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F-45075 Orléans Cedex 2, France

Email adresses: ulrich.razafison@math.cnrs.fr, stephane.cordier@univ-orleans.fr,

olivierdelestre41@yahoo.fr, frederic.darboux@orleans.inra.fr,

francois.james@univ-orleans.fr, carine.lucas@univ-orleans.fr,

Abstract

We introduce here a new shallow water model for the numerical simulation of overland

flow with furrows effects without representing them explicitly. The model is obtained

by adding to the classical shallow water equations a friction term that takes into

account these effects.

We validate the model with some numerical tests and we present comparisons with

simulations computed with the classical shallow water model where the furrows are

explicitly described.
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1 Introduction

During rainfalls, overland flow on cultivated lands induces problems at watershed scale

for soil conservation (decrease of soil thickness by erosion, nutrient losses), infrastructure

(flooding and destruction of roads and buildings), preservation of water quality (drinking

water) and sustainability of aquatic ecosystems (chemical pollution).

These troubles can be prevented by watershed management. Improving watershed

management in relationships with overland flow requires to have a good prediction of the
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water flux at the watershed outlet but also a good prediction of the spatial distribution

of flux over the whole watershed. However, the current hydrological models are inefficient

in predicting overland flow within small watersheds (see [4, 15, 16]). In agricultural wa-

tersheds, one of the main difficulties is that flow directions are controlled not only by the

topography, but also, on field boundaries, by ditches along the fields, and, inside the fields,

by ridges and furrows created by tillage operations. The flow pattern is clearly the result

of the interaction between these objects [22], but the way they interact remains mostly

unspecified. Therefore, one must improve the understanding of this interaction in order

to better predict the spatial and temporal distribution of overland flow and so to improve

the decisions made by watershed managers.

In this paper we focus on the interaction between topography and furrows because it is

a very common case, encountered in almost all cultivated lands. This interaction can be

seen as the interaction between three types of roughness. The topography is the roughness

of the Earth and is described in Digital Elevation Maps with a horizontal resolution larger

than one meter, and commonly of ten meters and more. The furrows are the roughness due

to agricultural practices and create a strong directional heterogeneity inside a field. They

are characterized by their wavelength (of about one to a few decimeters), their amplitude

(of a few centimeters to one decimeter) and their direction. Finally the random roughness,

due to soil aggregates and clods, is homogeneous in direction and has an amplitude of a

few millimeters to about one decimeter. To our knowledge, most of the works on the

interaction between roughness and flow have been dedicated to topography (see [21] and

[24]) or to random roughness (see [8], [17] and [14]).

Few works are dealing with furrows, and among them, most are concerned with the

storage capacity of the furrows, i.e. the amount of water stored in the puddles created

by the furrows (for instance [20]). So, these works do not consider the water flowing on

the soil surfaces but only the water stored in puddles. The few works considering both

overland flow and the furrows-topography interaction are empirical studies [22, 23]. They

lead to empirical laws giving an on/off prediction: the predicted flow direction is either the

direction of the topographic slope or the furrow direction, while in reality water can flow

in both directions at the same time. Moreover, these laws are limited by their empirical

basis.

To be of practical use, a model accounting for the effects of furrows on overland flow

direction must not require an explicit representation of the furrows: that would imply

the use of a digital map with a horizontal resolution of about a centimeter for the whole

watershed, which has as typical size of a square kilometer for the small ones. Such digital

maps are not available and, even if available, will require to much computation resources.

The purpose of this work is to propose a model that is able to take into account the effects
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of the furrows on overland flow and to present the numerical results we obtained. The

model is a first step in an attempt to predict overland flow directions controlled by furrows

and topography without representing the furrows explicitly. Indeed, the furrows are known

only trough their average amplitude, their average wavelength and their direction. At the

current stage, furrow direction is kept perpendicular to the slope. Our model is based on

the so-called shallow water equations that are widely used to describe flows in rivers, in

ocean and overland flow among other applications.

The outline of the paper is as follow. In the next section, we present the model that

we propose to account for the effects of the furrows on overland flow. In section 3, we

present and discuss the numerical results that we obtain with our model. Conclusions are

outlined in Section 4.

2 The mathematical models

The starting point is the 2D classic shallow water system [9] in a bounded domain Ω:
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(2.1)

where t > 0 and x = (x, y) ∈ Ω. The unknowns are the water height h = h(t,x) and the

horizontal flow velocity u = u(t,x) = (u(t,x), v(t,x))T . Furthermore, g is the acceleration

due to the gravity, R is the rainfall intensity and Z(x) describes the bottom topography of

the domain and therefore h+Z is the level of the water surface (see Figure 1). We denote

also q(t,x) = (qx(t,x), qy(t,x))T = h(t,x)u(t,x) the flux of water. For the friction term,

we here use the Manning’s law with k the Manning’s coefficient. We refer for instance to

[12, 13, 19] for a derivation of the shallow water system departing from the free surface

Navier-Stokes equations.

