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IFT-UAM/CSIC-08-14Version 30th O
tober 2009Spheri
ally symmetri
 models with pressure:separating expansion from 
ontra
tion and generalizing TOV 
onditionJosé P. Mimoso∗Departamento de Físi
a,Fa
uldade de Ciên
ias da Universidade de LisboaCentro de Físi
a Teóri
a e Computa
ional,Universidade de LisboaAv. Gama Pinto 2, 1649-003 Lisboa, PortugalMorgan Le Delliou†Instituto de Físi
a Teóri
a UAM/CSIC,Fa
ultad de Cien
ias, C-XI,Universidad Autónoma de MadridCantoblan
o, 28049 Madrid SPAINFilipe C. Mena‡Centro de Matemáti
aUniversidade do MinhoCampus de Gualtar, 4710-057 Braga, Portugal(Dated: Re
eived 30/10/09; A

epted...)We investigate spheri
ally symmetri
 perfe
t �uid spa
etimes and dis
uss the existen
e and sta-bility of a dividing shell separating expanding and 
ollapsing regions. We perform a 3 + 1 split-ting and obtain gauge invariant 
onditions relating the intrinsi
 spatial 
urvature of the shellsto the ADM mass and to a fun
tion of the pressure whi
h we introdu
e and that generalisesthe Tolman-Oppenheimer-Volko� equilibrium 
ondition. We analyse the parti
ular 
ases of theLemaître-Tolman-Bondi dust models with a 
osmologi
al 
onstant as an example of a Λ-CDMmodel and its generalization to 
ontain a 
entral perfe
t �uid 
ore. These models provide simple,but physi
ally interesting illustrations of our results.PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Jk, 95.30.Sf , 04.40.Nr, 04.20.JbI. INTRODUCTIONModels of stru
ture formation generally assume thatsmall lo
al inhomogeneities grow due the gravitational in-stability, so that the overdensities 
ollapse and eventuallyform the "bound" stru
tures we observe in the presentuniverse. Underlying this viewpoint is the idea that the
ollapse of the overdensities departs from the general ex-pansion of the universe. This approa
h often relies onthe idea that a small overdensity 
an be approa
hed asa 
losed pat
h in an otherwise spatially �at Friedmannuniverse and it 
laims that Birkho�'s theorem justi�esthat, on the one hand, its evolution is independent fromthe outside universe, and, on the other hand, that the be-haviour of the outside Friedmann universe is immune tothe 
ollapse of the 
losed pat
h (see e.g. [1�3℄).The 
ol-lapse of overdensities has been extensively studied and
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most works have been fo
used on the study of the for-mation both of small stru
ture (astrophysi
al obje
ts)and of large-s
ale stru
ture as the out
ome of the growthof small perturbations in a 
osmologi
al 
ontext. Thelatter subje
t, 
omprises the relativisti
 and newtoniananalysis of the evolution of the �u
tuations (see e.g. [1�4℄) and the study of the subsequent ampli�
ation of thegrowing modes into the non-linear regime resorting to nu-meri
al methods (see e.g. [5�8℄). In the present work we
onsider spheri
ally symmetri
, inhomogeneous universeswith pressure, and study the question of whether thereexists a dividing shell separating expanding and 
ollaps-ing regions. Our goal bears a 
onne
tion to the generalproblem of assessing the in�uen
e of global physi
s intothe lo
al physi
s [9, 10℄. One aspe
t of this problemwhi
h has always attra
ted great interest is the endeav-our to explain the lo
al inertial phenomena in a Ma
hiansense (see e.g. [11, 12℄) and, in fa
t, Brans-Di
ke theory[13�16℄ stems from this problem.Another related aspe
t has been the study of the in�u-en
e of 
osmi
 expansion on lo
al systems. Einstein andStraus [17℄ were the �rst to study this problem by 
on-stru
ting a global solution whi
h resulted from mat
hingthe spheri
ally symmetri
 va
uum S
hwarzs
hild solutionto an expanding dust FLRW exterior a
ross a hypersur-fa
e preserving the symmetry. Bonnor has made severalinvestigations along this line (see e.g. [18℄). In parti
u-



2 Mimoso, Le Delliou & Menalar, he 
o-presented an exa
t solution representing a lo
aldistribution of Ele
tri
ally Counterpoised Dust embed-ded in an expanding universe with zero spatial 
urvature[19℄, showing that the distribution parti
ipates in the ex-pansion. Among the generalisations of this model aresettings whi
h keep the spheri
al symmetry but gener-alise the interior sour
e �elds by 
onsidering for exam-ple Vaidya (see [20℄ and referen
es therein) or Lemaître-Tolman-Bondi (LTB) spa
etimes (see [21�25℄). On a dif-ferent 
ontext, Herrera and 
o-workers [26℄ have studiedthe "
ra
king" of 
ompa
t obje
ts in astrophysi
s usingsmall anisotropi
 perturbations around spheri
ally sym-metri
 homogeneous �uids in equilibrium.In this work we use a di�erent approa
h from all theworks des
ribed above. In one hand, by making use ofa single 
oordinate pat
h, we do not have to handle themat
hing problem. On the other hand, our approa
his not perturbative. We adopt the formalism whi
h hasbeen re
ently developed in a remarkable series of papersby Lasky and Lun using Generalised Painlevé-Gullstrand(hereafter GPG) 
oordinates [27�29℄. We perform a 3+1splitting and obtain gauge invariant 
onditions relatingnot only the intrinsi
 spatial 
urvature of the shells to theADM mass1, but also a fun
tion of the pressure whi
h weintrodu
e and that generalises the Tolman-Oppenheimer-Volko� (TOV) equilibrium 
ondition.In parti
ular, we 
onsider that the existen
e of a spher-i
al shell separating an expanding outer region from aninner region 
ollapsing to the 
enter of symmetry, de-pends essentially on two 
onditions. The �rst 
onditionestablishes that there is no matter ex
hange a
ross theshell. The se
ond 
ondition establishes that the general-ized TOV equation is satis�ed on that shell, and hen
ethat this shell is in some sort of equilibrium. The di�er-en
e with respe
t to the original problem where the TOVequation was introdu
ed for the �rst time is twofold. Ourresult does not rely on the assumption of a stati
 equi-librium of the spheri
al distribution of matter, and 
on-sequently does not assume that all the internal spheri
alperfe
t �uid spheri
al shells are 
onstrained to satisfy theTOV equation. In our 
ase the generalized TOV equationis just satis�ed at the dividing shell. Besides, the gener-alized TOV fun
tion depends on the spatial 3-
urvaturein a more general way than the original TOV equation.Furthermore, we shall 
hara
terise the dividing shell withkinemati
 quantities whi
h provide a gauge invariant for-mulation of the problem.In order to illustrate our results we will analyse someparti
ular 
ases. The simplest example is provided by thewell-known Lemaître-Tolman-Bondi dust models with a
osmologi
al 
onstant whi
h 
an be seen as an exampleof a Λ-CDM model. A preliminary presentation of thiswork 
an be found in [31℄. As a se
ond 
ase we 
onsidergeneralizations of the previous model to 
ontain a 
en-1 also referred to as Misner-Sharp mass[30℄.

