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Abstract

Keywords: Overland flow, Shallow water equations, Furrows, Friction We introduce

here a new Shallow Water model for the numerical simulation of overland flow with

furrows effects without representing them explicitly. The model is obtained by adding

to the classical Shallow Water equations an anisotropic friction term that takes into

account these effects.

We validate the model with numerical tests and we compare it with the classical

Shallow Water model where the furrows are explicitly and precisely described.

AMS Classification: 93A30, 81T80, 58J45, 35L65

1 Introduction

During rainfalls, overland flow on cultivated lands induces problems at watershed scale

for soil conservation (decrease of soil thickness by erosion, nutrient losses), infrastructures

(flooding and destruction of roads and buildings), preservation of water quality (drinking

water) and sustainability of aquatic ecosystems (chemical pollution).

These troubles can be prevented by improving watershed management in connection with

overland flow. This requires to simulate well the water flux at the outlet but also to have
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a good prediction of the spatial distribution of the water flux and velocity over the whole

watershed. However, the current hydrological models have a low efficiency in predicting

overland flow within small watersheds (see [4, 20, 21]). In agricultural watersheds, one of

the main difficulties is that flow directions are controlled not only by the topography, but

also, by ditches along the field boundaries, and, inside the fields, by ridges and furrows

created by tillage operations. The flow pattern is clearly the result of the interaction

between these objects [28], but the way they interact remains mostly unspecified. There-

fore, one must improve the understanding of this interaction in order to better predict the

spatial and temporal distribution of overland flow and so to improve the decisions made

by watershed managers.

In this paper we focus on the interaction between topography and furrows, a feature

encountered in almost all cultivated lands. This interaction can be seen as the interaction

between three types of roughness. The topography is the roughness of the Earth and is

described in Digital Elevation Maps with a horizontal resolution larger than one meter,

and commonly of ten meters and more. The furrows are the roughness due to agricultural

practices and create a strong directional heterogeneity inside a field. They are character-

ized by their wavelength (of about one to a few decimeters), their amplitude (of a few

centimeters to one decimeter) and their direction. Finally the random roughness, due to

soil aggregates and clods, is homogeneous in space and has an amplitude of a few mil-

limeters to about one decimeter. To our knowledge, most of the works on the interaction

between roughness and flow have been dedicated to topography (see [26, 30]) or to random

roughness (see [9, 22, 18]).

Few works are dealing with furrows, and among them, most are concerned with the

storage capacity of the furrows, i.e. the amount of water stored in the puddles created by

the furrows (for instance [25]). These works do not consider the water flowing on the soil

surfaces but only the water stored in puddles. The few works considering both overland

flow and the furrows-topography interaction are empirical studies [28, 29]. They lead

to empirical laws giving an on/off prediction: the predicted flow direction is either the

direction of the topographic slope or the furrow direction, while in reality water can flow

in both directions at the same time. Moreover, these laws are limited by their empirical

basis.

To be of practical use, a model accounting for the effects of furrows on overland flow

direction must not require an explicit representation of the furrows: that would imply the

use of a digital topographic map with a horizontal resolution of about a centimeter for

the whole watershed, which already covers an area of about one square kilometer for a

small one. Such digital maps are not available and, even if available, will require too much

computation resources.
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The purpose of this work is to propose a model that is able to take into account the effects

of the furrows on overland flow. Numerical results are presented. The model is a first step

in an attempt to predict overland flow directions controlled by furrows and topography

without representing the furrows explicitly. Indeed, the furrows are known only trough

their average amplitude, wavelength and direction. In this paper, the furrow direction

is kept perpendicular to the slope. Our model is based on the Shallow Water equations

that are widely used to describe flows in rivers, in ocean and overland flow among other

applications.

The outline of the paper is as follows. In the next section, we present first the Shallow

Water model. Then we propose a new model where we add a new friction term to account

for the effects of the furrows on overland flow. Section 3 describes the numerical scheme

used to solve the model, and, in section 4, we present and discuss the numerical results

that we obtain with our model. Conclusions are outlined in Section 5.

2 The mathematical models

The starting point is the 2D classic Shallow Water system [10] in a bounded domain Ω:





∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= R,

∂(hu)

∂t
+

∂(hu2)

∂x
+

∂(huv)

∂y
+ gh

∂h

∂x
+ gh

∂Z

∂x
+ gk2h−1/3|u|u = 0,

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hv2)

∂y
+ gh

∂h

∂y
+ gh

∂Z

∂y
+ gk2h−1/3|u|v = 0.

