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A construction of Beam Propagation Methods for
optical waveguides

Xavier Antoine∗, Pierre Dreyfuss†, Karim Ramdani‡

Abstract. This paper presents a systematic method to derive Beam Propagation Models

for optical waveguides. The technique is based on the use of the symbolic calculus rules

for pseudodifferential operators. The cases of straight and bent optical waveguides are

successively considered.

Keywords. Bent Waveguides; Beam Propagation Method; Optics

1 Introduction

Complex optical waveguides play a key role in the design of optical communications systems

and integrated optical circuits [13]. In many applications, the waveguides considered are not

uniform in the propagating direction, called the z-direction in this paper (inhomogeneous

structures, bent waveguides e.g.). In order to simulate numerically such optical devices,

one can truncate the structure in the transverse x-variable by using for example a Perfectly

Matched Layer (see e.g. [11]). Since the length of the waveguide (of the order of the

millimeter) is much larger than the free space wavelength λ0 (of the order of the micrometer),

a numerical simulation remains extremely costly. This is the reason why approximate efficient

models like Beam Propagation Methods (BPMs) have been introduced [13]. The idea is to

solve a propagation equation in the z-direction (which in some sense is considered as a time

variable) with an initial condition at z = 0 fixed by the incident wave field. Then, all

the difficulty is to built accurate BPMs for complex situations. Let us remark that similar
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problems and techniques arise in other applications (geophysics [4], acoustics [5, 8] e.g.). A

widely used approach is based on a rough approximation of the Helmholtz equation resulting

in the so-called Standard BPM which is a Schrödinger-type equation (also called Fresnel

equation or Standard Parabolic Equation in electromagnetics [12]). However, increased

accuracy is generally required for these models. To this aim, high-order BPMs have been

formally proposed in the literature (see Section 2 and references herein). These models have

also been numerically validated in [10] for straight waveguides, showing their importance for

practical applications. Finally, bent waveguides can formally also be considered. A direction

to improve the corresponding BPM is proposed in [14] but remains limited to first-order

approximations. The aim of this paper is twofold: 1) we show how these models, which

are often obtained formally, can be constructed systematically via the symbolic calculus

of pseudodifferential operators for straight waveguides with variable refraction index, 2)

we extend the formalism to derive high-order BPM models for arbitrary bent waveguides

following similar techniques.

The outline of the paper is the following. After recalling the high-order BPMs met in

the literature in Section 2, we begin by analyzing in detail the case of a straigth waveguide

with a smooth (z, x)-variable index. We propose a procedure for recovering these models

and to possibly improve them in Section 3. In Section 4, we provide the extension to bent

waveguides which are commonly used in applications [3, 15, 16]. This shows in particular

the influence of the geometry in the BPM model through e.g. the curvature. This strategy

provides the possibility of proposing new BPM models for the full Maxwell’s equations using

similar techniques for systems [1]. This is an important open problem as noticed in the

recent review paper by Lu [13]: ”The improved one-way models are also available for the

TM case. Unfortunately, they are not available for full-vectorial cases”. Finally, Section 5

draws a conclusion.
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2 TM energy conserving one-way equations

Let us begin by introducing the Transverse Magnetic (TM) [13] governing equation for planar

waveguides

n2∂z

(
1

n2
∂zu

)
+ n2∂x

(
1

n2
∂xu

)
+ k2

0n
2u = 0, (1)

where z denotes the propagation direction, k0 is the reference wavenumber in vacuum and

n(x, z) is the refractive index. The time dependence is assumed to be e−iωt, setting ω as the

angular frequency. An incident wave is specified at z = 0. The Beam Propagation Method

(BPM) approximately solves (1) by computing the solution of a one-way Helmholtz equation.

