
HAL Id: hal-00429070
https://hal.science/hal-00429070

Preprint submitted on 30 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TLM.open: a SystemC/TLM Front-end for the CADP
Verification Toolbox

Claude Helmstetter

To cite this version:
Claude Helmstetter. TLM.open: a SystemC/TLM Front-end for the CADP Verification Toolbox.
2009. �hal-00429070�

https://hal.science/hal-00429070
https://hal.archives-ouvertes.fr


TLM.open: a SystemC/TLM Front-end for the

CADP Verification Toolbox

Claude Helmstetter
INRIA Grenoble Rhône-Alpes / Vasy

655, avenue de l’Europe, F-38330 Montbonnot St Martin, France

1 Introduction

The development of embedded systems starts more and more by the design
of abstract models written in SystemC/TLM [18, 6]. These models allow the
simulation of the embedded software before the hardware RTL descriptions are
available, and are used as golden models for hardware verification. The verifi-
cation of the SystemC/TLM models is an important issue, since a error in the
model can mislead the system designers, or reveal an error in the specification.

The OSCI provides an open-source simulator for SystemC/TLM and a li-
brary SCV to ease test generation. However, the OSCI does not provide tools
for formal verification. Moreover, while the SystemC specification allows many
schedulings for a given test case, the OSCI simulator exhibits always the same
scheduling. Thus, even if an execution leads to the expected result, another
execution with a different scheduling may be erroneous. To find this kind of
bugs, many publications have experimented the use of model checking

In order to apply model checking to a SystemC/TLM program, the usual ap-
proach relies on the translation of the SystemC/TLM code to a formal language
for which a model checker is available. Defining and implementing this kind
of translation is a difficult task because SystemC/TLM programs can contain
arbitrary C++ code.

We propose another approach that suppress the translation effort. Basically,
an explicit model checker (e.g., CADP) must be able to execute transitions and
to store states. Given a SystemC/TLM program, we execute the transitions
using g++ and the OSCI library, and we ask the user to provide additional func-
tions to store the current program state. These additional functions represent
generally less than 20% of the size of the origianl model, and allows to apply all
CADP tools to the SystemC/TLM program itself.

The remainder of this abstract is organized as follows. Section 2 gives an
overview of the previous works. Section 3 presents the existing CADP toolbox
and next describes the new TLM.open front-end. The features and performances
of TLM.open are evaluated in section 4. Section 5 concludes this abstract.

1



2 Previous works

In order to provide formal verification for SystemC/TLM programs, two ap-
proaches have been investigated: stateless model checking of a SystemC/TLM
program, and translation of a SystemC/TLM program to a language for which
a stateful model checker is available.

The stateless model checking techniques that have been implemented for
SystemC/TLM programs [8, 13, 1], give interesting results for small and medium
sized industrial examples. However, they can be applied only to bounded test
scenarios.

For programs that do not terminate, a second approach has been investi-
gated. The idea is to translate the SystemC/TLM program to be verified to
another language, and then verify the translated program using an existing
stateful model checker. This approach has first been applied to the RTL level
SystemC descriptions [2, 7].

Many translations and languages have been proposed for the validation of
transactional models, like [17], which translates SystemC/TLM programs into
finite state machines (FSM), or like [12], which describes abstraction techniques
and a translation from SystemC/TLM to labeled Kripke structures. Like our
approach, most of these translations are manually, a notable exception being
the LusSy tool chain [16], which automatically translates TLM models into
synchronous automata with variables; it provides some simple abstraction tech-
niques (e.g., abstract address representation). The LusSy tool chain has been
connected to many model checkers, including symbolic model checkers based on
BDD or SAT. Some small examples have been successfully verified, but indus-
trial examples face the state space explosion problem.

The state space explosion problem appears chiefly because TLM models
are mainly asynchronous. Indeed, after each transition, there are many valid
scheduling choices that should be explored. It is therefore suitable to use the
model checkers for asynchronous programs, as these model checkers have been
specifically optimized to fight state space explosion arising from asynchrony. For
example, the SPIN model checker uses partial orders to reduce state spaces; a
translation of TLM to Promela is described in [20], allowing the use of SPIN to
verify TLM models.

Also, we recently proposed a translation of TLM to LOTOS [9, 19] that
enables verification of the benchmark of [20] for a slightly greater number of
processes than using SPIN. [4] presents an application of our TLM to LOTOS
translation for an industrial case study; this paper shows that some properties
can be verified but this approach requires too much manual work.

