequality, for all u ∈ C∞
0 (Hd\{0}):

(1.4)
1

C2r2(B)

∫

B
u(w)2dw + µ̄

∫

Ω

|z|2
ρ(w)4

|u(w)|2dw ≤ ‖∇Hdu‖2
L2(Ω),

where µ̄ = (Q−2
2 )2, C is a positive constant and r(B) is the radius of the ball B. Moreover

µ̄ is optimal and it is not attained in H1
0 (Ω,Hd).

We recall the following compact embedding result:

Lemma 1.1. Let Ω ∈ Hd be a bounded open domain. Then H1
0 (Ω,Hd) is compactly

embedded in to Lp(Ω), 2 ≤ p < 2∗.

In a remarkable paper, J. A. Goldstein and Q. S. Zhang [14] considered the following
particular case

(1.5)





∂tu−∆Hdu = µ
|z|2
ρ4

u t ∈ (0, T ], T > 0,

u(w, 0) = u0(w), w ∈ Hd.

They found that if µ > µ̄, then the problem (1.5) has no negative solutions except u0 = 0,
and if µ ≤ µ̄, then the problem (1.5) has a positive solution for some u0 > 0.
On the Euclidien space Rd, problem (1.5) has been studied first by P. Barras and Goldstein

[3] for the potential V (x) =
1
|x|2 . Cabrel and Martel [5, Theorem 1, 2], extend this result to

some potential V (x) =
1

δ(x)2
, where δ(x) = dist(x, ∂Ω), Ω ⊂ Rd is of class C2. They show

that the behavior of the solutions depends heavily on the critical value of the parameter
µ which is the best constant of the classical Hardy inequality.
The work [3] generated a lot of activity on this topic and various questions have been
investigated as, for example: general positive singular potentials, the asymptotic behavior
of the solutions, semilinear equations, etc. See, for example, [15, 14, 27, 29].

Stimulated by the recent paper in the Euclidien space Rd of Karachalios and Zo-
graphopoulos [20] which studied the global bifurcation of nontrivial equilibrium solutions
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on the bounded domain case for a reaction term f(s) = λs− | s |2 s, where λ is a bi-
furcation parameter; our focus here is devoted to some results concerning the existence
of a global attractor for the equation (1.1) and the existence of a global branch of the
corresponding steady states

(1.6)




−∆Hdu− µ

|z|2
ρ(w)4

u = λu+ | u |p−2 u in Ω,

u
∣∣∣
∂Ω

= 0

with respect λ. Let us recall some definitions on semiflows :

Definition 1.2. Let E be a complete metric space, a semiflow is a family of contiuous
maps S(t) : E → E, t ≥ 0, satisfying the semigroup identities

S(0) = I, S(t + t′) = S(t)S(t′).

For B ⊂ E and t ≥ 0, let

S(t)B := {u(t) = S(t)u0; u0 ∈ B}.
The positive orbit of u through u0 is the set

γ+(u0) = {u(t) = S(t)u0, t ≥ 0},
and the positive orbit of B is the set γ+(B) = ∪t≥0S(t)B. The W-limit set of u0 is

W(u0) = {φ ∈ E : u(tj) = S(tj)u0 → φ, tj → +∞}.
The α-limit set of u0 is

α(u0) = {φ ∈ E : u(tj) → φ, tj → −∞}.
The subset A attracts a set B if dist

(
S(t)B,A

)
→ 0, t → +∞.

A is invariant if S(t)A = A, ∀t ≥ 0.
The functional J : E → R is a Lyapunov functional for the semiflow S(t) if
i) J is continuous,
ii) J

(
S(t)u0

)
≤ J

(
S(t′)u0

)
for 0 ≤ t′ ≤ t.

iii) J
(
S(t)

)
is constant for some orbit u and for all t ∈ R.

And we have the following theorem from the papers of Ball [1, 2] :

Theorem 1.3. Let S(t) be an asymptotically compact semiflow and suppose that there
exists a Lyapunov functional J . Suppose further that the set E is bounded. Then S(t) is
dissipative, so there exists a global attractor A(t).
For each complete orbit u containing u0 lying in A(t), the limit sets α(u0) and W(u0) are
connected subsets of E on which J is constant.
If E is totally disconnected (in particular if it is countable), the limits

(1.7) φ− = lim
t→−∞u(t), , φ+ = lim

t→+∞u(t)

exist and are equilibrium points. Furthermore, any solution S(t)u0 tends to an equilibrium
point as t → ±∞

The existence of a global branch of nonnegative solutions will be proved via the classical
Rabinowitz theorem [25]:
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Theorem 1.4. Assume that X is a Banach space with norm ‖.‖ and let G(λ, .) = λL +
H(λ, .), where L is a compact linear map on X and H(λ, .) is compact on X and satisfies

(1.8) lim
‖u‖→0

‖H(λ, u)‖
‖u‖ = 0.

If λ is a simple eigenvalue of L, then the closure of the set

C = {(λ, u) ∈ R×X : (λ, u) solves u = G(λ, u), u 6= 0},
possesses a maximal continuum (connected branch) of solutions Cλ, such that (λ, 0) ∈ Cλ

and Cλ either
(i) meets infinity in R×X, or
(ii) meets (λ∗, 0), where λ∗ 6= λ is also an eigenvalue of L.