Some specific difficulties arise for the TM polarization problem. In particular, it was shown

by Vasallo [21] that neglecting the z-derivatives of the index n leads to the non-conservation

of the optical paraxial power

PTM(z) =

∫
|u|2

n2
dx. (2)

Indeed, it is shown in [21] that the resulting approximate fields are then lossy or amplifying,

depending on the choice of the index n. This behavior is numerically shown for instance

in [17] and a complete discussion is developed in Vasallo’s paper [21]. To overcome this

drawback, some solutions have been recently proposed by Ho and Lu [10]. The authors

introduce formally three different models with increasing order:

• the one-way Helmholtz equation (3)

∂zu = iL̃1(z)u, (3)

where L̃1(z) is the square-root operator defined by

L̃1(z) =

√
n2∂x

(
1

n2
∂x·
)

+ k2
0n

2, (4)

• the energy-conserving model [7]

∂zu = iL̃2,1(z)u, (5)

setting

L̃2,1 = L̃1 + i L̃
−1/2
1 n ∂z

(
1

n
L̃

1/2
1

)
(6)
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• the single-scatter approximation

∂zu = iL̃2,2(z)u, (7)

with

L̃2,2 = L̃1 +
i

2
L̃−1

1 n2 ∂z

(
1

n2
L̃1

)
. (8)

Let us note that models (5) and (7) coincide when L is approximated by a second-order

Taylor expansion resulting in the narrow-angle BPM equation. The last two approximations

yield an improved accuracy as shown in [10].

3 A construction of BPMs for TM polarization: the

straight waveguide

The aim of this part is to show that alternative high-order approximate model equations can

be derived via the techniques of pseudodifferential operator calculus. For the sake of clarity,

we do not detail all the technical aspects and computational elements, but rather outline the

main steps of the derivation of our strategy. Besides its systematic character, one further

advantage of our technique lies in the fact that it provides the connection between the above

three models.

The first step consists in developing the second order operator P involved in (1)

P (x, z, ∂x, ∂z) = ∂2
z + n2∂z

(
1

n2

)
∂z + ∂2

x + n2∂x

(
1

n2

)
∂x + k2

0n
2. (9)

Introducing the Fourier covariable ξ of x, the operator A(x, ∂x) = n2∂x(n
−2)∂x is represented

for example by the symbol a(x, z, ξ) = in2∂x(n
−2)ξ in the Fourier space.

We recall that given a symbol a = a(x, z, ξ), we can define the pseudodifferential operator

A = Op(a) through the representation formula [20]

A(x, z, ∂x)u(z, x) =

∫
a(x, z, ξ)û(z, ξ)eixξdξ, (10)

defining û(z, ξ) as the partial Fourier transform of u with respect to x. The above formula

holds for symbols a which are some C∞-functions satisfying the following inequality

|∂βx∂αξ a(x, z, ξ)| ≤ Cαβ < ξ >m−α, (11)
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for < ξ >= (1 + |ξ|2)1/2, m ∈ R, for all α and β. Then, in this case, a is said to be in Sm1,0

and of order m (see [20] for more details). The corresponding operator A is then of order m,

belongs to the class OPSm1,0 and acts in suitable Sobolev spaces [20]. Following this strategy,

the partial symbol of P with respect to x is given by

p(x, z, ξ, ∂z) = ∂2
z + n2∂z

(
1

n2

)
∂z − ξ2 + in2∂x

(
1

n2

)
ξ + k2

0n
2. (12)

The next step is based on the following classical factorization formula [9, 18, 19].

Proposition 1. There exist two first-order pseudodifferential operators L±(x, z, ∂x) with

total symbols `±(x, z, ξ) such that

p ∼ (∂z − iL−)(∂z − iL+) mod(OPS−∞), (13)

where the meaning of the equivalence class ∼ is detailed in [20]. The symbols `± admit the

following asymptotic expansions

`± ∼
+∞∑
j≥−1

`±−j (14)

for symbols `±−j ∈ S
−j
1,0, which are uniquely determined by the condition

`±1 (x, z, ξ) = ±
√
k2

0n
2 − ξ2 + in2∂x(n−2)ξ. (15)

Moreover, the zeroth-order term `+0 is

`+0 (x, z, ξ) =
i

2`+1
∂ξ`

+
1 ∂x`

+
1 + i

1

2`+1
n2∂z(n

−2`+1 ). (16)

The expression
√
z designates the principal determination of the square-root of a complex

number z, i.e. <(
√
z) > 0. The pseudodifferential operator calculus assumes that n is a C∞

function. However, this assumption can be weakened to handle more general waveguides for

example with C1 regularity since only first-order z derivatives of n appear in the proposed

models. Even if in practical situations the BPM models are used when a (x, z)-discontinuous

waveguide is concerned, we see that an adapted symbolic calculus with discontinuous symbols

should lead to added contributions. This is however out of the scope of the present paper.