We now consider a rectangular domain Ω and a topography Z with furrows. We suppose

that the topography has a constant slope and that the geometry of the furrows is known

through their average amplitude and their average wavelength. We also suppose that

the furrows are perpendicular to the length of Ω. An example of such a topography is

illustrated in Figure 2.

Next, we shall complete the problem with the following assumptions.

1. The direction of the flow is parallel to the length of the domain Ω.

2. We only consider fluvial flows which means that |u| <
√

gh.
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Figure 1: A 1D shallow water flow
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Figure 2: An example of a topography with furrows that we consider
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Water trapped

h(t,x)

Z(x)

Figure 3: Water trapped in a furrow

3. Infiltration and soil erosion are not taken into account.

Under such assumptions, the furrows overflow at the same time during rainfall events or

one by one in the case of inflow from upstream.

We aim to propose a model that takes into account the effects of the furrows without

explicitly representing them in the topography Z. In other words, we want to find an

equivalent model to the shallow water system on Ω, that would be used on a topography

which is an inclined plane. We want to force the flow to slow down when the flow depth

is smaller than the furrow average amplitude. Furthermore, we want this effect caused

by the furrows be modelled through an additional friction term that forces the flow to

slow down for small flow depth. To that end, we first introduce 〈h〉 the average height

of the water trapped in the furrows (see Figure 3), that only depends on the slope of the

domain, on the furrows average amplitude and on the furrows average wavelength. We

next consider the following additional friction coefficient:

K(h) = K0 e

“

−h+〈h〉
C〈h〉

”

, (2.2)

where C is a characteristic constant related to the height variations of the furrows and K0

is a coefficient. In Figure 4, the general shape of K(h) is plotted for 〈h〉 = 0.01 m. We

clearly see that K(h) is large for h ≤ 〈h〉. This shows that when the water height h is

lower than the average height of the furrows 〈h〉 then, thanks to K(h), the flow is slowed

down.

Remark 2.1. 1. If 〈h〉 tends to 0, then K(h) also tends to 0 for any h > 0. In other

words, the additional friction coefficient disappears when there are no furrows.

2. If C tends to 0, then we obtain the empirical models, giving an on/off prediction

of the furrows-topography interaction (see [22, 23]). The new shallow water model

5



0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.00

0.05

0.10

0.15

0.20

0.25

h

K

Figure 4: A shape of the friction term K(h)

that we propose (see (2.3)) can then be seen as a generalisation of these models.

3. The constant C may also be related to the random variations of the amplitudes of

the furrows. The validation of this assumption is in progress in the two-dimensional

extension of this work.

Finally, we propose the following new shallow water model:
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(2.3)

Remark 2.2. 1. Note that, since the direction of the furrows are perpendicular to the

slope, the additional friction law K(h)hv only appears in the third equation of (2.3)

and therefore, it only acts on the flow in the y-axis direction. In general, the direction

of the furrows is constant on a cell grid over the area of agricultural fields. If this

direction is not perpendicular to the slope, then the equations can be obtained by

rotation.

2. The friction law in the new model is arbitrarily chosen. It is a particular case of the

more general friction law that we have considered which is of the form K(h)hα|u|βv
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where α and β are positive real numbers. In (2.3), we have (α, β) = (1, 0). For the

numerical test cases that we have considered in this work (see the next section), we

have also performed simulations with the following values (α, β) = (1, 1) and (α, β) =

(−1/3, 1). These simulations lead to similar results than the ones of (α, β) = (1, 0).

At this point, let us mention that, since shallow water flows can also be described by the

so-called multi-layer shallow water system (see for instance to [1], [3], [7] and references

therein for a derivation and numerical studies), we can propose another approach based

on multi-layer models to take into account the effects of the furrows on overland flows. In

this work, we introduce the following two-layer like model:











if h(t,x) ≤ 〈h〉, then u(t,x) = 0 and h(t,x) = Rt,

if h(t,x) > 〈h〉, then solve (2.1) where the topography is an inclined plane.