The outline of the paper is as follows : In Section 2, we study the existence of global
branch of nonnegative solutions of (1.6) with respect to the parameter λ. In Section 3,
we describe the asymptotic behavior of solutions of (1.1) when u0 has low energy smaller
than the mountain pass level.

2. Existence of a global branch of the corresponding steady states

From the study of spectral decomposition of H1
0 (Ω,Hd) with respect to the operator

−∆Hd−µ
|z|2

ρ(w)4
where the singular potential V satisfies Hardy’s inequality (1.3), we have:

Proposition 2.1. Let 0 < µ ≤ µ̄. Then there exist 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λk ≤ · · · →
+∞, such that for each k ≥ 1, the following Dirichlet problem

(2.9)




−∆Hdφk − µ

|z|2
ρ(w)4

φk = λkφk, in Ω

φk|∂Ω = 0

admits a nontrivial solution in H1
0 (Ω,Hd). Moreover, {φk}k≥1 constitutes an orthonormal

basis of Hilbert space H1
0 (Ω,Hd).

Remark that the first eigenvalue λ1,µ characterized by

(2.10) λ1,µ = inf
u∈H1

0 (Ω,Hd)\{0}

∫
Ω

(|∇Hdu|2 − µ |z|2
ρ(w)4

|u|2) dw

‖u‖2
L2(Ω)

,

is simple with a positive associated eigenfunction φ1,µ.
For the proof of this proposition, we refer to [21].

We discuss the behavior of λ1,µ when 0 < µ < µ̄ and µ ↑ µ̄:

Proposition 2.2. Let 0 < µ < µ̄ and µ ↑ µ̄. Then,
(i) (λ1,µ)µ is a decreasing sequence, and there exist λ∗ > 0 such that λ1,µ → λ∗.
(ii) The corresponding normalized eigenfunction φ1,µ convergis weakly to 0 in H1

0 (Ω,Hd).

Proof:
• Let µ1 < µ2. The characterization (2.10) of λ1,µ implies that λ1,µ1 > λ1,µ2 . The im-

proved Hardy inequality (1.4) implies that λ1,µ is bounded from below by
1

C2r2(B)
.

So, there exist λ∗ > 0 such that λ1,µ → λ∗.
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• The eigenfunction φ1,µ satisfies, for any v ∈ C∞
0 (Ω):

(2.11)
∫

Ω
∇Hdφ1,µ∇Hdv dw − µ

∫

Ω

|z|2
ρ(w)4

φ1,µ v̄ dw = λ1,µ

∫

Ω
φ1,µ v̄ dw.

We still denote by φ1,µ the sequence of normalized eigenfunction, forming a bounded
sequence in H1

0 (Ω,Hd). Then there exists u ∈ H1
0 (Ω,Hd) such that

φ1,µ ⇀ u inH1
0 (Ω,Hd),

φ1,µ → u inLq(Ω), for any 2 ≤ q < 2∗.

For some fixed small enough ε > 0 and any for v ∈ C∞
0 (Ω), we have

∫

Ω

|z|2
ρ(w)4

(φ1,µ−u)v̄ dw ≤ ‖v‖L∞(Ω)

(∫

Ω
|φ1,µ−u| Q−ε

Q−2−ε dw
)Q−2−ε

Q−ε
(∫

Ω

( |z|
ρ(w)2

)Q−ε
dw

) 2
Q−ε

.

Thus, ∫

Ω

|z|2
ρ(w)4

φ1,µ v̄ dw →
∫

Ω

|z|2
ρ(w)4

u v̄ dw, as µ ↑ µ̄.

We assume that u 6= 0, so passing to the limit in (2.11), we get that u is a nontrivial
solution of the problem

−∆Hdu− µ̄
|z|2

ρ(w)4
u = µ̄u, u ∈ H1

0 (Ω,Hd).

However, µ̄ is not attained in H1
0 (Ω,Hd), so u = 0.

Thanks to Hardy inequality (1.3) and Poincaré inequality,

‖ u ‖µ= (
∫

Ω
[ | ∇Hdu(z, s) |2 −µ

|z|2
ρ(z, s)4

| u(z, s) |2 ] dzds)
1
2(2.12)

is equivalent to the norm on H1
0 (Ω,Hd) for all 0 ≤ µ < µ̄, so that we will use ‖ · ‖µ as

the norm of H1
0 (Ω,Hd).

Theorem 2.3. Let Ω ∈ Hd be a bounded domain and assume that 0 < µ < µ̄. Then,
the principal eigenvalue λ1,µ considered in H1

0 (Ω,Hd) with the norm ‖.‖µ, is a bifurcating
point of the problem (1.6) and Cλ1,µ is a global branch of nonnegative solutions of (1.6).

Proof: First we prove the existence of Cλ1,µ :
We define the space X as a completion of C∞

0 (Ω) with respect to the norm induced by

(2.13) 〈u, v〉X ≡
∫

Ω

[
∇Hdu∇Hdv − µ

|z|2
ρ(z, s)4

u v̄
]

dzds− λ1,µ

2

∫

Ω
uv̄ dzds.

We have

‖u‖X = ‖u‖2
µ −

λ1,µ

2
‖u‖2

L2(Ω) ≤ ‖u‖2
µ,

and from the characterization of λ1,µ, we have

‖u‖X ≥ ‖u‖2
µ −

λ1,µ

2
‖u‖2

L2(Ω) ≥ ‖u‖2
µ −

1
2
‖u‖2

µ ≥
1
2
‖u‖2

µ.