2



R← {initial state} //set of remaining states
E ← ∅ //set of explored states
while (∃x ∈ R) do

foreach transition x→ y do

if (y 6∈ E ∪R) then R← R ∪ {y}
R← R \ {x}
E ← E ∪ {x}

end while

Figure 1: Basic algorithm for explicit model checking.

3 Model checking of SystemC/TLM programs

3.1 The CADP toolbox

CADP (”Construction and Analysis of Distributed Processes”) [5] is a toolbox
for the validation of communication protocols and distributed systems. CADP
provides numerous tools, among them:

• step-by-step, interactive, and random simulators

• a model checker that generates an explicit representation of the state space
(i.e., the Labeled Transition System (LTS) of the system)

• property checker for various temporal logics

• equivalence checker and LTS minimization tools.

The usual entry point for CADP is the language LOTOS. The ISO stan-
dard LOTOS [10] (Language Of Temporal Ordering Specification) is a process
algebra used to describe asynchronous concurrent processes communicating and
synchronizing by rendezvous on gates. This language is well-suited for designing
communication protocols.

However, to model embedded systems at the transaction level, engineers
of industrial companies prefer to use SystemC/TLM. One reason is that Sys-
temC/TLM provides natively all the useful features, like shared memory and
transactional communication channel. Another reason is that a SystemC/TLM
program is mainly C++ code, so engineers can learn SystemC/TLM quickly,
and existing C code can be easily reused.

Hopefully, the CADP toolbox is modular and each tool can be connected to
various front-ends, using the OPEN/CÆSAR interface [3]. A front-end for the
CADP toolbox consists in a C library providing the operators required by the
model checker itself.

Figure 1 describes an algorithm for explicit model checking, without any
optimizations. An enhanced version of this algorithm is implemented in CADP.
The following operators are required to run this algorithm, and must be imple-
mented in the front-end:

3



store() and

restore()

functions

SystemC/TLM

progam

SystemC

interface

OPEN/CÆSAR

interface

CADP tool

such as:

distributed model checker,

interactive simulator,

on-the-fly property checker,

...

tool result

(e.g., LTS)
ldg++

TLM.open

Figure 2: Overview of the verification framework.

• generation of the initial state

• enumeration and execution of the transitions starting from a given state

• efficient storage of a state (requires comparison and hash functions).

3.2 A SystemC/TLM front-end for CADP

Figure 2 provides an overview of our verification framework based on a new
SystemC/TLM front-end for CADP, called TLM.open. The TLM.open front-end
consists in a C/C++ library implementing two interfaces. Firstly, TLM.open
provides and implements a subset of the OSCI SystemC library, including mod-
ules, events, TLM ports, and processes (SC METHOD only). Secondly, TLM.open
implements the OPEN/CÆSAR interface.

In order to use TLM.open, the user must implements a few callback functions
for each SystemC module. These functions are needed by TLM.open in order to
implement the OPEN/CÆSAR interface.

• size t size() const: number of bytes needed to store a copy of the
SystemC module

• size t alignment() const: specify whether padding bytes are needed

• void store(char *dest) const: store the current state of the module
in dest

• void restore(const char *src): restore the state of the module ac-
cording to the copy stored in src.

The store() function must generate a canonical representation, so state com-
parison can be done using memcmp() and hash functions can be generated auto-
matically.

Implementing the functions size() and alignment() requires generally one
line of code for each. The store() function implementation contains two lines
of code per module member on average; same for the restore() function. Im-
plementing these functions requires some manual work, but less than translating

4



the whole model to another language. Moreover, given a SystemC parser like
Pinapa [15], it should be possible to generate these functions automatically.
Such a tool would be simple compared to an automatic SystemC to automata
translator like LusSy [16].

When is used with the model checker of CADP, the result is an LTS with
two kinds of transitions:

• TE transitions indicate that some time has elapsed; the parameters give
the duration and the list of triggered events.

• EXEC transitions represent the execution of a SystemC process; the param-
eters provide the name of the elected process, the inputs of the process if
this process has called the special rand() function of TLM.open, and the
outputs generated using the puts() function.

4 Examples

4.1 The chain benchmark

We evaluate our new front-end on the benchmark proposed in [20] and reused
in [9]. This benchmark consists of a chain of interrupt transmitter modules,
whose length is parametrized by n. Modules communicate trough transactions,
and processes synchronize with events. Figure 3 presents the SystemC original
benchmark for n = 1. To increase n, one adds a transmitter module between
the last transmitter and the sink module. There are always n + 2 processes
(functions named compute and process) and n + 1 events (private attribute e

of each module).