(2.1)

For t > 0 and x = (x, y) ∈ Ω, the unknowns are the water height h = h(t,x) and the

horizontal flow velocity u = u(t,x) = (u(t,x), v(t,x))T . Furthermore, Z(x) describes the

bottom topography of the domain and therefore h+Z is the level of the water surface (see

Figure 1). In equations (2.1), g is the acceleration due to the gravity and R is the rainfall

intensity. We refer for instance to [17, 15, 24] for a derivation of the Shallow Water system

originating from the free surface Navier-Stokes equations.

For the friction term, we choose the Manning law with k the Manning coefficient. We also

denote q(t,x) = (qx(t,x), qy(t,x))
T = h(t,x)u(t,x) the water flux.

Now we consider a rectangular domain Ω = ℓ× L and a topography Z with furrows.

We suppose that the topography is an inclined plane with sinus furrows, and that the

geometry of the furrows is known through their amplitude and their wavelength. Note

that realistic (measured) furrows will be a slightly different shape due the existence of

random roughness. However, random roughness, being isotropic, does not affect flow

direction at the scale of the furrows. We also suppose that the furrows are perpendicular
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Figure 1: Notations for a 1D Shallow Water flow

to the length of Ω with respect to y. An example of such a topography is illustrated in

Figure 2.
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Figure 2: An example of a topography with furrows that we consider

Next, we shall complement the problem with the following assumptions.

1. The direction of the flow is parallel to the length of the domain Ω with respect to y

(pseudo-1D case) and consequently perpendicular to the furrows.

2. We only consider fluvial flows which means that |u| <
√
gh.

3. Infiltration and soil erosion are not taken into account.

Under such assumptions, the furrows overflow at the same time during rainfall events or

one after the other in the case of an inflow from upstream.

We aim at proposing a model that takes into account the effects of the furrows without

explicitly representing them in the topography Z. In other words, we want to find an
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equivalent model to the Shallow Water system on Ω, that would be used at a macroscopic

scale, i.e. on a topography which is only an inclined plane. We want to force the flow

to slow down when its depth is smaller than the value corresponding to the water height

that can be trapped in the furrows. The idea of this article is to model this effect caused

by the furrows through an additional friction term that forces the flow to slow down for

small water depth. To that end, we first introduce 〈hF 〉 the average height of the water

trapped in the furrows. This value is given by

〈hF 〉 = V/(LF × ℓ) [m] (2.2)

where V is the volume of trapped water in a furrow, LF its wavelength (see Figure 3)

and ℓ is the length of the domain Ω (with respect to x). Note that the value of 〈hF 〉 only
depends on three parameters: the slope of the domain, the furrows average amplitude and

the furrows average wavelength.
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�����������������
�����������������

y0 + LF

z

y0
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h(t, y)

y

Trapped water (volume V )

Figure 3: Water trapped in a furrow

Next we consider the following additional friction coefficient:

K(h) = K0 exp

(−h+ 〈hF 〉
C〈hF 〉

)
, (2.3)

where C is a characteristic constant, increasing function of the small random variations

of the height of the furrows and K0 is a coefficient we determine in the following.

In Figure 4, the general shape of K(h) is plotted for 〈hF 〉 = 0.01 m. We clearly see

that K(h) is large for h ≤ 〈hF 〉. This shows that when the water height h is lower than

the average height of the furrows 〈hF 〉 then, thanks to K(h), the flow is slowed down.

Remark 2.1. Let us explain in a few words relation (2.3).

1. If 〈hF 〉 tends to 0, then K(h) also tends to 0 for any h > 0. In other words, the

additional friction coefficient disappears when there are no furrows.
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Figure 4: Shape of the friction term K(h) for 〈hF 〉 = 0.01 m

2. If C tends to 0, then we obtain the empirical models that are usually used. These

models consist in giving an on/off prediction of the furrows-topography interaction

(see [28, 29]); more precisely, while the critical water height is not attained, there is

no flow, and after this threshold, the furrows are not taken into account.

The new Shallow Water model we introduce here (see (2.4)) can be seen as an

improvement of these models.

Finally, we propose the following new Shallow Water model with a “furrows-friction”

coefficient:



∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= R,

∂(hu)

∂t
+

∂(hu2)

∂x
+

∂(huv)

∂y
+ gh

∂h

∂x
+ gh

∂Z

∂x
+ gk2h−1/3|u|u = 0,

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hv2)

∂y
+ gh

∂h

∂y
+ gh

∂Z

∂y
+ gk2h−1/3|u|v +K(h)hv = 0.