Since C∞(Ω) is dense both in X and H1
0 (Ω,Hd), it follows that X = H1

0 (Ω,Hd), and the
inner product in X is given by 〈u, v〉X = 〈u, v〉µ.
Let

a(u, v) =
∫

Ω
uv dzds, for all u, v ∈ X.
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The bilinear form a(u, v) is continuous in X, so the Riesz representation theorem implies
that there exists a bounded linear operator L such that

(2.14) a(u, v) = 〈Lu, v〉, for all u, v ∈ X.

The operator L is self adjoint and compact and its largest eigenvalue ν1 is characterized
by

(2.15) ν1 = sup
u∈X

〈Lu, u〉
〈u, u〉X = sup

u∈X

‖u‖L2(Ω)∫
Ω

[
| ∇Hdu |2 −µ |z|2

ρ(z,s)4
| u |2

]
dzds

=
1

λ1,µ
.

We define energy functional Iµ,λ on H1
0 (Ω,Hd) by

(2.16)

Iµ,λ(u) =
1
2

∫

Ω

[
| ∇Hdu |2 −µ

|z|2
ρ(z, s)4

| u |2
]

dzds− 1
p

∫

Ω
| u |p dzds− λ

2

∫

Ω
| u |2 dzds.

Similarly to the classical case, Iµ,λ( · ) is well-defined on H1
0 (Ω,Hd) and belongs to C1(H1

0 (Ω,Hd);R)
and we have

〈I ′µ,λ(u), v〉 =
∫

Ω

[
∇Hdu∇Hdv − µ

|z|2
ρ(z, s)4

u v̄− | u |p−2 u v̄ − λuv̄
]

dzds

for any v ∈ H1
0 (Ω,Hd). Let N(λ, .) : R × X → X∗ where X∗ is the dual space of X be

defined as by

(2.17) 〈N(λ, u), v〉 =
∫

Ω

[
∇Hdu∇Hdv − µ

|z|2
ρ(z, s)4

u v̄− | u |p−2 u v̄ − λuv̄
]

dzds

for all v ∈ X. Since I ′µ,λ(u) is a bounded linear functional, N(λ, .) is well defined, and
N(λ, .) = u−G(λ, u) where G(λ, u) = λLu + H(u),

(2.18) 〈H(u), v〉 =
∫

Ω
| u |p−2 u v̄ dzds∀v ∈ X.

Thanks to the compact embedding (1.1), the map H is compact. On the other hand, we
have

|〈H(u), v〉| ≤ ‖u‖p−1
Lp(Ω)‖v‖Lp(Ω),

Since X = H1
0 (Ω,Hd) and thanks to the compact embedding (1.1), we have

(2.19)
1

‖u‖X
|〈H(u), v〉| ≤ ‖u‖p−2

X ‖v‖X .

Thus

(2.20) lim
‖u‖X→0

‖H(u)‖X∗

‖u‖X
= lim
‖u‖X→0

sup
‖v‖X≤1

1
‖u‖X

|〈H(u), v〉| = 0.

It remains to prove that Cλ1,µ is a global branch for nonnegative solutions of (1.6) :
First, we prove that there exist ε0 > 0 such that u > 0 for any (λ, u) ∈ Cλ1,µ ∩Bε0(λ1,µ, 0)
where Bε0(λ1,µ, 0) is the open ball of Cλ1,µ with center (λ1,µ, 0) and radius ε0.
By contradiction, we assume that there exists (λn, un) ∈ Cλ1,µ a sequence of solutions of
(1.6), such that λn → λ1,µ, un → 0 in H1

0 (Ω,Hd) and that (un)n are changing sign in Ω.
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Let u−n ≡ min{0, un} and U−n ≡ {x ∈ Ω : un(x) < 0}. Since un = u+
n − u−n is a weak

solution of (1.6), u−n satisfies

(2.21)




−∆Hdu−n − µ

|z|2
ρ4

u−n = λu−n + | un |p−2 u−n inΩ,

u−n
∣∣∣
∂Ω

= 0.

We thus have
(2.22)∫

U−n

[
|∇Hdu−n |2 − µ

|z|2
ρ(z, s)4

|u−n |2
]

dzds = λn

∫

U−n
|u−n |2 dzds +

∫

U−n
| un |p−2 |u−n |2 dzds.

But λn is bounded, so we get by Hölder inequality, Sobolev inequality and Sobolev em-
bedding

‖u−n ‖2
H1

0 (U−n )
≤ λn|U−n |

2
Q

(∫

U−n
|u−n |2

∗
dzds

) 2
2∗ + ‖u−n ‖p

Lp(U−n )
(2.23)

≤ C1|U−n |
2
Q ‖u−n ‖2

H1
0 (U−n )

+ C2‖u−n ‖p

H1
0 (U−n )

,(2.24)

thus

1 ≤ C1|U−n |
2
Q + C2‖u−n ‖p−2

H1
0 (U−n )

.(2.25)

Since ‖un‖H1
0 (Ω,Hd) → 0 and p > 2, we derive that

(2.26) |U−n | ≥ C3, ∀n,

where the constant C3 > 0 depends neither on λn nor un.
Next we denote by vn =

un

‖un‖H1
0 (Ω,Hd)

, then there exists a subsequence of vn, which we

denote again by vn, such that

vn ⇀ v0 in H1
0 (Ω,Hd),

vn → v0 in L2(Ω).