tral perfe
t �uid 
ore. These models provide simple, butphysi
ally interesting illustrations of our results.An outline of the paper is: (II) The GPG formalismof Lasky and Lun: 3 + 1 splitting and gauge invariantskinemati
al quantities. (III) Existen
e of a shell separat-ing 
ontra
tion from expansion: general 
onditions. (IV)Parti
ular examples (A) Λ-CDM model (LTB with a 
os-mologi
al 
onstant). (B) Perfe
t �uid 
ore in a Λ-CDMmodel. (V) Dis
ussion of our results.We shall use the following index 
onvention: Greekindi
es α, β, ... = 1, 2, 3 while latin indi
es a, b, ... =
0, 1, 2, 3.II. 3 + 1 SPLITTING AND GAUGEINVARIANTS KINEMATICAL QUANTITIESIn this se
tion we set the basi
 equations that we shallsubsequently need. For 
omparison, we follow 
losely theformalism used by Lasky and Lun (LL) [28℄, while slightlygeneralising their derivations for the expli
it presen
e ofa 
osmologi
al 
onstant Λ.A. Metri
 and ADM splittingWe adopt the GPG 
oordinates of Ref. [28℄ and per-form an ADM 3+1 splitting [32℄ in whi
h the spher-i
ally symmetri
 line element assumes a perfe
t �uidtimelike normalised �ow na := −α∇at = [−α, 0, 0, 0](nana = −1), de�ning with its lapse N = α and its radialshift ve
tor Nµ = (β, 0, 0), an evolution of the spatially
urved three-metri
 3gµν = diag

(

1
1+E

, r2, r2 sin2 θ
) withtime (dΩ2 := dθ2 + sin2 θdφ2),

ds2 = −α(t, r)2dt2 +
1

1 + E(t, r)
(β(t, r)dt + dr)2

+ r2dΩ2. (II.1)The 3+1 approa
h uses the proje
tion operators alongand orthogonal to the �ow
Na

b := −nanb, hab :=gab + nanb. (II.2)where hab is the 3-metri
 on the surfa
e Σ normal tothe �ow. Those proje
tors are also used for 
ovariantderivatives: Along the �ow, the proper time derivative ofany tensor Xab
cd is

Ẋab
cd := neXab

cd;e, (II.3)and in the orthogonal 3-surfa
e, ea
h 
omponent is pro-je
ted with h

X āb̄
c̄d̄;ē := ha

fhb
gh

i
ch

j
dh

k
eXfg

ij;k. (II.4)



Spheri
ally symmetri
 models with P: dividing shell and generalized TOV 3Then the 
ovariant derivative of the �ow, from its pro-je
tions, is de�ned as
na;b = N c

b na;c + nā;b̄ = −nbṅa +
1

3
Θhab + σab

+ ωab, (II.5)where the proje
tion tra
e, the expansion of the �ow, is
Θ = na

;ā, the rate of shear σab is its symmetri
 tra
e-freepart and its skew-symmetri
 part is the vorti
ity ωab.For perfe
t �uids we have the Ray
haudhuri propaga-tion equation
Θ̇ − ṅa

;ā = −1

3
Θ2 + ṅaṅa − σabσ

ab + ωabω
ab

− κ

2
(ρ + 3P ) + Λ. (II.6)where κ = 8π.The extrinsi
 
urvature Θab := 1

2Lnhab gives2
Θab =diag

[

0,−1 + E

α
ℵ,− β

αr3
,− β

αr3 sin2 θ

]

, (II.7)with ℵ =

[

β′ +
1

2

Ė − βE′

1 + E

]

.and3
Θ = −

(

βr2
)′

αr2
− 1

2

LnE

1 + E
, (II.8)whi
h leads to

a =
1

3

r

α

(

β

r

)′

+
1

6

LnE

1 + E
. (II.9)The 3-Ri

i tensor on Σ gives

3Rµν = diag

[

− E′

(1 + E)r
,−1

2
E′r − E,

(

−1

2
E′r − E

)

sin2 θ

]

. (II.10)Samely, the 3-Ri

i tra
e and tra
e-free 3-Ri

i tensorderive from the 3-metri
 as
3R = − 2

(Er)′

r2
(II.11)and,

3Qµν :=3Rµν − 1

3
3gµν

3R (II.12)
⇒ 3Qµ

ν =
1

6

E′r − 2E

r2
Pµ

ν = q(t, r)Pµ
ν (II.13)

⇒ q =
r

6

(

E

r2

)′

. (II.14)2 Re
all that for a s
alar Ln = na∂a =
1

α
∂t −

β
α

∂r ; [28℄ 
alled it
Kab but we prefered the Ellis 
onvention.3 Note that we obtain a sign for K and a di�erent from that ofRef. [28℄.

where Pµ
ν is diag [−2, 1, 1].The tra
e and tra
e-free Hessian of α write

1

α
DµDµα =

√
1 + E

αr2

(

r2
√

1 + Eα′
)′ (II.15)and,

1

α
DµDνα − 1

3α
3gµνDcDcα = ǫ(t, r)Pµν (II.16)with ǫ = −r
√

1 + E

3α

(
√

1 + E

r
α′

)′

. (II.17)The Bian
hi identity T a
b;a = 0 
an be proje
ted along

nb giving:
nbT a

b;a = − Lnρ − (ρ + P )Θ = 0. (II.18)while proje
tions orthogonal to nb give the Euler equa-tion
h b

aT c
b;c =







β
1
0
0







(

P ′ + (ρ + P )
α′

α

)

= 0 (II.19)
⇒ P ′ = − (ρ + P )

α′

α
. (II.20)B. The Einstein Field EquationsIt is well known that the ADM approa
h separates theten Einstein Field Equations (EFE) into four 
onstraintsand six evolution equations. Spheri
al symmetry redu
esthem to 2+2 equations.The Hamiltonian 
onstraint reads, in the presen
e of a
osmologi
al 
onstant,

3R +
2

3
Θ2 − 6a2 =16πρ + 2Λ, (II.21)the momentum 
onstraint, restri
ted to the radial dire
-tion by symmetry,
(

r3a
)′

= − r3

3
Θ′ (II.22)and the evolution equations 
an be redu
ed to4

−2LnΘ − 1

2
3R − Θ2 − 9a2 +

2

α
DaDaα =24πP − 3Λ,(II.23)

−Lna − aΘ + ǫ − q =0. (II.24)4 Note the sign di�eren
es in front of the Lie derivatives terms
ompared with [28℄; our results give a sign for Ḣ whi
h is 
on-sistent with the Ray
haudhuri equation restri
ted to the FLRW
ase.



4 Mimoso, Le Delliou & MenaUsing Eqs. (II.8) and (II.9) in Eq. (II.22), one 
an sim-plify the latter into
− LnE

1 + E
=2

β

α2
α′. (II.25)Using the guidan
e that, from Eqs. (II.11) and (II.14),

3R+12q eliminates derivatives in E, we 
an further sim-plify the 
ombination of (Eqs. (II.23) + 6(II.24))×r2/3with expressions from Eqs. (II.8,II.9,II.11,II.14,II.15) as
2r (1 + E) (lnα)′ − 8πPr2 + Λr2 + 2rLn

(

β

α

)

−
(

β

α

)2

= −E. (II.26)Substitution of Eq. (II.26) into Eq. (II.21)×r2/4 yields,together with Eqs. (II.8,II.9,II.11,II.25,r/2×II.26), aPoisson-like equation whi
h, integrated over r de�nes aMisner-Sharp mass fun
tion [30℄
M ′ = 4πρr2

⇒ M = 4π

∫ r

0

ρx2dx = r2 (1 + E) (lnα)
′

− 4πPr3 +
1

3
Λr3 + r2Ln

(

β

α

)