}

Transmitter

void initiate() {

}

port.f();

Source

void f() {e.notify();}

void f() {e.notify();}

void compute() {
wait(e); port.f();

}

void complete() {
wait(e); assert(false);

Sink

Figure 3: The chain benchmark for n = 1

Table 1 presents the results for the generation of the full LTS, using a Linux
machine with 4 GB of memory. For comparison, [20] succeeded to verify this
benchmark up to n = 15 (47 seconds), and [9] succeeded up to n = 19 (8293

5



Table 1: Results of the experiments using TLM.open

n = 3 7 11 15 19 20
LTS generation 5 s 5 s 5 s 14.6 s 403 s 1151 s
state number 62 1022 16,382 262,142 4,194,302 8,388,606

state number after
minimization

47 767 12,287 196,607 3,145,727 n.a.

seconds for n = 19; 60.2 seconds for n = 15). The results of table 1 show a
significant speedup compared to the previous approaches based on the transla-
tion to Promela or LOTOS. The efficiency of TLM.open can be explained by two
points:

• One transition in the LTS corresponds exactly to one SystemC transition
(i.e., the execution of a process between two wait statements.) There
are no additional transitions used to mimic the behavior of the SystemC
scheduler.

• The memory size of a state is kept as small as possible, allowing the model
checker to store more states.

4.2 Verification of a simple timer

This subsection illustrates the features provided by TLM.open by showing how
it can be applied to a simple but realistic example. We consider a timer with
two registers FREQ and ACK.

• Writing a non-null value to FREQ starts the timer

• When enabled, the timer generates an interruption periodically

• Writing to ACK acknowledges the interruption

• Writing 0 to FREQ stops the timer.

We have four SystemC/TLM models of this timer at our disposal. The first
one (v1) comes from the SimSoC project [11]; the second (v2) is the first with a
bug-fix; the third and the forth have been provided by an engineer and a PhD
student (v3 and v4).

In order to verify the first SystemC/TLM model, which contains 80 lines of
code, we had to write 17 additional lines of code to implement the store() and
restore() functions. The timer verification requires to design an environment
modeling the commands generated by the embedded software. For this example,
we decided to describe the environment in LOTOS because TLM.open allows the
user to merge SystemC/TLM code with LOTOS code, and LOTOS is well-suited
for nondeterministic programs.

Firstly, we applied on-the-fly property checking. The property checker of
CADP [14] revealed an error in the first version: for some particular scheduling,

6



the timer could generate an interruption after it has been stopped. A coun-
terexample was automatically exhibited, allowing us to fix the bug. Another
minor bug was found in the third version v3.

Secondly, we tried the equivalence checker of CADP. We generated the LTS
of each SystemC/TLM model, we hided the internal transitions, and we mini-
mized the LTS according to branching equivalence. CADP provided us with the
guarantee that the versions v2 and v4 are bisimilar modulo branching equiv-
alence. It means that if one contains an error, the other contains the same
error. As expected, the first and third versions are not equivalent, because they
contains distinct errors.

5 Conclusion

We have presented a new framework for the verification of SystemC/TLM pro-
grams. Our new SystemC/TLM front-end avoids the need to translate the whole
SystemC/TLM program to another language. Compared to approaches based
on manual translation, the verification using TLM.open is much more simple:
there are less lines of code to write and the engineer do not need to learn a new
modeling language. Moreover, TLM.open allows to scale up a little further than
the previous works. Thanks to the numerous tools of CADP, it is now possible
to check complex properties, and to test the equivalence of two SystemC/TLM
programs.

We believe that the store() and restore() functions can be generated
using a SystemC parser. The result would be a tool-chain as automatic as
LusSy, but much more simple to develop and maintain.

We have started experiments on a large industrial case study. As explained
in [4], the most difficult task to verify a SystemC/TLM program is to extract
an abstract model that is simple enough to be formally verified. Our current
goal is to integrate TLM.open is in the design flow in such a way that this task
becomes simple and safe.

References

[1] Nicolas Blanc and Daniel Kroening. Race analysis for SystemC using model
checking. In Proceedings of ICCAD 2008, pages 356–363. IEEE, 2008.

[2] Rolf Drechsler and Daniel Große. Reachability analysis for formal verifica-
tion of systemc. In DSD, pages 337–340. IEEE Computer Society, 2002.