Since un = G(λn, un) = λn Lun + H(un),

vn = λn Lvn +
H(un)

‖un‖H1
0 (Ω,Hd)

.

As L is a compact linear operator and H(un) = 0(‖un‖H1
0 (Ω,Hd)), so v0 = λ1,µLv0 and

then v0 = φ1,µ > 0. Hence, by applying Egorov’s Theorem [4, Theorem IV.28] or [17], vn

converges uniformly to φ1,µ in the exterior of a set of arbitrarily small measure. Then,
there exists Σ a piece of Ω of arbitrarily small measure in which vn is positive outside
Σ for n large enough, obtaining a contradiction with (2.26) and we conclude that the
functions un are nonnegative, for n large enough. It them follows that u > 0 for any
(λ, u) ∈ Cλ1,µ ∩ Bε0(λ1,µ, 0) with ε0 > 0 small enough. Assume now that there exists
(λ, u) ∈ Cλ1,µ such that u(w0) ≤ 0 at some point w0 ∈ Ω. From the previous part, we
have u(w) > 0 for all w ∈ Ω whenever (λ, u) ∈ Cλ1,µ is close to (λ1,µ, 0). Since Cλ1,µ is
connected, there exists (λ∗, u∗) ∈ Cλ1,µ , such that u∗(w) ≥ 0 for all w ∈ Ω, except possibly
some point w0 ∈ Ω where u∗(w0) = 0, and in any neighbourhood of (λ∗, u∗), we can find a
point (λ̄, ū) ∈ Cλ1,µ with ū(w) < 0 for some w ∈ Ω. Then, the maximum principle implies
that u∗ = 0 on Ω. Thus we can construct a sequence (λn, un) ∈ Cλ1,µ such that un > 0
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for all n, un → 0 in H1
0 (Ω,Hd) and λn → λ∗.

Let vn =
un

‖un‖H1
0 (Ω,Hd)

, then

vn = λn Lvn +
H(un)

‖un‖H1
0 (Ω,Hd)

.

So, the subsequence (vn)n converges to v0 = λ∗ Lv0. Since vn > 0, for all n and
‖v0‖H1

0 (Ω,Hd) = 1, we have v0 > 0. Thus λ∗ is an eigenvalue of (1.6) corresponding to a
positive eigenfunction. But λ1,µ is the only positive eigenvalue of (1.6) corresponding to a
positive eigenfunction, so we deduce that λ∗ = λ1,µ, and that (λ∗, u∗) = (λ1,µ, 0). This con-
tradicts the fact that every neighbourhood of (λ∗, u∗) must contain a point (λ̄, ū) ∈ Cλ1,µ

with ū(w) < 0 for some w ∈ Ω. Hence u(w) > 0 for all w ∈ Ω whenever (λ, u) ∈ Cλ1,µ ,
and Cλ1,µ cannot cross points of the form (λ, 0), where λ 6= λ1,µ.

3. Asymptotic behavior of solutions for problem (1.1)

Similarly [22, 23], we are interested here in the description of the behavior of solutions
of (1.1) when u0 has low energy smaller than the mountain pass level

cµ,λ = inf
h∈Γ

max
t∈[0,1]

Iµ,λ(h(t)), where

Γ = { h ∈ C([0, 1];H1
0 (Ω,Hd)); h(0) = 0 andh(1) = e}.(3.27)

In view of [21], since 2 < p < 2∗, the functional Iµ,λ satisfies the Palais-Smale condition
and admits at least a positive solution (called mountain pass solution).

Lemma 3.1. For λ > 0, 0 < µ < µ̄ and 2 < p < 2∗, the function f(t) = λ t+ | t |p−2 t,
t ∈ R defines a locally Lipschitz map f : H1

0 (Ω,Hd) → H−1(Ω,Hd).

Proof: The function f1(u) = λu, defines a locally Lipschitz map f1 : L2(Ω) → L2(Ω), so
f1 : H1

0 (Ω,Hd) → H−1(Ω,Hd) is locally Lipschitz. Let u ∈ Lp(Ω) and f2(u) =| u |p−2 u.
The function f2 : Lp(Ω) → Lp′(Ω) is locally Lipschitz, thanks to the following estimate :

(3.28) ‖f2(u)− f2(v)‖Lp′ (Ω) ≤ (p− 1)
(
‖u‖Lp(Ω) + ‖v‖Lp(Ω)

)p
‖u− v‖Lp(Ω),

for all u, v ∈ Lp(Ω). So thanks to compact embedding (1.1) and from Lp′(Ω) ⊂ H−1(Ω;Hd),
the function f2 : H1

0 (Ω,Hd) → H−1(Ω,Hd) is locally Lipschitz.

Proposition 3.2. Let u0 ∈ H1
0 (Ω,Hd), λ > 0 and 0 < µ < µ̄, the problem (1.1) has a

unique weak solution u such that

u ∈ C([0, T );H1
0 (Ω,Hd)) ∩ C1([0, T );H−1(Ω,Hd)),

and we have

(3.29)
d

dt
Iµ,λ(u(t)) = − ‖ ∂tu ‖2

L2(Ω) .