, (II.27)whi
h with Euler's Eq. (II.20) rewritten, for P 6= −ρ,leads to the expression
M

r2
+ 4πPr =Ln

(

β

α

)

+
1

3
Λr − 1 + E

ρ + P
P ′. (II.28)The evolution Eq. (II.26) 
an be re
ast to re
ognise thede�nition of (II.27):

E + 2
M

r
+

1

3
Λr2 =

(

β

α

)2

. (II.29)With Euler's Eq. (II.20) , the momentum Eq. (II.25) be-
omes
LnE =2

β

α

1 + E

ρ + P
P ′, (II.30)while taking Eq. (II.29)'s Lie derivative and using (II.30)with Ln

1
r

= − β
α
∂r

1
r

= β
α
/r2, then β

α
×Eq. (II.28) reads

LnM =4πPr2 β

α
. (II.31)Taking the positive (
ontra
ting) root of Eq. (II.29), theevolution Eqs. α×(II.31) and α×(II.30) for M and E 
anbe written in term of time derivatives, expli
iting the Liederivative:

Ṁ = α
(

M ′ + 4πPr2
)

√

2
M

r
+

1

3
Λr2 + E, (II.32)

Ė = α

(

E′ + 2
1 + E

ρ + P
P ′

)

√

2
M

r
+

1

3
Λr2 + E. (II.33)This system is then 
losed with a 
hoi
e of an equationof state.

C. Generalized LTBGetting the metri
 (II.1) into the LTB form, as in [28℄,requires a 
oordinate transform so that βdt + dr ∝ dR.Taking t(T ) and r(T, R), we have then the 
ondition
β∂T t + ∂T r = 0, (II.34)whi
h be
omes

β = − ṙ. (II.35)Consequently, the line element (II.1) 
an be rewritten as
ds2 = −α(T, R)2 (∂T t)

2
dT 2+

(∂Rr)
2

1 + E(T, R)
dR2+r2dΩ2,(II.36)where E(T, R) > −1 and we 
an freely absorb the timefun
tion in the new time by 
hoosing t = T . Using now ˙and ′ for ∂T and ∂R respe
tively, Eq. (II.29) now reads

ṙ2 =α2

(

2
M

r
+

1

3
Λr2 + E

) (II.37)and Eq. (II.32) rewrites, using Eq. (II.35),
Ṁ =β4πPr2 = 4πPr2α

√

2
M

r
+

1

3
Λr2 + E, (II.38)while Eq. (II.33)×r′ rewrites

Ėr′ =2β
1 + E

ρ + P
P ′ = 2

1 + E

ρ + P
P ′α

√

2
M

r
+

1

3
Λr2 + E(II.39)and Euler's Eq. (II.20)×r′ is un
hanged

α′

α
= − P ′

ρ + P
. (II.40)D. Remarks on ΛIn all that pre
edes, the 
osmologi
al 
onstant was keptexpli
it. However, from the EFEs, one 
an in
lude its ef-fe
ts in the total density and pressure as that of a �uidwith ρΛ = −PΛ = Λ

κ
. We then obtain expressions iden-ti
al to Lasky & Lun [28℄. It is interesting to note thatthe Misner-Sharp mass, in the expli
it Λ formulation, isonly referring to the initial, �Λless� mixture, while en-
ompassing the gravitational e�e
ts of the presen
e of

Λ. From Eq. (II.27) we 
an de�ne the mass Mtot andpressure term 4πPtotr
3 for the sum of the total perfe
t�uid mixture plus Λ by taking Eq. (II.27) for a perfe
t�uid and setting Λ = 0. We 
an also interpret the sumof the total mass and pressure terms as the mass of anequivalent dust model Med. We 
an then integrate the
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ally symmetri
 models with P: dividing shell and generalized TOV 5mass of Λ �uid and introdu
e the �Misner-Sharp mass�[30℄ pressure term for the Λ �uid:
Mtot + 4πPtotr

3 =r2 (1 + E) (ln α)′ + r2Ln

(

β

α

)

≡ Med,(II.41)
MΛ =

4π

3
r3ρΛ =

Λ

6
r3, (II.42)

4πPΛr3 = − 1

2
Λr3. (II.43)Thus we 
an rewrite the Misner-Sharp sum of the massand pressure term from its 
omponents from Eq. (II.27):

M + 4πPr3 =Mtot + 4πPtotr
3 +

1

3
Λr3, (II.44)

MΛ + 4πPΛr3 = − 1

2
Λr3 +

Λ

6
r3 = −1

3
Λr3, (II.45)so Mtot = M + MΛ and Ptot = P + PΛ. In Se
. III,unless stated otherwise, we will use M , ρ and P to meantheir total values while referring to the perfe
t-�uid-onlyvalues as Mpf , ρpf and Ppf . In addition, the mass evo-lution Eq. (II.31) refers to the �Λless� mixture mass andpressure. We 
an thus extrapolate that this mass 
onser-vation equation is valid for ea
h 
omponent of minimally
oupled �uid in the mixture: we thus have for indepen-dent �uids

M =
∑

fluid i

Mi, (II.46)
P =

∑

fluid i

Pi, (II.47)
LnMi =4πPir

2 β

α
= ±4πPir

2

√

2
M

r
+ E. (II.48)III. GEOMETRICAL AND PHYSICALCONDITIONS FOR THE EXISTENCE OF ADIVIDING SHELLIn our spheri
al symmetri
 approa
h, we are lookingfor shells dividing expansion at all time from regions ofmixed behaviour involving periods of 
ollapse.This leads to an investigation of the 
onditions for thedynami
al separation of se
tions of matter trapped insidea dividing surfa
e (physi
al 
ondition). We will see thatthis approa
h is distin
t from a purely kinemati
 sepa-ration of 
ontra
tion from expansion (geometri
al 
ondi-tion) and will express the physi
al 
ondition using kine-mati
 quantities.A. Misner-Sharp mass 
onservationIn the previous se
tion we have seen how the Misner-Sharp mass is evolving with the �ow under Eq. (II.31).

We 
an thus de�ne a surfa
e for whi
h this mass is 
on-served with respe
t to the �ow:
∀t, LnM(t, r⋆(t)) =0

⇔ ∀t, E = −2
M

r⋆

, or P⋆ = 0 or r⋆ = 0, (III.1)While the se
ond 
ase, P = 0, de�nes a dust-like layer inthe perfe
t �uid mix, and the third 
ase, r = 0, is trivial,we shall 
on
entrate on the �rst 
ase, E = −2M
r
. In this
ase, from Eq. (II.30) we get

LnE = ± 2

√

2
M

r
+ E

1 + E

ρ + P
P ′ = 0, (III.2)so the shell is 
hara
terised by �xed 
urvature andMisner-Sharp mass. This implies that if a pres
ribedinitial P and ρ distribution is given su
h that there exista shell where

E⋆ = −2
M⋆

r⋆

, (III.3)then this shell 
an lo
ally separate inner and outer re-gions that 
an be expanding and 
ontra
ting di�erently.We 
all the separating shell a �limit shell�, and denoteit with ⋆. In GPG 
oordinates the above 
ondition isequivalent to β
α

∣

∣

∣

⋆
= 0, or to β⋆ = 0. We 
an then useit to 
ompute

ṙ⋆ = − 2M

E
α

[LnM

M
− LnE

E

]

⋆

= 0, (III.4)
r̈⋆ = − 2M

E
α2

[L2
nM

M
− L2

nE

E

]