Proof. Let us develop the right hand side of (13)

p ∼ ∂2
z − i(L+ + L−)∂z − iOp

{
∂z`

+
}
− L−L+ mod(OPS−∞) (17)
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since the symbolic representation of operators based on (10) gives

∂zL
+u = Op

{
∂z`

+
}
u+ L+∂zu. (18)

Identifying the operator terms appearing in front of the z-derivatives, one gets the operator

system {
−i(L+ + L−) = n2∂z(n

−2),
−iOp {∂z`+} − L−L+ = k2

0n
2(1 +X),

(19)

with X the differential operator defined by

X = n2∂x(n
−2∂x·)/(k2

0n
2), (20)

with symbol σ(X) given by

σ(X) = −ξ2/(k2
0n

2) + in2∂x(n
−2)ξ/(k2

0n
2). (21)

In order to obtain an equation for L+, we eliminate L− in the second equation of (19) thanks

to the first one and get

(L+)2 − in2∂z(n
−2)L+ − i Op

{
∂z`

+
}

= k2
0n

2(1 +X). (22)

Since L+ is a first-order pseudodifferential operator, then Q = (L+)2 is a second-order

operator defined as an operator product in OPS2
1,0. Therefore, according to the Leibniz

composition rule of pseudodifferential operators [20], the symbol σ(Q) of the operator Q

admits the asymptotic expansion

σ(Q) ∼
∑
α≥0

(−i)α

α!
∂αξ `

+∂αx `
+. (23)

Then, going to the symbolic calculus and considering the symbolic terms of order two in the

left hand side of (22) leads to the following calculation of `+1

`+1 =
√
k2

0n
2 − ξ2 + in2∂x(n−2)ξ. (24)

This choice ensures the uniqueness of the asymptotic expansion (14). Moreover, we also

have immediately : `−1 = −`+1 using the first equation of system (19) at the symbolic level.

Now, let us compute the second asymptotic corrective term `+0 . This is done by identifying

the terms of first order in the left hand side of expression (22) using (23). This yields

`+0 =
i

2`+1
∂ξ`

+
1 ∂x`

+
1 + i

1

2`+1
n2∂z(n

−2`+1 ) (25)
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since

−in2∂z(n
−2)L+ − iOp

{
∂z`

+
}

= −iOp(n2∂z(n
−2`+)). (26)

This ends the proof.

By using the principal symbol `+1 of L+, one gets the TM Beam Propagation equation

corresponding to the forward propagating part of the wavefield

∂zu = iL+(z)u, z > 0, (27)

since it gives an L2
z([0; +∞[) finite energy solution. The operator L− corresponds to the

backscattered part of the field. Since we only have L+ through its asymptotic symbolic

expansion (14), an approximation of the forward field can be obtained by considering the

following approximate equation of (27)

∂zuj = iLj(z)uj mod(OPS1−j), (28)

setting Lj as the truncated one-way operator of order j ≥ 1

Lj = Op

( ∑
−1≤m≤−2+j

`+−m

)
= L+ mod(OPS1−j). (29)

The first-order approximation consists therefore in finding the approximate solution u1

of the forward propagating one-way equation

∂zu1 = iL1(z)u1 mod(OPS0). (30)

Let us compare now (30) and (3)-(4). Denoting by σm(P ) the symbol of order m of a

pseudodifferential operator P , and since we have the identification

σ(L̃1L̃1) = σ(k2
0n

2(1 +X)) = (`+1 )2, (31)

the computation of the principal symbol of order one of L̃1, denoted by σ1(L̃1), is equal to `+1

by the composition rule of pseudodifferential operators. Therefore, (30) is an approximation

of (3)-(4) modulo a pseudodifferential operator of OPS0.