Proof: By means of the Hille-Yosida theorem, T (t) = {e−tLµ}t≥0 is the semigroup gen-

erated by the operator Lµ = −∆Hd − µ
|z|2

ρ(z, s)4
. Since f : H1

0 (Ω,Hd) → H−1(Ω) is lo-

cally Lipschitz, so by Pazy [24, Theorem 1.4] or Haraux [16, Theorem 6.2.2] or Goldstein
[12, Theorem 2.4]; there exists a unique solution of (1.1) defined on a maximal interval
[0, Tmax), where 0 < Tmax ≤ +∞ and

u ∈ C([0, T );H1
0 (Ω,Hd)) ∩ C1([0, T );H−1(Ω)),
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satisfying the variation of constants formula

(3.30) u(t) = T (t)u0 +
∫ t

0
T (t− τ) f(u(τ)) dτ.

Moreover, if Tmax < +∞, we say that Tmax is a blow-up time, whereas if Tmax = +∞, we
say that u is global solution.

We will show that u satisfies (3.29) : Let u ∈ D(Lµ) (D(Lµ) be the domain of definition
of Lµ) and t ∈ [0, T ), T < Tmax. Since Iµ,λ ∈ C1(H1

0 (Ω,Hd);R), we have

〈I ′µ,λ(u),∆Hdu + µ
|z|2

ρ(w)4
u + f(u)〉 = −

∫

Ω
| ∆Hdu + µ

|z|2
ρ(w)4

u + f(u) |2 dw

= −
∫

Ω
| ∂tu |2 dw.(3.31)

Set g(t) = f(u(t)) and let gn ∈ C1([0, T ]; H1
0 (Ω,Hd)), u0n ∈ D(Lµ) such that

gn → g in C1([0, T ]; H1
0 (Ω,Hd)),

u0n → u0 in H1
0 (Ω,Hd).

Define un(t) = T (t)u0n +
∫ t
0 T (t− τ) gn(τ) dτ , then un ∈ C1([0, T ];H1

0 (Ω,Hd)) satisfies

∂tun −∆Hdun − µV un = gn

and
un → u in H1

0 (Ω,Hd).

Thus, from (3.31),

Iµ,λ(un(t))− Iµ,λ(u0n) =
∫ t

0
〈I ′µ,λ(un(τ)),∆Hdun + µ

|z|2
ρ(w)4

un + gn(τ)〉 dτ

= −
∫ t

0
‖∂τun(τ)‖2

L2(Ω) dτ +
∫ t

0
〈I ′µ,λ(un(τ)), gn(τ)− f(un(τ))〉 dτ.

Passing to the limit, we deduce (3.29).
Next, we intoduce the following sets :

O+ ≡ {u ∈ H1
0 (Ω,Hd) : Iµ,λ(u) < cµ,λ; 〈I ′µ,λ(u), u〉 > 0},

O− ≡ {u ∈ H1
0 (Ω,Hd) : Iµ,λ(u) < cµ,λ; 〈I ′µ,λ(u), u〉 < 0},

N ≡ {u ∈ H1
0 (Ω,Hd) : 〈I ′µ,λ(u), u〉 = 0}.(3.32)

N is named the Nehari manifold relative to Iµ,λ. The mountain-pass level cµ,λ defined in
(3.27) may also be characterized as

(3.33) cµ,λ = inf
u∈N

Iµ,λ(u).

Theorem 3.3. If there exist t0 ≥ 0 such that Iµ,λ(u(t0)) ≤ 0, then u(t) blows-up in finite
time.

Proof: Let t0 ≥ 0 such that Iµ,λ(u(t0)) ≤ 0 and we suppose that u(t) is a global solution
to the problem (1.1). Since u(t) satisfies (3.29), we have

Iµ,λ(u(t0)) = Iµ,λ(u(t)) +
∫ t

t0

‖∂τu(τ)‖2
L2(Ω) dτ.
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Set g(t) ≡ ∫
Ω |u(t)|2 dw, then

d

dt
g(t) = 2

∫

Ω
u(t)∂tu(t) dw

= −2
∫

Ω

[
|∇Hdu(t)|2 − µ

|z|2
ρ(w)4

|u(t)|2
]

dw

+ 2λ

∫

Ω
|u(t)|2 dw + 2

∫

Ω
|u(t)|p dw

= 4
∫ t

t0

‖∂τu(τ)‖2
L2(Ω) dτ − 4Iµ,λ(u(t0)) + 2(1− 2

p
)
∫

Ω
|u(t)|p dw

≥ 2(1− 2
p
)
∫

Ω
|u(t)|p dw > 0.(3.34)

Hence we get for any t ≥ t0, g(t) ≥ g(t0) =
∫
Ω |u(t0)|2 dw. Let ε ∈ (1, p

2), so we deduce by
(3.34), that for any t ≥ t0 :

− 1
ε− 1

d

dt
g1−ε(t) = g−ε(t)

d

dt
g(t)

≥ 2(1− 2
p
)g−ε(t)

∫

Ω
|u(t)|p dw

≥ Cg−ε(t)(
∫

Ω
|u(t)|2 dw)

p
2

≥ C(
∫

Ω
|u(t0)|2 dw)

p
2
−ε.

Hence for t ≥ t0 sufficiently large, we have

0 < (
∫

Ω
|u(t)|2 dw)1−ε = g1−ε(t)

≤ g1−ε(t0) + C(ε− 1)g
p
2
−ε(t0)(t0 − t).

Then
−1 < C(ε− 1)g

p
2
−1(t0)(t0 − t)

and so t < t0 +
[
C(ε− 1)g

p
2
−1(t0)

]−1
, which is a contradiction.

Theorem 3.4. Assume that u0 ∈ O+ and λ < λ1,µ, then the problem (1.1) admits a
global solution u(t). Moreover, there exists a positive number α such that

(3.35) ‖u(t)‖µ = O(e−αt), as t → +∞.