⋆

, (III.5)and
Lnr = −β

α
⇒ Lnr⋆ = 0, (III.6)so the limit shell appears as a �turnaround�5 shell, interms of areal radius.However, these 
onditions are 
oordinate dependentand give limited insight as to how they would express fordi�erent observers. This 
alls for a de�nition using gaugeinvariant quantities.B. Expansion and ShearNewtonian stru
ture formation in spheri
al symmetryprovides a natural limiting shell that is a lo
us separatingat a given time expansion from 
ollapse: the turnaroundradius (see e.g.[33℄). The de�nition of that lo
us is given5 See dis
ussion in [1, Se
tion 19, p77℄



6 Mimoso, Le Delliou & Menaby the vanishing of the expansion with respe
t to the�ow. Nevertheless, this is not ne
essarily the 
ase result-ing from 
ondition III.1. Let us �rst start from the previ-ous mass �ow de�nition and examine the 
orrespondingexpansion.In GPG 
oordinates [28℄, de�ning the �ow by theshift/lapse ve
tor, we 
an 
ompute the expansion (thetra
e of the symmetri
 part of the proje
ted 
ovariantderivative of the �ow ve
tor), using Eqs. (II.25,II.8):
Θ = −

(

β

α

)′

− 2
β

α

1

r
(III.7)At r∗ (for β

α
= 0), we have non-zero expansion given by

Θ⋆ = −
(

β

α

)′

⋆

. (III.8)The shear 
an also be expressed here from Eqs. (II.9)and (II.25) as
a =

1

3

[

(

β

α

)′

− β

α

1

r

]

, (III.9)and we 
an then relate shear and expansion as (usingEq. III.6)
r

(

Θ

3
+ a

)

= − β

α
= Lnr, (III.10)so on the limit shell,

Θ⋆ + 3a⋆ =0 ⇔ (Lnr)⋆ = 0. (III.11)1. Generalising TOVThe TOV equation, following [28℄, emerges fromEq. (II.28) in the stati
 
ase.We now generalise the TOV equation by de�ning afun
tional gTOV from Eq. (II.28) as
gTOV =

[

1 + E

ρpf + Ppf

P ′
pf + 4πPpfr +

Mpf

r2
− 1

3
Λr

]

=

[

1 + E

ρ + P
P ′ + 4πPr +

M

r2

]

. (III.12)The de�nitions (III.10), (II.28) and (III.12) 
ombine toyield
gTOV = − r

[

Ln

(

Θ

3
+ a

)

−
(

Θ

3
+ a

)2
] (III.13)

= − L2
nr. (III.14)We 
an then obtain lo
al 
onditions that yield the TOVequation on the limit shell when

gTOV⋆ = 0 ⇔ L2
nr =0

⇔ Ln

(

Θ

3
+ a

)

⋆

=0. (III.15)

We 
an further express gTOV in a form that re-minds of the FLRW Ray
haudhuri equation by using
〈ρ〉 ≡ M/(4πr3/3), i.e.

gTOV =
1 + E

ρ + P
P ′ +

4π

3
r (〈ρ〉 + 3P ) , (III.16)and for FLRW it redu
es to

gTOVFL =
4π

3
r (ρ + 3P ) = −r̈. (III.17)2. Dynami
s of the limit shellWe have seen that we 
ould de�ne the limit shell byonly setting E⋆ = −2M⋆/r⋆ (so β⋆ = 0), so that Θ⋆ =

3a⋆. Now, using Eqs. (II.29,II.32,II.33,III.12) we �nd
(

β

α

)

�

=β

(

β

α

)′

+ αgTOV (III.18)
⇒ β̇ =β

(

β′ − β
α′

α
+

α̇

α

)

+ α2gTOV, (III.19)so on the limit shell, we have
(

β

α

)

�

⋆

=αgTOV⋆ (III.20)
⇒ β̇⋆ =α2gTOV⋆. (III.21)Re
all that, in the LTB frame, β = −ṙ, so this tells us

r̈LTB,⋆ = − α2gTOV⋆, (III.22)and thus when gTOV⋆ = 0 that shell has no a

elerationand is therefore really stati
, as expressed in the origi-nal TOV equation. For 
ompleteness, we 
an rëexpressEq. (III.6) with Eqs. (II.31,II.30,III.12) in GPG 
oordi-nates:
r̈GPG,⋆ = −2M

E
α2

[L2
nM

M
− L2

nE

E

]

⋆

= −α2

[

gTOV⋆ − r2
⋆

gTOV2
⋆

M⋆

]

. (III.23)3. Ray
haudhuri expansion evolutionFrom Eqs. (II.21) and (II.23), with Λ in
luded as a�uid 
omponent, we have in the GPG frame,
−2LnΘ − 2

3
Θ2 − 12a2 +

2

α
DkDkα =8π (ρ + 3P ) ,(III.24)and on the limit shell, that reads

− 2

α
Θ̇⋆ − 2Θ2

⋆ +
2

α
DkDkα⋆ =8π (ρ + 3P ) , (III.25)
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an still be dynami
. Using theEuler Eq. (II.20), the Hessian (II.15) gives
2

α
DγDγα =

1 + E

ρ + P
P ′

[

E′

1 + E
− 2

(

αr2
)′

αr2

]

− 2

(

1 + E

ρ + P
P ′

)′

. (III.26)Thus Eq. (III.24) reads
− LnΘ − Θ2 − 2

r

β

α

[

2Θ +
3

r

β

α

]

= 4π (ρ + 3P )

− P ′

2 (ρ + P )
E′ +

(

1 + E

ρ + P
P ′

)′

+

(

2

r
− P ′

ρ + P

)

1 + E

ρ + P
P ′. (III.27)Here, we 
an re
ognise the �rst term of TOV. On thelimit shell the above equation reads

− 1

α
Θ̇⋆ − Θ2

⋆ = 4π (ρ + 3P )

− P ′

2 (ρ + P )
E′ +

(

1 + E

ρ + P
P ′

)′

+

(

2

r
− P ′

ρ + P

)

1 + E

ρ + P
P ′, (III.28)and we re
ast the Ray
haudhuri equation for the FLRW
ase

−LnΘ − Θ2

3
=4π (ρ + 3P ) (III.29)
= − 3Ḣ − 3H2. (III.30)4. Remarks on null expansion limit shellsWe now explore the 
onsequen
es of having, in additionto (III.11), the 
ondition Θ⋆ = 0for the limit shell. Inthis 
ase, the shear must also vanish on the shell and
(

β

α

)′

⋆

=0, (III.31)whi
h 
onstrains the gradient of the generalised velo
ity�eld β/α.In addition, and most importantly, the Ray
haudhuriEq. (III.27) shows that an initially expansion-free divid-ing shell is not likely to remain so, and will drift radially.If we impose the vanishing of LnΘ in Eq. (III.24), wederive
1

α⋆

DkDkα⋆ =4π (ρ + 3P )⋆ , (III.32)whi
h then translates into a thermodynami
 
onditionon the se
ond-order derivative of P , whi
h should indu
e

r
3
√

3M
Λ

E>

Elim
− (3M )

2
3

3
√

Λ

E<

(

−2M
r

− Λ
3r

2
)

Figure 1: Kinemati
 analysis for a given shell of 
onstant Mand E. Depending on E relative to Elim, the fate of theshell is either to remain bound (E< < Elim) or to es
ape and
osmologi
ally expand (E> > Elim). There exists a 
riti
albehaviour where the shell will forever expand, but within a�nite, bound radius (E = Elim, r ≤ rlim)a very spe
i�
 and ad ho
 lo
al equation of state of theperfe
t �uid, namely
(