(2.4)

Remark 2.2. 1. Note that, since the furrows are perpendicular to the slope, the addi-

tional friction law K(h)hv only appears in the third equation of (2.4) and therefore,

it only acts on the flow in the y-axis direction. This assumption is not restrictive:

in general, the direction of the furrows is constant on each agricultural field, and, if

necessary, we apply a rotation to get the equations for an arbitrary direction of the

furrows.
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2. The form of the new friction law is arbitrarily chosen. The general form of friction

laws is Khα|u|βu where α and β are positive real numbers. For example we get

Manning’s law for (α, β) = (−1/3, 1) and Darcy-Weisbach’s law for (α, β) = (1, 1).

Note that these laws are empirical, are obtained considering stationary flows and

that their validity is still discussed among hydrologists (e.g. [27]).

For the numerical experiments presented in section 4 with system (2.4), we chose

(α, β) = (1, 0) but, we could have made another choice, should we change the value

of K0 or the form of K(h).

At this point, let us mention that, since shallow water flows can also be described by the

so-called multi-layer Shallow Water system (see for instance to [1, 3, 8] for a derivation

and numerical studies), we can propose another approach based on multi-layer models to

take into account the effects of the furrows on overland flows.

In this work, we introduce the following two-layer like model:




if h(t,x) ≤ 〈hF 〉, then u(t,x) = 0 and h(t,x) = Rt,

if h(t,x) > 〈hF 〉, then solve (2.1) with an inclined plane topography.

(2.5)

In (2.5), the lower layer corresponds to the filling up of the furrows; note that the upper

layer is active only when the furrows overflow. The initial conditions for the upper layer

are then u(0,x) = 0 and h(0,x) = ĥ − 〈hF 〉, where ĥ is the water height at the overflow

time. Note that, in one dimension, this model provides more satisfactory results than the

model (2.4) (see section 4). But its extension to more complex two-dimensional problems

requires a careful modelling of the coupling between the two layers and it is more difficult

than the extension of the model (2.4).

3 Numerical results

In this section, we explain the numerical scheme we used in our numerical simulations.

The Shallow Water system is not so easy to solve. In hydrology, Mac Cormack scheme is

usually used for overland flow simulation (see among others [14, 16]). But it is not well

adapted to this system because of several problems, such as, for example, the preservation

of the positivity of the water height and of the steady states or the behavior at the wet/dry

interface. To that end, we used well-balanced schemes (so-called since [19]) based on the

hydrostatic reconstruction [2, 5]. This finite volume scheme has shown to be adapted to

overland flow simulation at small scales [12, 13, 11].

To make this presentation simpler, we describe the numerical scheme on the classical the

one-dimensional Shallow Water model with variable topography and Manning’s friction
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law : 



∂h

∂t
+

∂(hu)

∂x
= R

∂(hu)

∂t
+

∂

∂x

(
hu2 + g

h2

2

)
= −gh

∂Z

∂x
− gk2h−1/3|u|u.

(3.6)

The model (3.6) can be written into a conservative form

∂U

∂t
+

∂F (U)

∂x
= S0(U) + Sf (U), (3.7)

where

U =

(
h

hu

)
=

(
h

q

)
, F (U) =

(
hu

hu2 + g h2

2

)
,

S0(U) =

(
R

−gh∂Z
∂x

)
and Sf (U) =

(
0

−gk2h−1/3|u|u

)
.

System (3.7) is discretized using finite volume method for hyperbolic conservation laws.

We introduce a space-time grid where the space and the time steps are respectively ∆x

and ∆t. We set xi = i∆x, tn = n∆t and Ci =
]
xi−1/2, xi+1/2

[
. We denote by Un

i the

approximation of the average of U(tn, x) over the cell Ci, namely,

Un
i ≃ 1

∆x

∫

Ci

U(tn, x)dx.

Considering for the moment only the homogeneous part of (3.7), then the finite volume

scheme is of the form

Un+1
i − Un

i +
∆t

∆x
(Fn

i+1/2 − Fn
i−1/2) = 0,

where Fn
i+1/2 = F(Un

i , U
n
i+1) is the HLL numerical flux (see for instance [5]) through the

interface between Ci and Ci+1. Note that the HLL flux is defined by

F(Ul, Ur) =





F (Ul) if 0 < c1,

c1F (Ul)− c2F (Ur)

c2 − c1
+

c1c2
c2 − c1

(Ur − Ul) if c1 < 0 < c2,

F (Ur) if c2 < 0,

where c1 < c2 are given by c1 = inf
U=Ul,Ur

(
inf
j=1,2

λj(U)

)
, c2 = sup

U=Ul,Ur

(
sup
j=1,2

λj(U)

)
and

where λ1(U) = u −
√
gh, λ2(U) = u +

√
gh are the eigenvalues of the Jabobian matrix

F ′(U).