Proof: Let u0 ∈ O+ and u(t) = u(t, w) be the unique solution, the existence of which
has been proved in Proposition 3.2. From (3.29), we have that t 7→ Iµ,λ(u(t)) is strictly
decreasing, so

Iµ,λ(u(t)) ≤ Iµ,λ(u0) ≤ cµ,λ.(3.36)

Suppose there exists t∗ ∈ (0, Tmax) such that u(t∗) /∈ O+. Then

〈I ′µ,λ(u(t∗)), u(t∗)〉 ≤ 0.

Moreover since t 7→ 〈I ′µ,λ(u(t)), u(t)〉 is continuous, there exists t0 ∈ (0, t∗] such that

〈I ′µ,λ(u(t0)), u(t0)〉 = 0.
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Hence u(t0) = 0 in Ω, or u(t0) ∈ N . If u(t0) = 0 in Ω, then by the uniquess of u(t), we
conclude that u(t) = 0 for any t ∈ [t0, Tmax). Thus u(t) is global by extending to 0 for all
t ≥ Tmax, and so Iµ,λ(u(t)) > 0 for any t ≥ 0 by Theorem 3.3. But Iµ,λ(u(t0)) = 0, which
is a contradiction, and so u(t0) ∈ N . It is well know that cµ,λ = inf

u∈N
Iµ,λ(u) [28, Theorem

4.2], thus cµ,λ ≤ Iµ,λ(u(t0)), which is a contradiction with (3.36). So, we conclude that
u(t) ∈ O+ for all t ∈ [t0, Tmax).

On other hand, we can write

Iµ,λ(u(t)) =
1
p
〈I ′µ,λ(u(t)), u(t)〉

+ (
1
2
− 1

p
)
∫

Ω

[
|∇Hdu(t, w)|2 − µ

|z|2
ρ(w)4

|u(t, w)|2
]

dw − (
1
2
− 1

p
)λ

∫

Ω
|u(t, w)|2 dw

> (
1
2
− 1

p
)
∫

Ω

[
|∇Hdu(t, w)|2 − µ

|z|2
ρ(w)4

|u(t, w)|2
]

dw − (
1
2
− 1

p
)λ

∫

Ω
|u(t, w)|2 dw

≥ (
1
2
− 1

p
)
(
1− λ

λ1,µ

)
‖u(t, .)‖2

µ > 0.(3.37)

Since u(t) satisfies (3.29), we have
∫ t

t0

‖∂tu(τ, .)‖2
L2(Ω) dτ + (

1
2
− 1

p
)
(
1− λ

λ1,µ

)
‖u(t, .)‖2

µ ≤ Iµ,λ(u(t0, .)) < cµ,λ.(3.38)

Then we have

(3.39)
∫ t

t0

‖∂tu(τ)‖2
L2(Ω) dτ < cµ,λ, and ‖u(t)‖2

µ <
[
(
1
2
− 1

p
)(1− λ

λ1,µ
)
]−1

cµ,λ,

which implies that u(t) is a global solution of the problem (1.1) and O+ is invariant set.

Letting t → +∞ in (3.39), the integral
∫ +∞

t0

‖∂tu(τ)‖2
L2(Ω) dτ is finitely determined.

Therefore, there exists a sequence (tn)n≥0 with tn → +∞ as n → +∞, such that

(3.40)
∫

Ω
|∂tu(tn)|2 dw → 0, and u(tn) ⇀ v in H1

0 (Ω,Hd).

Letting tn → +∞, we obtain that v ∈ H1
0 (Ω,Hd) is a solution of problem (1.6). So

(3.41) 〈I ′µ,λ(v), v〉 = 0.

If v 6= 0, then v ∈ N , and so

(3.42) Iµ,λ(v) ≥ cµ,λ.

Since u(tn) satisfies (3.29), it follows by Hölder inequality and from (3.40), that

|〈I ′µ,λ(u(tn, .)), u(tn, .)〉| ≤ |
∫

Ω
u(tn, w)∂tu(tn, w) dw|

≤ ‖u(tn, .)‖L2(Ω)‖∂tu(tn, .)‖L2(Ω)

≤
√

λ1,µ‖u(tn, .)‖µ‖∂tu(tn, .)‖L2(Ω)

≤ C‖∂tu(tn, .)‖L2(Ω).(3.43)

Therefore,

(3.44) lim
n→+∞〈I

′
µ,λ(u(tn)), u(tn)〉 = 0.
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We deduce by (3.37), (3.41) and (3.44) that

Iµ,λ(v) = (
1
2
− 1

p
)
∫

Ω

[
|∇Hdv(w)|2 − µ

|z|2
ρ(w)4

|v(w)|2
]

dw − (
1
2
− 1

p
)λ

∫

Ω
|v(w)|2 dw

≤ lim
n→+∞(

1
2
− 1

p
)
∫

Ω

[
|∇Hdu(tn, w)|2 − µ

|z|2
ρ(w)4

|u(tn, w)|2
]

dw

− (
1
2
− 1

p
)λ

∫

Ω
|u(tn, w)|2 dw + lim

n→+∞〈I
′
µ,λ(u(tn)), u(tn)〉

≤ lim
n→+∞ Iµ,λ(u(tn))

≤ Iµ,λ(u0) < cµ,λ,

which contradicts (3.42), and so v = 0 in Ω.
Hence by (3.40), we have

u(tn, .) → 0 in Lq(Ω), 2 ≤ q < 2∗.