A second-order one-way equation is given by

∂zu2 = iL2(z)u2, z > 0, (32)
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setting L2 = Op(`+1 + `+0 ). Let us first connect the approximation (32) to the single-scatterer

equation (7). From Equation (31), the computation of the zeroth-order term σ0(L̃1) of the

asymptotic expansion of the operator L̃1 gives

σ0(L̃1) =
i

2`+1
∂ξ`

+
1 ∂x`

+
1 (33)

by using the Leibniz composition rule for two pseudodifferential operators. This exactly

corresponds to the first corrective term in (25). Moreover, a direct computation shows that

σ0

(
−1

2
L̃−1

1 n2 ∂z(n
−2L̃1)

)
= − 1

2`+1
n2 ∂z(n

−2`+1 ), (34)

meaning that the second corrective term in the right hand side of (25) is related to the

principal symbol of the corrective operator in the single-scatterer improvement (7).

Another way of writing `+0 is

`+0 =
i

2`+1
∂ξ `

+
1 ∂x `

+
1 + i

1

(`+1 )1/2
n ∂z(n

−1(`+1 )1/2). (35)

This gives an approximation of the energy-conserving equation by considering the principal

symbol of the corrective operator. These approximations of the models can be summarized

as follows

L1 = Op
(
σ1(L̃1)

)
mod(OPS0) (36)

and

L2 = Op

(
2∑

m=1

σ2−m(L̃2,q)

)
mod(OPS−1), q = 1, 2. (37)

Remark 1. In optics, the BPM model is often written accordingly to a reference background

index nr. This formulation can be easily deduced from our analysis by setting u = φe−ikn
rz,

rewriting the Helmholtz equation with respect to the unknown φ and finally applying the

proposed approach.

Remark 2. More terms can be used to build higher-order TM BPMs. Furthermore, the

extension to higher dimensions can be considered by using a similar derivation.

Remark 3. The previous derivation has been developed in terms of pseudodifferential op-

erators but requires the following precision. Using the classical symbolic calculus leads to

consider a symbol having a singularity. Rigorously speaking, the factorization theorem 1
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holds for frequencies (k0, ξ) such that `+1 (x, z, ξ) 6= 0. This means that the definition of the

operators involved in the BPMs must be understood in the sense of microlocal analysis and

not pseudodifferential analysis. However, for the sake of simplicity, we will use the term of

pseudodifferential operators.

Remark 4. Finally, let us remark that the first application of pseudodifferential operators

and factorization techniques was in the background of Absorbing Boundary Conditions for

variable coefficients systems by Engquist and Majda [6]. They have next led to many devel-

opments and in particular when the fictitious boundary is supposed to be convex, smooth but

arbitrarily shaped [1, 2].

4 TM bent waveguides: geometry corrections

In many applications, practitioners have to deal with arbitrarily bent waveguides like S-

guides e.g. [3, 15, 16]. In [3], Baets and Lagasse derived a BPM for general waveguides.

A new model, similar to the one-way model (3)-(4), has been proposed in [14] to take into

account the curvature effects. We show below that our approach can be adapted to derive

TM BPMs for general waveguides.

The main difference with the previous derivation of Section 3 is that we have to deal

with a generalized system of coordinates. For the sake of clarity, we use the notation of [14].

More precisely, the waveguide axis is described by a curve with arclength parameter s{
z(s) = f(s)
x(s) = g(s)

(38)

where f, g are smooth functions (namely f, g ∈ C1(R)) satisfying

f ′2(s) + g′2(s) = 1, ∀ s ∈ R.

The unit normal vector to the waveguide is then (−g′(s), f ′(s)). For s < 0 and s > L, we

assume that the waveguide is straight (see Figure 1), denoting by L the length of the curved

waveguide.