In order to have a second order accuracy scheme, we use the modified ENO reconstruction

(see [6]) defined as follows

hi−1/2+ = hi −
∆x

2
Denomhi, hi+1/2− = hi +

∆x

2
Denomhi,

ui−1/2+ = ui −
hi+1/2−

hi

∆x

2
Denomui, ui+1/2− = ui +

hi−1/2+

hi

∆x

2
Denomui
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with, for a spatially discretized function s,

Denomsi = minmod(Denosi, 2θenomDmmsi)

where

minmod(x, y) =





min(x, y) if x, y > 0

max(x, y) if x, y 6 0

0 otherwise,

Denosi = minmod

(
si − si−1

∆x
+ θeno

∆x

2
D2si−1/2,

si+1 − si
∆x

− θeno
∆x

2
D2si+1/2

)
,

D2si+1/2 = minmod

(
si+1 − 2si + si−1

∆x2
,
si+2 − 2si+1 + si

∆x2

)
,

Dmmsi = minmod

(
si − si−1

∆x
,
si+1 − si

∆x

)

with θeno, θenom ∈ [0, 1]. Note that for θeno = 0, this reconstruction is exactly the usual

MUSCL reconstruction.

In order to take into account the topography while preserving the steady state of a lake

at rest, that is

h+ Z = cst and u = 0,

we use the hydrostatic reconstruction developed in [2, 5]. First we need to define the

reconstructed values zi+1/2− and zi−1/2+ that can be deduced from the reconstructed

values hi−1/2+, hi−1/2+ and the following reconstruction of z + h:

(z + h)i−1/2+ = zi + hi −
∆x

2
Denom(zi + hi)

and

(z + h)i+1/2− = zi + hi +
∆x

2
Denom(zi + hi).

Next the hydrostatic reconstruction consists in defining the following new values:

hi+1/2 l = max(0, hi+1/2− + zi+1/2− −max(zi+1/2−, zi+1/2+)),

hi+1/2 r = max(0, hi+1/2+ + zi+1/2+ −max(zi+1/2−, zi+1/2+)),

Ui+1/2 l =

(
hi+1/2 l

hi+1/2 l ui+1/2−

)
, Ui+1/2 r =

(
hi+1/2 r

hi+1/2 r ui+1/2+

)
.

The positive parts in the definitions of hi+1/2 l and hi+1/2 r (we have max(0, ·)) insure the

positivity of the water height. Therefore the scheme can be written into the form

Un+1
i − Un

i +
∆t

∆x
(Fn

i+1/2 l − Fn
i−1/2 r − Fcni ) = 0,

9



where

Fn
i−1/2 r = F(Un

i−1/2 l, U
n
i−1/2 r) +


 0
g

2

(
(hni−1/2+)

2 − (hni−1/2 r)
2
)

 ,

Fn
i+1/2 l = F(Un

i+1/2 l, U
n
i+1/2 r) +


 0
g

2

(
(hni+1/2−)

2 − (hni+1/2 l)
2
)

 ,

and

Fcni =


 0

−g

2

(
hni−1/2+ + hni+1/2−

)(
zni+1/2− − zni−1/2+

)

 .

The term Fcni is added to obtain a well-balanced and consistent scheme (see [2]). Now in

order to have a second order scheme in time, we use the Heun method,

Ũi
n+1

= Un
i +∆tΦ(Un

i )

Ũn+2
i = Ũn+1

i +∆tΦ(Ũn+1
i )

Un+1
i =

Un
i + Ũn+2

i

2
,

(3.8)

where

Φ(Un
i ) =

1

∆x
(Fn

i+1/2 l − Fn
i−1/2 r − Fcni ).

Concerning the Manning friction term, we follow [16, 7] and introduce a semi-implicit

treatment of this term. Then the scheme is modified as follows

• Solve the Shallow Water system

U∗

i = Un
i +∆tΦ(Un

i ).