Since

‖u(tn, .)‖2
µ = 〈I ′µ,λ(u(tn)), u(tn)〉+ λ

∫

Ω
|u(tn, w)|2 dw +

∫

Ω
|u(tn, w)|p dw

−→ 0, as n → +∞,

we have

(3.45) u(tn, .) → 0 in H1
0 (Ω,Hd), as n → +∞.

For simplicity, let us denote by t the divergent sequence and by u(t) = u(tn, w). We have
from (3.44) that

Iµ,λ(u(t)) = (
1
2
− 1

p
)
∫

Ω

[
|∇Hdu(t)|2 − µ

|z|2
ρ(w)4

|(u(t)|2
]

dw − (
1
2
− 1

p
)λ

∫

Ω
|u(t)|2 dw

= (
1
2
− 1

p
)‖u(t)‖2

µ − (
1
2
− 1

p
)‖u(t)‖2

L2(Ω).

So, due to (3.29) we have

‖u(t)‖2
µ =

2p

p− 2
Iµ,λ(u(t)) + ‖u(t)‖2

L2(Ω)

≤ 2p

p− 2
Iµ,λ(u0) + ‖u(t)‖2

L2(Ω)

<
2p

p− 2
cµ,λ + o(1).(3.46)

Therefore there exists t0 such that for all t ≥ t0,

‖u(t)‖2
µ ≤

2p

p− 2
cµ,λ.(3.47)

On the other hand,
∫

Ω
|u(t)|p dw ≤ Cp

Ω

( µ̄

µ̄− µ

) p
2 ‖u(t)‖p

µ

≤ Cp
Ω

( µ̄

µ̄− µ

) p
2
[ 2p

p− 2
cµ,λ

] p−2
2 ‖u(t)‖2

µ.
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Let C1 = Cp
Ω

( µ̄

µ̄− µ

) p
2
[ 2p

p− 2
cµ,λ

] p−2
2 , we have

(1− C1)‖u(t)‖2
µ ≤ ‖u(t)‖2

µ − ‖u(t)‖p
Lp(Ω)

≤ 〈I ′µ,λ(u(t)), u(t)〉+ λ‖u(t)‖2
L2(Ω).(3.48)

Let us recall that if we set g(t) ≡ ∫
Ω |u(t)|2 dw, then

d

dt
g(t) = 2

∫

Ω
u(t)∂tu(t) dw

= −2
∫

Ω

[
|∇Hdu(t)|2 − µ

|z|2
ρ(w)4

|u(t)|2
]

dw

+ 2λ

∫

Ω
|u(t)|2 dw + 2

∫

Ω
|u(t)|p dw

= −2〈I ′µ,λ(u(t)), u(t)〉.
So we get from (3.37) that for any t ≥ t0, we have∫ ∞

t
〈I ′µ,λ(u(τ)), u(τ)〉 dτ =

1
2
‖u(t)‖2

L2(Ω) ≤
1

2λ1,µ
‖u(t)‖2

µ

≤ 1
λ1,µ

p

p− 2
Iµ,λ(u(t)).(3.49)

So from (3.48) and (3.49), we have for any t ≥ t0 that∫ ∞

t
Iµ,λ(u(τ)) dτ ≤ 1

2λ1,µ

∫ ∞

t
‖u(τ)‖2

µ

≤ (1− C1)−1 1
2λ1,µ

[∫ ∞

t
〈I ′µ,λ(u(τ)), u(τ)〉 dτ + λ

∫ ∞

t
‖u(τ)‖2

L2(Ω) dτ
]

≤ (1− C1)−1

2λ2
1,µ

p

p− 2
Iµ,λ(u(t)) + (1− C1)−1 λ

2λ1,µ

∫ ∞

t
‖u(τ)‖2

L2(Ω) dτ.(3.50)

Since limt→+∞ ‖u(t)‖L2(Ω) = 0, there exists t1 > t0 such that for any t ≥ t1, we have

(3.51)
∫ ∞

t
Iµ,λ(u(τ)) dτ ≤ (1− C1)−1

2λ2
1,µ

p

p− 2
Iµ,λ(u(t)).

Thus

(3.52)
∫ ∞

t
Iµ,λ(u(τ)) dτ ≤ C(t1)e−αt,

with α =
(1− C1)−1

2λ2
1,µ

p

p− 2
. But we remark that

(3.53) Iµ,λ(u(t + 1)) ≤
∫ t+1

t
Iµ,λ(u(τ)) dτ <

∫ ∞

t
Iµ,λ(u(τ)) dτ,

hence we deduce that for any t ≥ t1, we have

(3.54) Iµ,λ(u(t + 1)) < C(t1)e−αt,

and we can conclude that for any t ≥ t1, we have

(3.55) ‖u(t)‖µ = O(e−αt).
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Theorem 3.5. Assume that u0 ∈ O−. Then the solution u(t) of the problem (1.1) blows
up in finite time.

Proof: Let u0 ∈ O− and u(t) = u(w, t, u0) be the unique solution, the existence of which
has been proved in Proposition 3.2. From the inequality (3.29), we have that t 7→ Iµ,λ(u(t))
is strictly decreasing, so

Iµ,λ(u(t)) ≤ Iµ,λ(u0) ≤ cµ,λ.(3.56)

Suppose there exists t̃ ∈ (0, Tmax) such that u(t̃) /∈ O−. Then

〈I ′µ,λ(u(t̃)), u(t̃)〉 ≥ 0.