(2.4)

In (2.4), the lower layer corresponds to the filling up of the furrows; note that the upper

layer is active only when the furrows overflow. The initial conditions for the upper layer

are then u(0,x) = 0 and h(0,x) = ĥ − 〈h〉, where ĥ is the water height at the overflow

time. Note that, this model provides more satisfactory results than the model (2.3) (see

the next section). But its extension to more complex two-dimensional problems, requires

a careful modelling of the coupling between the two layers and it is more difficult than the

extension of the model (2.3). This work is in progress in our project.

3 Numerical results

In this section, we present two test cases in order to illustrate the ability of the new

model (2.3) to take into account the effects of the furrows. We compare it with the

shallow water model (2.1) where the furrows are removed from the topography. The first

test case is with water input from rainfall. For this test, we also present the results

obtained with the two-layer like model (2.4). The second test case is with water input

from upstream. In both test cases, we consider as reference solutions the ones obtained

from the shallow water model (2.1) where the geometry of the furrows is known explicitly.

We briefly mention that the numerical approximation is based on finite volume methods

for hyperbolic system of conservation laws. In particular, we use well-balanced schemes

with hydrostatic reconstruction developed in [2, 5] and, following [6], we introduce a

semi-implicit treatment of the Manning friction term. Concerning the treatment of the

boundary conditions, we follow the ideas developed in [6] (see also [18]). For a detailed

description of the numerical method in the context of overland flow on agricultural fields,

we refer to [10] and [11]. All the numerical results are obtained using the C++ software
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FullSWOF (Full Shallow Water equations for Overland Flow) developed at the MAPMO

lab., University of Orléans, France.

We consider a domain Ω of length L = 4 m and of width ℓ = 0.2 m. The length of Ω is

parallel to the y-axis (see Figure 2). We assume that the topography Z has a constant

slope of 5%. The average amplitude of the furrows is 0.02 m and their average wavelength

is 0.1 m. We choose a friction coefficient k = 0.04 m
1

3 s−1. For the following computations,

we use a time step ∆t = 0.001 s.

3.1 Computing reference solutions

This paragraph is devoted to the computation of the solutions of the shallow water

model (2.1) where the geometry of the furrows is known explicitly. These solutions will

be considered here as reference solutions. According to the parameters given above, the

topography is modelized by the equation:

Z(x, y) = −0.05 y + 0.01 cos(20π y). (3.5)

The domain is discretized by a mesh with 8, 000 rectangles. The length and the width of

the domain are discretized with a space step equal to 0.01 m. This means that in each

furrow we have 200 cells. We assume that the domain is initially empty which implies

that u(0,x) = 0 and h(0,x) = 0.

3.1.1 Rainfall test case

In this case, we assume rainfall on the domain with a constant permanent rain intensity

R = 8E−04 m s−1. The rain discharge is then QR = 6.4E−04 m3 s−1. The final time is

T = 22.5 s. Note that, since we are interested in the effects of the furrows, we focus on the

transitional stage of the flow. Therefore the final time T is chosen such that the outflow

discharge is approximately equal to the half of the rain discharge. We assume here that

at the upstream of the domain there is a solid wall. We show in Figure 5 the side-view of

the water height at the final time.

3.1.2 Inflow test case

We now consider a permanent inflow from upstream. We prescribe QI = 1.566E−03 m3 s−2

as discharge on the inflow boundary. The final time is T = 38.2 s. As for the rainfall test

case, the final time was chosen such that the outflow discharge at T is approximately equal

to the half of the inflow discharge. We show in Figure 6 the side-view of the water height

at the final time.
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Figure 5: Side-view of the water height at the final time for the rainfall test case
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Figure 6: Side-view of the water height at the final time for the inflow test case

9



3.2 Numerical results on the new model

In this paragraph, we perform numerical tests on the new model (2.3). The furrows are

now removed from the topography defined by (3.5). So, it is now reduced to an inclined

plane with the same slope:

Z(x, y) = −0.05 y. (3.6)

The length of the domain is now discretized with a space step equal to the average wave-

length of the furrows which is 0.1 m. We keep the same space step along the width of

the domain. Therefore, the domain is discretized by a mesh of 800 rectangles. The initial

conditions remain unchanged, i.e. u(0,x) = 0 and h(0,x) = 0. In order to show the ability

of the model (2.3) to take into account the effects of the furrows, we compare the water

height and the discharge at the outflow with the reference solutions computed previously.

To that end, we first introduce h
n
i the average of the reference water height contained in

the furrow i at the time tn, computed in the previous paragraph. We next denote by eh

the effective water height error defined by

eh =

(

∑

n

∑

i |h
n
i − hn

i |2
∑

n

∑

i |h
n
i − h0,n

i |2

)1/2

,

where hn
i and h0,n

i are the water heights in the furrow i at time tn computed with the

model (2.3) for given K0 and C and for K0 = 0, respectively. Finally we denote eQ the

discharge error defined by

eQ =
1

N

N
∑

n=1

|Q∗

n − Qn|,

where Q∗

n and Qn are the reference discharge computed in the previous paragraph and

the discharge computed with the model (2.3) respectively. The integer N notes the total

number of time steps in the computations.