• Compute Ũn+1
i =




hn+1
i

hn+1
i ũn+1

i


 by solving the Manning friction term




hn+1
i

h∗i
ũn+1
i − u∗i
∆t


 = Sf∆t(U

∗

i ) ≡




h∗i

−gk2
q̃n+1
i |q∗i |

hni (h
n+1
i )4/3


 .

• Solve the Shallow Water system

U∗∗

i = Ũn+1
i +∆tΦ(Ũn+1

i ).

• Compute Ũn+2
i =




hn+2
i

hn+1
i ũn+2

i


 by solving the Manning friction term




hn+2
i

h∗∗i
ũn+2
i − u∗∗i

∆t


 = Sf∆t(U

∗∗

i ).
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• Compute Un+2
i using the Heun method defined by (3.8).

We now describe the treatment of the boundary conditions at the inflow and the outflow.

We denote by a b subscript the values on the (fictive) boundary cell, and by the index

“in” the values in the first cell, inside the domain. The normal n is equal to -1 on the left

boundary (x = 0) and 1 on the right boundary (x = ℓ).

• A solid wall is modeled imposing ub = −uin, hb = hin, on the condition that the

topography be extended horizontally on the fictive cells.

• At the inflow boundary, we impose the discharge qb satisfying nqb < 0. Since we

only consider fluvial flows, the water height hb is computed using Riemann invariants

(see for instance [7, 23]). More precisely, assume that c =
√
gh. It is well known

that for the Shallow Water system (3.6), the quantity u ∓ 2c is constant along the

characteristic dx
dt = u∓ c. Thus we have

ub + n× 2cb = uin + n× 2cin. (3.9)

Multiplying (3.9) by hb, we obtain

−n× 2
√
gh

3/2
b + (uin + n× 2cin)hb − qb = 0.

Newton method is used to solve this last equation and to get hb.

• At the outflow boundary, we always impose the water height hb and, here again, we

use Riemann invariants to compute the discharge. We get

ub = uin + n× 2(cin − cb)

and we can easily deduce qb = hb ub.

All these previous steps are quite usual for the resolution of the Shallow Water system

(2.1). Note that, for our new 2D model (2.4), the additional friction term is treated in an

explicit way.

4 Numerical results

In section 2, we introduced several models: the usual Shallow Water system (2.1), the

Shallow Water system with an additional friction coefficient that represents the furrows

when we consider a plane topography (2.4) and a two-layer like model (2.5).

In this section, we present several results obtained with these three models in order to

show the capacity of our new model (2.4) to approximate the exact solution. Namely, we
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consider two types of test cases: in the first one, we only take into account rainfalls and in

the second one the water comes from upstream. For these two numerical experiments, the

“exact” (or reference) solution is the one of the Shallow Water system (2.1) with a precise

description of a topography with furrows. The domain Ω we consider here is Ω = ℓ × L,

where ℓ = 0.2 m and L = 4 m (see Figure 2). We assume that the plane topography has

a constant slope of 5%. The amplitude of the furrows is 0.01 m (0.02 m peak-to-peak)

and their wavelength is 0.1 m. We choose a friction coefficient k = 0.04 m1/3 s−1. For the

following computations, we use a time step ∆t = 0.001 s (this time step is imposed by

the resolution of (2.1), as we need a small space step to get a good representation of the

furrows).

Let us mention that all the numerical results are obtained using a C++ software for the

resolution of the Shallow Water system, and a new library for the new friction coefficient.

4.1 Reference solutions and description of the test cases

This paragraph is devoted to the computation of the solutions of the Shallow Water

model (2.1) where the geometry of the furrows is known explicitly. These solutions will

be considered here as reference solutions. According to the parameters given above, the

topography is modeled by the equation:

Z(x, y) = −0.05 y + 0.01 cos(20π y). (4.10)

The space steps (with respect to x and y) are equal to 0.01 m, which means that each

furrow is described by 200 cells. We assume that the domain is initially empty, that is

u(0,x) = 0 and h(0,x) = 0.

Let us denote by h, u, and q these reference solutions, at the small scale.