And since the application t 7→ 〈I ′µ,λ(u(t)), u(t)〉 is continuous, there exists t̃0 ∈ (0, t̃ ] such
that

〈I ′µ,λ(u(t̃0)), u(t̃0)〉 = 0.

Hence u(t̃0) = 0 in Ω, or u(t̃0) ∈ N . If u(t̃0) = 0 in Ω, then by the uniquess of u(t), we
conclude that u(t) = 0 for any t ∈ [t̃0, Tmax). Thus u(t) is global by extending to 0 for all
t ≥ Tmax, and thanks to Theorem 3.3, Iµ,λ(u(t)) > 0 for any t ≥ 0. But Iµ,λ(u(t̃0)) = 0,
which is a contradiction, and so u(t̃0) ∈ N . But by [28],

cµ,λ = inf
u∈N

Iµ,λ(u),

then cµ,λ ≤ Iµ,λ(u(t̃0)), which contradicts (3.56). So, we conclude that u(t) ∈ O− for all
t ∈ [t̃0, Tmax). We suppose by contradiction that Tmax = +∞, i.e. u(t) = u(t, .) exists for
all t ≥ 0. For u ∈ O−, we have

d

dt
‖u(t, .)‖2

L2(Ω) = −2〈I ′µ,λ(u(t)), u(t)〉 > 0.

Then t 7→ ‖u(t, .)‖L2(Ω) is strictly increasing and so

(3.57) lim
t→+∞ ‖u(t, .)‖L2(Ω) = c ∈ (0, +∞].

We suppose that c < +∞. Following the same reasoning as in the proof of Theorem 3.4,
we deduce that we can select a divergent subsequence, still denoted by t, such that when
t → +∞,

u(t, .) → 0 in H1
0 (Ω,Hd).

Letting t → +∞ in the inequality√
λ1,µ ‖u(t, .)‖L2(Ω) ≤ ‖u(t, .)‖µ,

we get that 0 < c ≤ 0, which is a contradiction. So we conclude that

(3.58) lim
t→+∞ ‖u(t, .)‖L2(Ω) = +∞.

Set g(t) = ‖u(t, .)‖2
L2(Ω), so

− 2
p− 2

d

dt
g1− p

2 (t) = g′(t)g−
p
2 (t)

= −2‖u(t, .)‖−p
L2(Ω)

(
‖u(t, .)‖2

µ − λ‖u(t, .)‖2
L2(Ω)‖u(t, .)‖2

Lp(Ω)

)

≥ −2‖u(t, .)‖−p
L2(Ω)

‖u(t, .)‖2
µ + 2‖u(t, .)‖−p

L2(Ω)
‖u(t, .)‖2

Lp(Ω).(3.59)

By Hölder inequality, we have

‖u(t, .)‖p
Lp(Ω) ≥ |Ω|1− p

2 ‖u(t, .)‖p
L2(Ω)

,



SEMI-LINEAR SUB-ELLIPTIC EQUATIONS 15

and by (3.58), there exist t1 > 0 and a constant C1 > 0, such that for t ≥ t1, we have

(3.60) ‖u(t, .)‖L2(Ω) ≥ C1.

Then, there exist t1 > 0 and a constant C2 > 0, such that for t ≥ t1, we have

(3.61) − 2
p− 2

d

dt
g1− p

2 (t) ≥ −2λ1,µC2−p
1 + 2|Ω|1− p

2 ≥ C2.

Hence, we have from (3.61), that for any t ≥ t1,

0 < g(t) ≤ g(t1) +
p− 2

2
C2(t− t1),

which is a contradiction if t is sufficiently large. So we conclude that Tmax < +∞.
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[17] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York (1975).
[18] D. Jerison, J. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe

problem. J. Amer. Math. Soc., 1, 1-13 (1988)
[19] I. Kombe, Best constant for weighted Rellich and uncertainty principle inequalities on Carnot groups,

submitted
[20] N. I. Karachalios, N. B. Zographopoulos. The semiflow of a reaction diffusion equation with a singular

potential. Manuscripta Mathematica, 130, Number 1, 63-91 (2009).
[21] H. Mokrani, Semi-linear Sub-elliptic equations on the Heisenberg group with a singular potential.

Communications on Pure and Applied analysis, 8, Number 5, 1619-1636 (2009).
[22] R. Ikehata, T. Suzuki, Stable and unstable sets for evolutions of parabolic and hyperbolic type.

Hiroshima Math. J., 26, 475-491 (1996).



16 HOUDA MOKRANI

[23] L. E. Payne, D. H. Sattinger, Saddle points and instability of nonlinrar parabolic equations. Hiroshima
Math. J., 30, 117-127 (2000).

[24] A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-
Verlag (1983).

[25] P. Rabinowitz, Some global results for nonlinear eigenvalue problems. J. Funct. Anal. 7, 487-513
(1971).

[26] P. Rabinowitz, On bifurcation from infinity. J. Diff. Equations, 14, 462-475 (1973).
[27] J. L. Vazquez, E. Zuazua, The Hardy inequality ad the asymptotic behaviour of the heat equation

with inverse square potential. J. Funct. Anal. 173, 103-153 (2000).
[28] M. Willem, Minimax theorems. Birkhäuser, Boston, 1996.
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