[3] Hubert Garavel. Open/cæsar: An open software architecture for verifica-
tion, simulation, and testing. In Bernhard Steffen, editor, Proceedings of
the First International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems TACAS’98 (Lisbon, Portugal), volume
1384 of LNCS, pages 68–84, Berlin, March 1998. Springer. Full version
available as INRIA Research Report RR-3352.

7



[4] Hubert Garavel, Claude Helmstetter, Olivier Ponsini, and Wendelin Serwe.
Verification of an Industrial SystemC/TLM Model using LOTOS and
CADP. In 7th ACM-IEEE International Conference on Formal Meth-
ods and Models for Codesign MEMOCODE’2009, Cambridge, MA United
States, 2009.

[5] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp
2006: A toolbox for the construction and analysis of distributed processes.
In Werner Damm and Holger Hermanns, editors, Proceedings of the 19th In-
ternational Conference on Computer Aided Verification CAV’2007 (Berlin,
Germany), volume 4590 of LNCS, pages 158–163. sv, July 2007.

[6] Frank Ghenassia, editor. Transaction-Level Modeling with SystemC. TLM
Concepts and Applications for Embedded Systems. Springer, June 2005.
ISBN 0-387-26232-6.

[7] D. Große and R. Drechsler. CheckSyC: an efficient property checker for
RTL SystemC designs. In ISCAS, volume 4, pages 4167–4170, May 2005.

[8] Claude Helmstetter, Florence Maraninchi, Laurent Maillet-Contoz, and
Matthieu Moy. Automatic generation of schedulings for improving the test
coverage of systems-on-a-chip. FMCAD, pages 171–178, 2006.

[9] Claude Helmstetter and Olivier Ponsini. A comparison of two Sys-
temC/TLM semantics for formal verification. In Proceedings of the 6th
ACM-IEEE International Conference on Formal Methods and Models for
Codesign MEMOCODE’2008, June 2008.

[10] ISO/IEC. Lotos — a formal description technique based on the temporal
ordering of observational behaviour. International Standard 8807, Interna-
tional Organization for Standardization — Information Processing Systems
— Open Systems Interconnection, Genève, September 1989.

[11] Vania Joloboff and Claude Helmstetter. SimSoC: A SystemC TLM in-
tegrated ISS for full system simulation. In Asia Pacific Conference on
Computer Architecture and Systems, Macao Macao, 2008.

[12] Daniel Kroening and Natasha Sharygina. Formal verification of SystemC
by automatic hardware/software partitioning. In MEMOCODE ’05, pages
101–110. IEEE, 2005.

[13] Sudipta Kundu, Malay Ganai, and Rajesh Gupta. Partial order reduction
for scalable testing of SystemC TLM designs. In DAC ’08: Proceedings
of the 45th annual conference on Design automation, pages 936–941, New
York, NY, USA, 2008. ACM.

[14] Radu Mateescu and Damien Thivolle. A model checking language for con-
current value-passing systems. In Jorge Cuellar and Tom Maibaum, edi-
tors, Proceedings of the 15th International Symposium on Formal Methods

8



FM’08 (Turku, Finland), number 5014 in lncs, pages 148–164. sv, May
2008.

[15] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. Pinapa:
an extraction tool for systemc descriptions of systems-on-a-chip. In EM-
SOFT ’05: Proceedings of the 5th ACM international conference on Em-
bedded software, pages 317–324, New York, NY, USA, 2005. ACM.

[16] Matthieu Moy, Florence Maraninchi, and Laurent Maillet-Contoz. LusSy:
an open tool for the analysis of systems-on-a-chip at the transaction level.
Design Automation for Embedded Systems, 2006. special issue on SystemC-
based systems.

[17] B. Niemann and Ch. Haubelt. Formalizing TLM with communicating state
machines. In FDL’06: Forum on Specification & Design Languages, pages
285–292, September 2006.

[18] Open SystemC Initiative. SystemC v2.2.0 Language Reference Manual
(IEEE Std 1666-2005), 2006. http://www.systemc.org/.

[19] Olivier Ponsini and Wendelin Serwe. A schedulerless semantics of TLM
models written in SystemC via translation into LOTOS. In Jorge Cuellar
and Tom Maibaum, editors, Proceedings of the 15th International Sympo-
sium on Formal Methods FM’08 (Turku, Finland), number 5014 in LNCS.
sv, May 2008.

[20] Claus Traulsen, Jérôme Cornet, Matthieu Moy, and Florence Maraninchi.
A SystemC/TLM semantics in Promela and its possible applications. In
14th Workshop on Model Checking Software SPIN, July 2007.

9