4.1.1 Rainfall test case

In this case, we impose rainfall on the whole domain with a constant permanent rain

intensity R = 8× 10−4 m s−1. The rain discharge is then QR = 3.2 × 10−3 m2 s−1. The

final time is T = 22.5 s. Note that, since we are interested in the effects of the furrows, we

focus on the transitional stage of the flow. Therefore the final time T is chosen such that

the outflow discharge is approximately equal to the half of the rain discharge. We assume

here that the upstream boundary is a solid wall. We show in Figure 5 the side-view of the

water height at the final time.
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Figure 5: Side-view of the water height at the final time for the rainfall test case

4.1.2 Inflow test case

We also consider a permanent inflow from upstream. We prescribeQI = 3.132×10−2 m2 s−1

as discharge on the inflow boundary. The final time is T = 27.75 s. As for the rainfall

test case, the final time was chosen such that the outflow discharge at T is approximately

equal to the half of the inflow discharge. We show in Figure 6 the side-view of the water

height at the final time.
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Figure 6: Side-view of the water height at the final time for the inflow test case

4.2 Numerical comparisons of the models

In this paragraph, we perform numerical tests on the new model (2.4). The furrows are

removed from the topography defined by (4.10). So, the topography is now reduced to an
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inclined plane with the same general slope:

Z(x, y) = −0.05 y. (4.11)

The space step with respect to y is set equal to the wavelength of the furrows, that is 0.1

m. The initial conditions remain unchanged, i.e. u(0,x) = 0 and h(0,x) = 0. We denote

by capital letters (H,U and Q) the solutions of (2.4), at the large scale.

To improve the comparison in the rainfall test, we also compute the solution (h,u,q)

of the two-layer like system (2.5). The discretization parameters and the topography we

use are the same as for system (2.4).

In order to compare the three models (2.1), (2.4) and (2.5), we consider the water height

(h, H and h respectively) and the discharge (q, Q and q respectively) at the outflow. For

this purpose, we first introduce hn
i
the average of the reference water height h contained

in the furrow i at the time tn. We also consider Hn
i the water height in the furrow i at

time tn computed with the model (2.4) for given K0 and C, and H0
n
i in the case K0 = 0

(that is the Shallow Water system on the coarser grid with plane topography and without

the new friction term). Next we denote by eH the relative water height error defined by

eH =




N∑

n=1

∑

i

∣∣∣hni −Hn
i

∣∣∣
2

N∑

n=1

∑

i

∣∣∣hni −H0
n
i

∣∣∣
2




1/2

, (4.12)

where tN = T is the final time of the simulations. This error represents the effect of the

new friction term K(h) in system (2.4) on the water height.

Finally we also study the discharge at the outflow: if qn is the value of q (from the

resolution of (2.1) with the explicit topography) at time tn, for y = L, Qn and Qn
0 the

solutions of (2.4) for given K0 and C, and K0 = 0 respectively, then the discharge error

eQ is defined by:

eQ =

N∑

n=1

|qn −Qn|

N∑

n=1

|qn −Qn
0 |
. (4.13)

The value of eQ shows the influence of the term K(h) on the discharge at the outflow.
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4.2.1 Rainfall test case

For the rainfall test case (see paragraph 4.1.1), we present, in Figure 7, the water height

error eH between models (2.1) and (2.4) as a function of K0 for C = 10. We started with a

step of 0.01 until K0 = 0.1, and then the step is taken equal to 0.1 as the function increases.

We remark that the minimum of the error eH ≃ 0.2518 is obtained for K0 = 0.02.
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Figure 7: Water height error eH for the model (2.4) for the rainfall test case

Then by optimizing this error with respect to the two parameters K0 and C, we finally

find the minimum eH ≃ 0.1417 corresponding to K0 = 0.02 and C = 0.4. The corre-

sponding discharge error is eQ ≃ 5.8×10−2. We notice that the new model (2.4) allows to

diminish the L2 error on the water height by a factor 7 with respect to the case K0 = 0,

showing that the furrow effects are well taken into account.

We now report the results obtained with the two-layer like model (2.5), for the rainfall

test. For different Manning’s coefficients k, Figure 8 shows the water height error eh (see

equality (4.12) replacing the solution H of system (2.4) by the solution h of (2.5)). The

objective of this test is to understand how the changes in Manning’s coefficient combined

with a delay at the beginning of the experiment could represent the effects of the furrows.

We note that the minimum is eh ≃ 0.0422 for k = 0.03. The corresponding discharge

error is eQ ≃ 8.6 × 10−3. We notice that the two-layer model allows to diminish the L2

error on the water height by a factor 23 with respect to the model (2.4) for the case K0 = 0.