1 + E

ρ + P
P ′

)′

⋆

= −4π (ρ + 3P )⋆ +
P ′

⋆

2 (ρ + P )⋆

E′
⋆

−
(

2

r
− P ′

ρ + P

)

⋆

1 + E⋆

ρ⋆ + P⋆

P ′
⋆. (III.33)We 
on
lude that the 
ase of a stati
, expansion-free,limit shell is very restri
tive: for example, in the sim-plest 
ase, dis
ussed below, of an inhomogeneous Λ-CDMmodel, Eq. (III.33) indu
es a restri
tive equation of state

P = −ρ/3 on the shell, whi
h is neither veri�ed by thedust 
omponent, nor by the Λ �uid, whereas the limitshell in this 
ase derives from a stati
ity 
ondition (seeSe
. IVA).IV. APPLICATIONS TO SIMPLE MODELSWe now will illustrate the behaviour a

ording to thelimit shell of simple models. First we will see how itappears in a Λ-CDM model, that is a Lemaître-Tolman-Bondi dust model with a 
osmologi
al 
onstant. We willthen look at more general models in
luding perfe
t �uids.A. Overdensity in a Λ-CDM modelIn what follows we 
onsider a Λ-LTB model whi
h, be-sides the bare LTB 
ase, is exa
tly solvable, the mostsimple perfe
t �uid model with a 
osmologi
al 
ontextdeparting from LTB and whi
h satis�es the 
onditionsfor the existen
e of an asymptoti
ally r-stati
 dividingshell. Indeed, as stated in [28℄, 
hoosing P = 0 leads to
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r

ṙ

Figure 2: Phase spa
e of a shell of �xed M and E. Thes
ales are set by the value of rlim = 3

q

3M
Λ

while the a
tualkinemati
 of the shell is given by E.the usual LTB solutions. Setting P = 0 in Eq. (II.38)implies6 Ṁ = 0 and it is somewhat remarkable that thismass is still 
onserved for ea
h shell in spite of the pres-en
e of Λ. Λ gives a homogeneous pressure, whi
h inEq. (II.40) gives α′ = 0 so we 
an rede�ne αdT = dT ∗into the line element (II.36), and �nally in Eq. (II.39),assuming no shell 
rossing r′ 6= 0. We are therefore leftwith Eq. (II.37) in the 
lassi
 LTB form, with
ṙ2 =2

M

r
+

1

3
Λr2 + E. (IV.1)Adding a 
osmologi
al 
onstant modi�es the mass def-inition but not the dust equation of motion. However,we have an extra term that leads to a di�erent dynam-i
s. We 
an thus write the Ray
haudhuri-like equation
orresponding to time derivation of Eq. (IV.1):

r̈ = − M

r2
+

Λ

3
r, (IV.2)and this shows there exists a radius without a

elerationfor stri
tly positive Λ, 
ontrary to pure dust. However,the �rst integral (IV.1) su�
es for analysis of what hap-pens to ea
h shell (with �xed R).1. Kinemati
 analysisThe Friedmann-like equation (IV.1) 
an be used to getthe dynami
s in a purely kinemati
al way. It 
an beexpressed with a polynomial

ṙ2 =
Λ

3r

(

r3 +
3E

Λ
r +

6M

Λ

)

=
Λ

3r
P3,f (r), (IV.3)6 M 
an be understood as the mass of the dust alone but intera
t-ing with Λ, see Se
. II D.

6

8

10

12

14

16

0 2 4 6 8 10

x

∝ R−1

ln(ρ)

∝ R−3

ln(R)

∼ ρbFigure 3: NFW with ba
kground density pro�lewhi
h roots (given in appendix A) should obey the e�e
-tive potential equation
E = V (r) ≡− 2M

r
− Λ

3
r2. (IV.4)Sin
e ṙ2 ≥ 0, we have the 
ondition

E ≥V (r). (IV.5)The motion of a given shell over time thus follows E =
const 
urves above the e�e
tive potential V . Roots,the points of 
hanging dire
tion, translate as a geomet-ri
 interse
tions between those 
urves and V . The ef-fe
tive potential admits one real negative root (0 en-ergy/
urvature) at

r = − 3

√

6M

Λ
, (IV.6)and one double solution at its horizontal tangent (V ′ = 0)

rlim =
3

√

3M

Λ
, (IV.7)for whi
h the value of E be
omes

Elim = − (3M)
2
3 Λ

1
3 . (IV.8)It 
an be easily shown that any shell standing at rlimwith Elim will automati
ally be a limit shell

rlim = − 2Mtot,lim

Elim

= −2
M + Λ

6 r3
lim

Elim

= − 3M

Elim

, (IV.9)and 
al
ulating its gTOV, using the de�nition ofEq. (III.12) and re
ognising Eq. (IV.2),
gTOV =

M

r2
− Λ

3
r = −r̈, (IV.10)that su
h a shell will be r-stati
 (gTOVlim = −r̈lim = 0).
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x
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K10

K8
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K4

K2

2

4

6

→ cst

ln(R)

E(R) > 0

ln(−Elim)

∝ R
4
3

E = −1

∝ R
2

E > −1

ln(−E(R))

Figure 4: NFW with ba
kground Elim and an example of
E pro�le given by Eq. (IV.20), for Emin = −1 + e

−10 and
r1 = e

9.The e�e
tive potential analysis is shown in �g. 1.We 
an thus re
onstru
t the phase spa
e of that shell inthe (ṙ, r) plane. Above the energy Elim, there is only oneroot in the negative region, thus the �ow is qualitativelyde�ned by its initial 
onditions. At Elim, the doublepositive root gives a repulsive point, thus a saddle, while,below Elim, the pair of roots give 
losed and open orbitsas shown on �g. 2.The Ray
haudhuri-like equation 
an also be expressedwith a polynomial
r̈ =

Λ

3r2

(

r3 − 3M

Λ

)

=
Λ

3r2
P3,R(r), (IV.11)admitting only one real root; the a

eleration is alwayspositive for

r ≥ 3

√

3M

Λ
, (IV.12)thus at in�nity (
osmologi
al 
onstant dominates, M ismonotonous in r). Therefore, at this root, there exist alimit radius beyond whi
h there is no re
ollapse:

rlim(R) =
3

√

3M(R)

Λ
. (IV.13)Note that this radius 
orresponds to the saddle point,whi
h initial energy radial pro�le is �xed with ini-tial 
onditions for the mass distribution Elim(R) =

− (3M(R))
2
3 Λ

1
3 . Therefore the last interse
tion betweenthe initial 
urvature pro�le, set by 
ombining velo
ityand mass pro�les, and this saddle point pro�le yields aglobal shell beyond whi
h there is no re
ollapse, re
over-ing separation of expansion from 
ollapse. Expli
it exa
tsolutions for this ΛLTB evolution model are shown inappendix B. It is nevertheless 
rutial to realise that thesele
tion of the limit shell from initial 
urvature does notentail ne
essarily that it should start as r-stati
. Indeed

log(R)

∼ ρb

∝ R−ǫ

log(ρ(R))