The expression of a point M(z, x) of the waveguide is given in the system of coordinates

(s, r) by {
z(r, s) = f(s)− rg′(s)
x(r, s) = g(s) + rf ′(s)

(39)
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z = 0 z = L

r
s

M(z(s),x(s))
x

z

Figure 1: A bent waveguide: notations.

where r denotes the distance of M to the waveguide axis. Let us introduce

N(r, s) = n(x, z)

the refractive index in the generalized system of coordinates (r, s), and the parameter

γ(r, s) = 1− rκ(s), where κ(s) = (f ′(s)g′′(s)− f ′′(s)g′(s))−1 is the curvature of the waveg-

uide along the principal axis. A straightforward computation shows that, using the above

notations, the TM Helmholtz equation can be rewritten in the coordinates system (s, r) as

∂s

(
1

N2γ
∂sũ

)
+ ∂r

( γ

N2
∂rũ
)

+ k2γũ = 0, (40)

where we have set ũ(s, r) = u(z, x). Compared with Section 3, the direction of propagation

z is now s while the transverse direction x is r. A similar statement to the one of Proposition

1 can be obtained by setting

`+1 (r, s, ξ) =
√
k2γ2N2 − γ2ξ2 + iγN2∂r(γN−2)ξ, (41)

where ξ is the Fourier variable according to r. A computation of the zeroth-order term yields

`+0 (r, s, ξ) =
1

2`+1
i ∂r`

+
1 ∂ξ`

+
1 +

1

2`+1
iγN2 ∂s

(
1

γN2

)
`+1 +

1

2`+1
i ∂s`

+
1 . (42)

Let us introduce the new square-root operator L̃1 as

L̃1 =

√
γN2∂r

( γ

N2
∂r·
)

+ k2γ2N2· (43)

Then, using the first symbol `+1 given by (41) leads to the following approximate TM BPM

∂su1 = iL1(s)u1, s > 0, (44)
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with L1 = Op(`+1 ), which is an approximation of

∂su = iL̃1(s)u, s > 0, (45)

with L̃1 given by (43). Equation (43)-(45) was first given in [14] and is recovered here by

using its first symbol since

L1 = Op
(
σ1(L̃1)

)
mod(OPS0). (46)

If we now consider the second corrective term `+0 given by (42), then one obtains the ap-

proximate BPM

∂su2 = iL2(s)u2, s > 0, (47)

which can be considered as an approximation of an energy-conserving

L̃2,1 = L̃1 + iγ1/2NL̃
−1/2
1 ∂s

(
1

γ1/2N
L̃

1/2
1

)
(48)

or single-scatter

L̃2,2 = L̃1 +
i

2
γN2L̃−1

1 ∂s

(
1

γN2
L̃1

)
. (49)

BPM for a curved waveguide since we now have

L2 = Op

(
2∑

m=1

σ2−m(L̃2,m)

)
mod(OPS−1), m = 1, 2. (50)

These last equations provide extended versions of the improved TM BPMs derived in the

previous section since the case of a straight waveguide is obtained by setting κ(s) = 0. We

can also remark that the TE case developed in [14] can be recovered by taking N = 1 in

(45).

Remark 5. We did not prove here that the new approximate BPMs are energy conserving

for bent waveguides. However, their symmetrical forms suggest that it should be the case.

Computational simulations could be helpful for analyzing this problem. A mathematical proof

based on estimates for pseudodifferential operators should therefore be possible.

From a numerical point of view, the algorithms proposed in [10] and [14] can be used to

approximate the models proposed in this paper.
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5 Conclusion

This paper provides a rigorous and systematic construction of TM Beam Propagation Models

for a straight waveguide. The technique is based on the asymptotic expansion of the total

symbol of the propagating operator related to the BPM. We also provide the extensions to

bent waveguides of the single-scatter and energy-conserving models which are corrections

to the one-way TM BPM. The construction can be extended to the three-dimensional full

Maxwell’s equations by using microlocal diagonalization techniques [1] which represent the

extension of the factorization theorem used in Proposition 1 to hyperbolic systems.
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