The first conclusion on this rainfall test is that the two proposed models (2.4) and (2.5)

are good representations of the effects of the furrows, as they lower the error to the ref-

erence solution compared to a plane topography. More precisely, the two-layer like model

seems better on this test, but, as we mentioned before, its extension to the general two

dimensional case is not obvious.
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Figure 8: Water height error eh for the two-layer like model (2.5)

To close this test case, we directly compare the results of the three models. Figure 9

gives the ratio between the outflow discharge obtained by the models and the rain discharge

we imposed, as a function of time. We plot four results in the transitory regime: the

discharge computed with (2.4) with K0 = 0.02 and C = 0.4, the discharge with K0 = 0,

the solution of (2.5) with k = 0.03 and the reference solution q (see paragraph 4.1).

Although the domain in the new model (2.4) is an inclined plane, we observe that the

additional friction term is able to retain the water for a moment during the rainfall. It is

a good approximation to simulate the existence of the furrows.
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Figure 9: Ratio between the outflow discharge and the rain discharge for all the models,

as a function of time
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4.2.2 Inflow test case

Now we consider the inflow test case (see paragraph 4.1.2) and we conduct the same study

as for the rainfall test, in order to validate our new model of friction coefficient. Figure 10

shows the water height error eH between models (2.1) and (2.4) as a function of K0 for

C = 10. The step on K0 is set equal to 0.001 when the error is decreasing, and 0.01 for

larger errors. We notice that the minimum of the error is eH ≃ 0.3211 for K0 = 0.004. The

corresponding discharge error is eQ ≃ 4.4668 × 10−2. Note that our new model (2.4) al-

lows to lower the L2 error on the water height by a factor 1.62 with respect to the case K0.
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Figure 10: Water height error eH for the model (2.4) for the inflow test case

We also present in Figure 11 the ratio between the outflow discharge Qn, Qn
0 and the

imposed inflow discharge at the transitory regime, for the model (2.4) with K0 = 0.004,

C = 10 and K0 = 0 respectively and for the reference solution q computed in Section 4.1.

Here again we observe that the new model simulates well the effect of the furrows.

Remark 4.1. In this part, we did not mention the optimization of the value of C: as the

optimized coefficient for K0 is ten times smaller than for the rainfall test, the results do

not visibly vary when we change C.

4.2.3 Performance of the new model with calibrated coefficients

In the previous section, the numerical experiments show that our new model (2.4) with

the additional friction coefficient to represent the furrows gives good results on the water

height and the outflow discharge, compared to the reference solution computed on the

explicit topography. But this model needs a calibration of the two coefficients K0 and C.

In this paragraph, we study the robustness of this calibration when we change numerical

(the space step) or physical (the slope or the roughness of the domain) parameters.
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Figure 11: Ratio between the outflow discharge and the imposed inflow discharge for all

the models as a function of time

In this part, we only consider the rainfall test case and, as explained before (see paragraph

4.2.1), we choose K0 = 0.02 and C = 0.4. Consequently, in the following, we study the

performance of the model (2.4) with these values.

For a future extension to fully two-dimensional problems, the new model has to predict

the flow directions on each grid cell over the area of agricultural fields. As a consequence,

the dimension of a grid cell can vary from 1 to 100 m2. So, a grid cell typically contains

several furrows. To test for this scale effect, we present in Table 1 the relative errors eH

and eQ to the reference solution as functions of the space step. This space step varies from

0.1 m to 0.4 m which means that a cell comprises 1 to 4 periods of the furrows. We can

notice that the variation of the error eH is small: when the space step is multiplied by 4,

the relative error is multiplied by less than 1.5.

Space step [m] eH eQ CPU time

0.1 0.1417 5.8 × 10−2 0.11

0.2 0.1675 7.2865 × 10−2 0.0574

0.4 0.2024 8.963 × 10−2 0.0255

Table 1: Relative errors on the water height and the flowrate, and CPU times (normalized

with respect to the time to compute the reference solution).

At the same time, we present in Table 1 the computational times to compute the solutions

of the new model (depending on the space step). The values are normalized with respect
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to the computational time to compute the reference solutions. As we can observe the new

model allows to reduce the computational time for at least 90% and can easily achieve a

97% decrease under the condition that we tolerate a small error on the solution.

In Table 2, we present the errors eH and eQ for different general slopes of the topogra-

phy (with a realistic range for agricultural fields), for the calibrated values K0 = 0.02 and

C = 0.4. We note that the new model allows to reduce the L2 error on the water height

by at least a factor 4 compared to the reference solution, showing that the effects of the

furrows are well taken into account.