Figure 5: power law density pro�le without 
usp and withba
kgroundthe opposite should be true in general, as 
an be seen inEqs. (IV.1) using Elim, Rlim in (IV.4), and �g. 1: for any
hoi
e of the initial Rlim < rlim, the radial velo
ity
Ṙ2

lim =Elim − V (Rlim) > 0, (IV.14)so it appears that the r-stati
 behaviour of the shellshould only emerge asymptoti
ally as it approa
hes zerovelo
ity for in�nite time. The sele
ted limit shell there-fore agrees with the 
onditions (III.11,III.15) only at in-�nity in time, and is tra
ed ba
k to initial 
onditionsowing to the Λ+dust 
onservation of M and E in time.More general �uids should not always allow for this 
on-servation on the limit shell, however on
e a shell veri�esEqs.(III.11,III.15), its stati
ity guaranties that it shouldverify it at time-in�nity. It is remarkable that the ex-isten
e of the limit shell only matters at time-in�nity,suggesting that a weaker de�nition than (III.11,III.15)should a be su�
ient 
ondition.2. Time dependent TOVThe shape of Eq. (IV.10) shows that, at the root ofthe Ray
haudhuri-like polynomial, gTOV = 0 and thatit is positive inside and negative outside. The trappedregion is thus 
hara
terised by gTOV ≥ 0. We 
an also
ompute, using M = 4π 〈ρ〉 r3/3,
gTOV′ =

[

4π

(

ρ − 2

3
〈ρ〉
)

− Λ

3

]

r′ (IV.15)so TOV is a de
reasing fun
tion of r (for r′ > 0, a fairassumption as seen when r(t = 0) = R), ex
ept in regionswhere ρ > 2
3 (〈ρ〉 + ρΛ), that is in density peaks. It is alsoa time dependent fun
tion through the evolution of r:

˙gTOV = ∓
(

2M

r3
+

Λ

3

)

√

E +
2M

r
+

Λ

3
r2, (IV.16)thus for a given shell, it in
reases with time for ingoingdust shells and de
reases for outgoing ones. The mainpoint is that with dust, turnaround shells have r-stati
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log(R

r0
)

∝ R2

∝ R2

E(R) > 0

∝ R2

∝ R(2−ǫ)

log(−Elim,noC(R))

log(−EnoC(R))

∝ R
2(3−ǫ)

3

Figure 6: power law density without 
usp + ba
kgroundinlog(−Elim) − log(R) and log(−E) − log(R) s
ales
gTOV, and that balan
ed shells (between their mass pulland that of Λ) verify the TOV equation and are thusstati
. 3. Examples of initial densityIt is obvious then that initial 
onditions are 
ru
ial todetermine the existen
e of a separating shell in the ΛLTBmodel sin
e they set the pro�le of E and that of Elim. Asingle 
rossing of the two 
urves ensures lo
ally the exis-ten
e of su
h a shell, while its global e�e
t remains if theinitial 
onditions do not foster shell 
rossing. This is the
ase if there is only one 
rossing from bound to unbound
Es of Elim. More 
ompli
ated 
ases will be examined ina future work. We now pro
eed with examples of initialdensity pro�les and then dedu
t the 
onditions on the
orresponding 
urvature pro�le for a limit shell to exist.a. NFW with ba
kground: The 
hoi
e of an NFW[34℄ density pro�le is motivated by their prevalen
e inlarge 
osmologi
al dark matter haloes ([35, and referen
estherein℄). If we initialise the halo with su
h a density pro-�le, with 
on
entration 1/R0 and in�exion density ρ0/4,pla
ed on a 
onstant ba
kground ρb, we 
an 
ompute the
orresponding mass pro�le. The density pro�le, as illus-trated on �g. 3, is given by [34℄

ρ =
ρ0

R
R0

(

1 + R
R0

)2 + ρb. (IV.17)The 
orresponding mass then reads
M = 4π

{

r3
0ρ0

[

ln

(

1 +
R

r0

)

− R

R + r0

]

+ ρb

R3

3

}

.(IV.18)Now armed with the expression for the maximum en-ergy fun
tion, the double root solution above, we 
anobtain from Eq. (IV.8) the bound upper limit for the ini-tial Energy/
urvature pro�le that separates between ever

expanding and bound shells
Elim = − (12π)

2
3 Λ

1
3

{

r3
0ρ0

[

ln

(

1 +
R

r0

)

− R

R + r0

]

+ρb

R3

3

}
2
3

. (IV.19)Figure 4 shows that pro�le 
orresponding to the NFWwith ba
kground mass. We then propose an example forthe E(R) pro�le, motivated by its 
osmologi
al Fried-mann asymptoti
 
urvature and its simple radial evolu-tion from bound to unbound, as
E(R) = − 4Emin

(

R

r1

)(

1 − R

r1

)

, (IV.20)where r1 > 0 and −1 < Emin < 0, 
hosen so that E
rosses Elim near its 
onstant density region. With theasymptoti
 
onstant density and Friedmann negative 
ur-vature (E ≃ 4
r2
1

R2 = −k∞R2), these initial 
onditionsmodel well a 
ollapsing stru
ture in an open ba
kgroundof 
urvature radius r1

2 . The resulting 
urves are shownin �g. 4. We have here an example where shells with
E < Elim are trapped inside the limit shell de�ned bythe interse
tion of the two pro�les. Moreover, that limitshell in the 
ase of dust with Λ has been shown to bestati
. Thus, with this set of physi
ally motivated initial
onditions, the limit shell de�ned in this way delimits a
onstant region of 
ollapsing mass, separated from ex-panding shells.b. Cosmologi
al ba
kground with power law overden-sity: The most natural 
osmologi
al initial 
ondition isa power law overdensity, with or without 
usp, upon auniform ba
kground with an initial Hubble �ow ([35℄).The uniform ba
kground and initial Hubble �ow ensuresthe asymptoti
 solution starts FLRW. In this se
ond ex-ample of initial 
onditions, we explored both density pro-�les but illustrate only the 
uspless 
ase as it is more ob-servationally sounded ([35, and refs. therein℄). The den-sity pro�les, as illustrated for the se
ond 
ase on �g. 5,are given by (ǫ > 0, and in the �rst 
ase ǫ ≤ 3 for a �nite
entral mass)

ρ =ρ0

(

R

R0

)−ǫ

+ ρb, (IV.21)
ρ =ρ0

(

1 +
R

R0

)−ǫ

+ ρb. (IV.22)Observations of the Cosmi
 Mi
rowave Ba
kground(CMB) would imply to 
hose initial time at re
ombina-tion and amplitudes of the order of ρ0 ∼ 10−5ρb ([see 35,and refs. therein℄). The 
orresponding mass then reads,for the 
uspy pro�le,
Mcusp = 4πr3

0ρ0















[

ln
(

R
r0

)]

, ǫ = 3
[

“

R
r0

”

3−ǫ

3−ǫ

]

, 0 < ǫ < 3















+
4π

3
ρbR

3,(IV.23)
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r∂1

r∂2
log(−Elim(R))

log(−E(R)) E
∂−2

= E∂+
2
⇒ ṙ

∂−2
= 0

log(R)

E(R) > 0

E > Elim ⇒ r∂ escape to ∞ if ṙi > 0
r∂ collapse to 0 if ṙi < 0

Figure 7: rlim < r∂1
< r∂2


ase for a dust layer with Λ. Fullspa
e Λ-CDM diagram for log(−Elim)−log(R) and log(−E)−
log(R) in dashed line. This region is 
hara
terised by E >

Elim, so the dynami
al analysis of �g. 1 yields 
ontinuationof initial velo
ities dire
tions.and for the pro�le with 
onstant density in the 
entre
MnoCusp = 4πr3