3.2.1 Rainfall test case

We present, in Figure 7, the water height error eh as a function of K0 for the rainfall

test case. The value of C is fixed to C = 10. We note that the minimum of the error

is eh ≃ 0.2518 for K0 = 0.02. Then by optimizing with respect to the two parameters

K0 and C, we finally find the minimum eh ≃ 0.1417 corresponding to K0 = 0.02 and

C = 0.4. The corresponding discharge error is eQ ≃ 2.2356E−05. We notice that the new

model (2.3) allows to diminish the L2 error on the water height by a factor 7 with respect

to the case K0 = 0, showing that the furrow effects are well taken into account.

We now report the results obtained with the two-layer like model (2.4) for this test case.

Figure 8 shows the water height error eh for different Manning’s coefficient k. We note
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Figure 7: The water height error eh for the model (2.3) for the rainfall test case

that the minimum is eh ≃ 0.0422 for k = 0.03 which is close to the chosen reference

coefficient k = 0.04. The corresponding discharge error is eQ ≃ 1.3179E−05. We notice

that the two-layer model allows to diminish the L2 error on the water height by a factor

23 with respect to the model (2.3) for the case K0 = 0.

Figure 9 shows the ratio between the outflow discharge and the rain discharge at different

times, for the models (2.3) with K0 = 0.02, C = 0.4 and K0 = 0 respectively, for the

model (2.4) with k = 0.03 and for the reference model computed in Paragraph 3.1. We

observe that although the domain in the new model is an inclined plane, the additional

friction term is able to retain the water for a moment during the rainfall, and so, simulates

well the existence of the furrows.

3.2.2 Inflow test case

Figure 10 shows the water height error eh as a function of K0 for a fixed value of C to

C = 10 in the case of the inflow test. We note that the minimum of the error is eh ≃ 0.6167

for K0 = 0.005. The corresponding discharge error is eQ ≃ 1.453E−06. We note that the

model (2.3) allows to diminish the L2 error on the water height by a factor 1.62 with

respect to the case K0. We present in Figure 11 the ratio between the outflow discharge

and the imposed inflow discharge at different times, for the models (2.3) with K0 = 0.005,

C = 10 and K0 = 0 respectively and for the reference model computed in Paragraph 3.1.
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Figure 8: The water height error eh for the two-layer like model (2.4)
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Figure 10: The water height error eh for the model (2.3) for the inflow test case

We again observe that the new model simulates well the existence of the furrows.

3.2.3 Performance of the new model with calibrated coefficients

In practice, in order to use of the new model (2.3) to describe shallow flows with furrows

effects, we need to fix the values of the coefficients K0 and C. In this paragraph, we

only consider the rainfall test cases and we use the calibrated values obtain previously:

K0 = 0.02 and C = 0.4. Our aim here is to show the performance of the model (2.3) with

those values for the coefficients.

We present in Table 1 the errors eh and eQ as a function of the space step with respect

to the length of the domain. This space step varies from 0.1 m to 0.4 m which allows

a cell to contain from 1 to 4 periods of the furrows. We can notice that the variation

of the error eh is small. The motivation of this test is that, for the extension to fully

two-dimenional problems, the new model has to predict the flow directions at each grid

cell over the area of agricultural fields. As a consequence, the dimension of a grid cell can

vary from 1 to 100 m2. So, a grid cell typically contains several furrows. At the same

time, we also present in Table 1 the computational times to compute the solutions of the

new model as a function of the space step. The values are normalized with respect to the

computational time to compute the reference solutions. As we can observe the new model

allows to reduce the computational time for at least 90% and can easily achieve a 97%

decrease in the computational type.
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Space step with respect to the y-axis eh eQ CPU time

0.1 0.1417 2.2356 E − 05 0.11

0.2 0.2244 5.1038 E − 05 0.0574

0.4 0.2616 5.3693 E − 05 0.0255

Table 1: Water height errors, flowrate errors and CPU times (normalized with respect to

the time to compute the reference solution).

In Table 2, we present for different slopes of the topography (with realistic values in ref-

erence to agricultural fields), the errors eh and eQ for the calibrated values K0 = 0.02 and

C = 0.4. We note that the new model allows to reduce the L2 error on the water height

by at least a factor 4 showing that the effects of the furrows are well taken into account.