We complete these results with Table 3, where, for each slope, we calibrate the coefficients

K0 and C to get the minimum of the relative error eH . Comparing the values of the coef-

ficients and of the errors in Tables 2 and 3, we see that the new model with the calibrated

values K0 = 0.02, C = 0.4 still yields accurate results.

slope K0 C eH eQ

2% 0.02 0.4 0.2434 0.1855

5% 0.02 0.4 0.1417 5.8× 10−2

8% 0.02 0.4 0.2194 0.187

11% 0.02 0.4 0.2035 0.171

Table 2: Errors eH and eQ for different general slopes of the topography with K0 = 0.02

and C = 0.4

slope K0 C eH eQ

2% 0.02 0.3 0.2167 0.1134

5% 0.02 0.4 0.1417 5.8× 10−2

8% 0.04 0.4 0.1205 8.1222 × 10−2

11% 0.04 0.4 0.1089 6.8554 × 10−2

Table 3: Minimum errors eH with the corresponding coefficients K0, C and the values of

eQ for different general slopes of the domain

Table 4 shows the errors eH and eQ for different Manning’s coefficients (the slope is

kept equal to 5%), for the calibrated values K0 = 0.02 and C = 0.4. As for the variation

of the slope, in Table 5, we give the coefficients K0 and C that minimize the relative error

eH for each Manning’s coefficient, and we complete the table with the corresponding error

eQ. Here again, we see that the results given by our model (2.4) are good compared to

the reference solution.

The last results we present are dedicated to water heights and discharges errors at

steady state for the Shallow Water model (2.1). The final time of the simulations is then
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Manning’s coefficient [m1/3s−1] K0 C eH eQ

0.001 0.02 0.4 0.0744 4.67 × 10−2

0.04 0.02 0.4 0.1417 5.8 × 10−2

0.1 0.02 0.4 0.2746 9.9691 × 10−2

Table 4: Errors eH and eQ for K0 = 0.02 and C = 0.4 for different Manning’s coefficients

Manning’s coefficient [m1/3s−1] K0 C eH eQ

0.001 0.02 0.4 0.0744 4.67 × 10−2

0.04 0.02 0.4 0.1417 5.8 × 10−2

0.1 0.02 0.5 0.265 0.1128

Table 5: Minimum errors eH with the corresponding coefficients K0, C and the values of

eQ for different Manning’s coefficients

T = ts = 50 s. The two models we consider are, in the one hand, the new model (2.4)

with the calibrated coefficients K0 = 0.02 and C = 0.4, and, on the other hand, the

usual Shallow Water model (2.1) with an explicit description of the topography and of the

furrows.

We now denote eHs the water height error at steady state defined by

eHs =




∑

i

|hs i −Hs
i |2

∑

i

|hs i −H0
s
i |2




1/2

.

Note that eHs has the same definition as eH (see (4.12)) except that, instead of summing

the values of the water heights for all the discrete times, we only consider the time corre-

sponding to the steady state ts.

The values we obtain with the new model are eHs ≃ 0.1765. Thus we deduce that at the

steady state, the new model (2.4) with the calibrated coefficients takes well into account

the effects of the furrows and approximates well the Shallow Water model (2.1).

5 Conclusions

In this paper, we proposed a new Shallow Water model (2.4) in order to describe the effects

of furrows during overland flow without representing them explicitly. The main idea is to

include in the classical Shallow Water equations (2.1) the additional friction term (2.3)

that takes into account the effects of these furrows. The new model is proposed under the
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assumptions that the flow is fluvial and the direction of the flow is perpendicular to the

furrows, parallel to a side of the rectangular domain. We also assumed that there is no

infiltration and no soil erosion.

We presented numerical results to show the efficiency and the performance of the new

model. We compared it with a two-layer like model, where there is a delay due to the

filling of the furrows, and where we are able to assess the behavior of a model with a

variable Manning’s coefficient. Both models give good results for the rainfall test. We also

showed that the calibration of the coefficient of the new model does almost not depend on

the slope of the domain (see Table 2 and Table 3) and nor on the soil friction coefficient

(see Table 4 and Table 5).

The numerical results presented in this paper are encouraging and indicate that the

idea could be extended to more complex two-dimensional flows. This is now the main goal

of the forthcoming works. Note that, unlike the two-layer model (2.5), the new model

(2.4) can easily be generalized to two-dimensional problems. These extensions include the

random variations of the height of the furrows. As we already mentioned in the description

of (2.3), these variations can be taken into account in the constant C of the additional

friction term. The extensions also include the case where the direction of the furrows is

not perpendicular to the slope of the domain, in order to study the effects of this direction

with respect to the slope.
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