0ρ0×


















































[

1
2

(

R
r0

)(

R
r0

− 2
)

+ ln
(

1 + R
r0

)]

, ǫ = 1
[

(

R
r0

)

2+ R
r0

1+ R
r0

− 2 ln
(

1 + R
r0

)

]

, ǫ = 2
[

R
r0

“

1+ R
r0

”

2 + ln
(

1 + R
r0

)

]

, ǫ = 3

[

“

1+ R
r0

”

3−ǫ
−1

3−ǫ
− 2

“

1+ R
r0

”

2−ǫ
−1

2−ǫ
+

“

1+ R
r0

”

1−ǫ
−1

1−ǫ

]

, ǫ > 0



















































+
4π

3
ρbR

3. (IV.24)The resulting boundary pro�le for E again followsEq. (IV.8), using the obtained mass pro�les. Taking aninitial Hubble �ow, Ṙ = HiR, the E(R) pro�le is thende�ned by Eq. (IV.1) to be
E(R) =

(

H2
i − Λ

3

)

R2 − 2M

R
. (IV.25)The resulting 
omparison between E and Elim for thenon-
uspy 
ase is shown in �g. 6. On
e again, the in-terse
tion de�nes a stati
 limit shell for whi
h rlim =

− 2Mtot,lim

Elim
and gTOV = 0, all shells inside it are in thekinemati
ally bound region of �g. 1 while those outsideare in the free region. Initial 
onditions ensure they willexpand in a quasi FLRW manner.These examples illustrate that 
osmologi
ally moti-vated initial 
onditions lead to a 
lear separation be-tween expanding and 
ollapsing regions. Therefore forthese systems, expansion ignores the e�e
ts of 
ollapseand 
onversely the details of the 
ollapsing region 
anignore the presen
e of a ba
kground expanding universe.

r∂2

log(−E(R))

r∂1

E > Elim

⇓
ṙ < 0 : r∂ → 0
ṙ > 0 : r∂ → ∞

Rlim
log(−Elim(R))

E(R) > 0

E < Elim ⇒ r∂ collapse to 0

log(R)

E
∂−2

= E∂+
2
⇒ ṙ

∂−2
= 0

Figure 8: r∂1
< rlim < r∂2


ase for a dust layer with Λ,
Λ-CDM for log(−Elim) − log(R) and log(−E) − log(R) indashed line. The region with E < Elim is trapped by its setof e�e
tive potentials and will re
ollapse, that with E > Elim,so the dynami
al analysis of �g. 1 yields 
ontinuation of initialvelo
ities. Separating shell remains in between those regions.B. Perfe
t �uid 
ore in a Λ-CDM modelBefore examining the possibility of existen
e for a limitshell inside a perfe
t �uid in a sequel paper, where weshall present an ansatz for a perfe
t �uid inhomogeneous
ore in a Friedmann environment, let us turn to the 
on-�guration where a perfe
t �uid ball is surrounded by a)va
uum with a 
osmologi
al 
onstant, b) dust and Λ.1. Pure Λ exteriorIn the same way as [28℄ did for a perfe
t �uid sur-rounded by a Λ = 0 va
uum, We 
an examine the inter-fa
e between the perfe
t �uid and the Λ va
uum. In thelatter region, both the pressure radial derivative P ′ = 0and the sum ρΛ + PΛ = 0 for all time and pla
e by def-inition of Λ. In the same way as [28℄ showed for su
ha 
on�guration with Λ = 0 va
uum, su
h a simple in-terfa
e implies, through Eqs. (II.40) and (II.30), that theenergy and lapse fun
tions, E and α, are unde�ned there.These equations show that only if the �uid's pressure ra-dial derivative P ′ vanishes faster than ρ+P 
an E and αremain de�ned. This 
ondition sets an unusual boundary
onstraint to the perfe
t �uid's EoS (simple linear EoSdo not agree with it), but it is more fruitful to point outthat su
h behaviour mimi
s that of a vanishingly thinlayer of Λ-dust. Thus, the transition between the tworegimes give rise to an ines
apable Λ-dust atmosphere,however vanishingly thin, as was found in the pure va
-uum 
ase [28℄. We have two free boundaries, r∂1

(t) wherethe pressure vanishes and r∂2
(t) > r∂1

(t) where the den-sity vanishes, at whi
h the EoS is de�ned as
0 =

{

f(ρ, P ) for r ∈ [0; r∂1
]

P for r ∈ [r∂1
; r∂2

] .
(IV.26)
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log(−Elim(R))

log(−E(R))

r∂2r∂1

log(R)

E < Elim ⇒ r∂ collapse to 0

E
∂−2

= E∂+
2
⇒ ṙ

∂−2
= 0

E(R) > 0Figure 9: r∂1
< r∂2

< rlim 
ase for a dust layer with Λ,
Λ-CDM for log(−Elim) − log(R) and log(−E) − log(R) indashed line. This region is 
hara
terised by E < Elim, so thedynami
al analysis of �g. 1 yields eventual re
ollapse.Evolution of r∂1

(t) and r∂2
(t) follows from setting respe
-tively P = 0, then P = ρ = 0 in Eqs. (II.32), (II.33) and(II.40) to evolve those radii from initial 
onditions. The
ontinuity of the 
urvature through both boundaries im-poses again

[

lim
r→r+

∂i

− lim
r→r−

∂i

]

{E (t, r)} =0, (IV.27)that 
an be used to transmit the value of the mass pa-rameter from the outer S
hwarzs
hild-de Sitter spa
etimedown to the perfe
t �uid boundary 
urvature.2. Limit shellAt this stage, the possibility opens for a limit shell inthe Λ-CDM atmosphere of the 
ore, provided that su
hshell veri�es in 
onjun
tion Eqs. (III.3), or equivalently(III.11), and (III.15), whi
h is only possible in a positively
urved region. Given the surrounding S
hwarzs
hild-de Sitter environment, the positive 
urvature require-ment is at least lo
ally �lled near the outer bound-ary. There the analysis of Se
. (IVA) applies fully toyield, given initial 
onditions, the lo
ation of the previ-ously dis
ussed stati
 virtual shell. Re
all that in theS
hwarzs
hild-de Sitter region, E = − 2M∂2

r
− Λ

3 r2 while
Elim = − (3M∂2

)
2
3 Λ

1
3 = cst, however the analysis onlyapplies in the presen
e of dust, thus between r∂1

and r∂2
.Owing to the preservation of 
ontinuity in M and E at

r∂1
, whi
hever behaviour the perfe
t �uid may have, itwill be 
on�ned by that of the previously explored Λ-CDM at its boundary.Let us exhibit examples of su
h 
on�gurations: we
an start from a similar example as presented in Se
.(IVA3). Nevertheless, to preserve 
urvature 
ontinu-ity (IV.27), the initial velo
ity at r∂2

should go to 0,and therefore the previous E pro�le should be modi�eda

ordingly. Then we are fa
ed with three possibilities

due to the lo
ation of the dust layer boundaries 
om-pared with the limit shell in the full spa
e dust model:
rlim < r∂1