Compared with Table 3, where for each slope, the minimum of the error eh is computed

and where the corresponding coefficients K0, C and error eQ are presented, we see that

the new model with the calibrated values K0 = 0.02, C = 0.4 still yields accurate results.

Table 4 shows, for different Manning’s coefficients and for a slope kept at 5%, the errors eh

and eQ for the calibrated values K0 = 0.02 and C = 0.4. Compared with Table 5, where

for each Manning coefficient, the minimum of the error eh is computed and where the

corresponding coefficients K0, C and error eQ are presented, we see that the new model

14



with the calibrated values also yields accurate results.

The last results that we present are dedicated to water heights and discharges errors at

steady state for the shallow water model (2.1). The final time of the simulations is now

T = 50 s. Figure 12 shows the ratio between the rain discharge and the outflow discharge

at different times, for the new model with the calibrated coefficients and for the shallow

water model (2.1) where the furrows is known explicitly. We now denote eh
s the water

height error at steady state defined by

eh
s =

(

∑

i

|hi − hi|2
)1/2

where h
n
i is the average water height contained in the furrow i computed with the shallow

water model (2.1) and hi is the water height in the furrow i computed with the new model.

We note that here this error is eh
s ≃ 5.468E−02. Next we denote eQ

s the discharge error

at steady state defined by

eQ
s = |Q∗ − Q|

where Q∗ and Q are the discharges computed with the shallow water model (2.1) and the

new model respectively. We note that here this error is eQ
s ≃ 3.63E−05. We thus deduce

that at steady state, the new model with the calibrated coefficients takes well into account

the effects of the furrows and approximates well the shallow water model (2.1).
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slope K0 C eh eQ

2% 0.02 0.4 0.2434 7.3656 E − 05

5% 0.02 0.4 0.1417 2.22335E−05

8% 0.02 0.4 0.2194 1.3578 E − 04

11% 0.02 0.4 0.2035 1.2817 E − 04

Table 2: The errors eh and eQ for different slopes of the topography with K0 = 0.02 and

C = 0.4

slope K0 C eh eQ

2% 0.02 0.3 0.2167 2.26E−05

5% 0.02 0.4 0.1417 2.22335E−05

8% 0.04 0.4 0.1205 6.453E−05

11% 0.04 0.4 0.1089 5.3334E−05

Table 3: The minimum errors eh and eQ with the corresponding coefficients K0 and C for

different slopes of the domain

4 Conclusions

In this paper, we have proposed a new shallow water model (2.3) in order to describe the

effects of furrows during overland flow without representing them explicitly. The main

idea is to include in the classical shallow water equations the additional friction term (2.2)

that takes into account the effects of these furrows. The new model was proposed under

the assumptions that the direction of the flow is fluvial and is parallel to the length of the

domain. We have also assume that there is no infiltration and no soil erosion.

We have presented numerical results to show the efficiency and the performance of the

new model. In particular, we show that the new model with calibrated coefficients does

not depend on the slope of the domain (see Tab. 2 and Tab. 3) and does not depend on

the soil friction coefficient (see Tab. 4 and Tab. 5).

The numerical results presented in this paper are encouraging and indicate that the idea

could be extended to more complex two-dimensional flows. This is now the main goal

of the forthcoming works. Note that, unlike the two-layer model (2.4), the new model

(2.3) can easily be generalized to two-dimensional problems. These extensions include the

random variations of the height of the furrows. As we have already mentioned in Remark
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Manning’s coefficient K0 C eh eQ

0.001 m
1

3 s−1 0.02 0.4 0.0744 9.6729 E − 05

0.04 m
1

3 s−1 0.02 0.4 0.1417 2.2356 E − 05

0.1 m
1

3 s−1 0.02 0.4 0.2746 1.369 E − 04

Table 4: The errors eh and eQ for K0 = 0.02 and C = 0.4 for different Manning’s coefficient

Manning’s coefficient K0 C eh eQ

0.001 m
1

3 s−1 0.02 0.4 0.0744 9.6729 E − 05

0.04 m
1

3 s−1 0.02 0.4 0.1417 2.2356 E − 05

0.1 m
1

3 s−1 0.02 0.5 0.265 1.2155 E − 04

Table 5: The minimum errors eh and eQ with the corresponding coefficients K0 and C for

different Manning’s coefficient

2.1, these variations can be taken into account in the constant C of the additional friction

term defined in (2.2). The extensions also include the direction of the furrows which is

not perpandicular to the slope of the domain in order to study the effects of this direction

with respect to the slope. This direction can be taken into account by a rotation of the

model (2.3).
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