< r∂2
, r∂1

< rlim < r∂2
or r∂1

< r∂2
< rlim.Those 
ases are illustrated respe
tively on �gs. 7, 8 and9. In the �rst 
ase, the dust layer lo
ates above the max-imum of their e�e
tive potential (IV.4) so their initialvelo
ities gives the dire
tion of their unhindered asymp-toti
 behaviour, i.e. an initially expanding dust layershould expand forever. If a separating shell exists, itshould lie within the perfe
t �uid region. The se
ond
ase shows the existen
e of a separating shell, the perfe
t�uid being bound by the eventual re
ollapse of the r∂1shell, while some of the dust shell will expand throughthe va
uum region and eventually squeeze it to in�nity.In the third 
ase all the dust shells lo
ate below the max-imum of their e�e
tive potential (IV.4) so the whole masswill eventually re
ollapse, as if the separating shell wasvirtually lo
ated in the va
uum region.Now sending the r∂2

boundary to in�nity, we 
an ex-pand the dust layer a

ordingly and so long as Se
.(IVA)'s analysis yields a limit shell within the dust re-gion, the perfe
t �uid shall be 
ontained by the 
ollapsinginner boundary (i.e. the third 
ase disappear and we areleft with 
ases rlim < r∂1
and r∂1

< rlim as treated in�gs. 7 and 8).In this se
tion we have found that the presen
e of a
osmologi
al 
onstant does not modify the need for a dustlayer around a perfe
t �uid 
ore surrounded by va
uum.We have also given examples of limit shell separationbehaviours for appropriately set initial 
onditions in thedust layer with Λ. We have even hinted at that possibilityinside the perfe
t �uid from the dust behaviour, althoughsu
h study should be left for a sequel paper.V. SUMMARY AND DISCUSSIONIn the present work we have 
onsidered spheri
allysymmetri
, inhomogeneous universes in order to as
er-tain under whi
h 
onditions a dividing shell separatingexpanding and 
ollapsing regions exists. This endeavouris important in relation with the present understanding ofstru
ture formation as the out
ome of gravitational 
ol-lapse of overdense pat
hes within an overall expandinguniverse.We have addressed this problemati
s by resort-ing to an ADM 3+1 splitting, utilising the so-
alledGeneralized-Painlevé-Gullstrand 
oordinates as devel-oped in Refs. [27, 28℄. This enables us to follow a non-perturbative approa
h and to avoid having to 
onsiderthe mat
hing of the two regions with the 
ontrasting be-haviours. We have found lo
al 
onditions 
hara
terisingthe existen
e of a dividing shell. We have related these
onditions to a gauge invariant de�nition of the proper-ties of the dividing shell. These require the vanishing ofa linear 
ombination of the expansion s
alar and of theshear on the shell, as well as that of its �ow derivative. InGPG 
oordinates, it summarises as a vanishing of both



Spheri
ally symmetri
 models with P: dividing shell and generalized TOV 13�rst and se
ond order �ow derivatives of the areal radius.In order to illustrate our �ndings we have 
onsideredsome simple examples of 
osmologi
al interest that pro-vide realizations of our results. We have 
onsidered a Λ-CDM model whereby we 
onsider an LTB universe withdust and a 
osmologi
al 
onstant. Noti
e that the simul-taneous 
onsideration of the latter two 
omponents yieldsa perfe
t �uid model for the 
ombined matter 
ontent.Moreover it 
an be seen as simpli�ed model of a dustuniverse within a 
osmologi
al setting 
oarsely providedby Λ whi
h would then mimi
 the energy 
ontent of theba
kground 
osmologi
al model with a rate of expansionmu
h smaller than that of the pure dust 
ollapse.We have 
hosen initial 
onditions motivated by 
osmo-logi
al 
onsiderations and have dis
ussed the existen
e ofa dividing shell for those 
ases. We have also generaliseda result of Ref. [28℄ for the 
ase where a 
osmologi
al
onstant is present, whi
h states that a perfe
t �uid 
oreembedded in a universe �lled with a 
osmologi
al 
on-stant ne
essarily exhibits a dust transition between theperfe
t �uid inner region and the outer va
uum region.This permits to envisage this 
ase as a generalization ofthe former Λ-CDM examples.Finally we should mention that, a thorough dis
ussionof global 
onditions represent a mu
h harder problem,and remain an open problem sin
e this involves the full
hara
terisation of a partial di�erential equations prob-lem with boundary 
onditions in an open domain.A
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tPTDC/MAT/108921/2008. JPM also wishes to thankFCT for the plurianual running grant of CFTC.Appendix A: ROOTS OF P3,f (r)1. Roots for the polynomialThe roots (r0s) of Eq. (IV.3) pro
eed from the poly-nomial P3,f . We 
hange variable su
h that r = u + vand use the extra degree of freedom to 
hoose to rewrite

P3,f = 0 su
h that
uv = − E

Λ
, (A.1)

(

u3 +
3M

Λ

)2

=

(

E

Λ

)3

+

(

3M

Λ

)2

. (A.2)Solutions for the latter se
ond degree polynomial 
omenaturally as
u3 =

−3M ±
√

E3

Λ + (3M)2

Λ
(A.3)

⇒ u =
3

√

√

√

√
−3M ±

√

E3

Λ + (3M)
2

Λ
ei 2πk

3 . (A.4)We are left with six solutions for u and v, whi
h aresymmetri
al and related by Eq. (A.1) so uv being real,
hoosing u3 as the positive squareroot solution, the 
or-responding v3 be
omes the negative one while u and vare 
omplex 
onjugate, so
uv =

3

√

(3M)2 − E3

Λ − (3M)2

Λ2
= −E

Λ
, (A.5)therefore the roots are:

rk=0,±1 =





3

√

−3M +

√

E3

Λ
+ (3M)2ei 2πk

3

+
3

√

−3M −
√

E3

Λ
+ (3M)

2
e−i 2πk

3



 /Λ
1
3 (A.6)

2. Real root(s)For the positive dis
riminant, ∆ = E3

Λ + (3M)
2, thereis only one real root for k = 0. A negative or null dis-
riminant, yields again the real k = 0 root and two otherreal roots for k = ±1, sin
e then v = u. We are then leftwith the single real root, noting

a0 =
3

√

−3M +

√

E3

Λ
+ (3M)

2
, (A.7)

a∗
0 =

3

√

−3M −
√

E3

Λ
+ (3M)

2
, (A.8)

r0 =
a0 + a∗

0

Λ
1
3

, (A.9)
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Λ + (3M)2 ≤ 0, the two other real roots
a± =

3

√

√

√

√

3M + i

√

(−E)
3

Λ
− (3M)

2
(1 ∓ i

√
3), (A.10)

ā± =
3

√

√

√

√

3M − i

√

(−E)3

Λ
− (3M)

2
(1 ± i

√
3), (A.11)

r± =
a± + ā±

2Λ
1
3

, (A.12)3. Signs of the real roots:So as to order the roots, it is ne
essary to look at theirsign. This is important as r should be positive, r < 0 be-ing unphysi
al. Re
all that M, Λ > 0 and E > −1. When
∆ > 0, i.e. when E > − (3M)

2
3 Λ

1
3 = Elim, we have onlyone real root and r0 > 0 ⇒ a0 > −a∗

0. We always have
−a∗

0 =
3

√

3M +
√

E3

Λ + (3M)
2

> 0. Supposing a0 > 0(and thus a3
0 > 0) then −a∗3

0 a3
0 = E3

Λ > 0 ⇔ E > 0.Therefore, with the hypothesis E > 0, the 
ondition
r0 > 0 implies a0 > −a∗

0 ⇔ a3
0 > −a∗3

0 ⇔ −3M > 3M !Hen
e for E > 0 we have r0 < 0. Samely, for 0 ≥
E > − (3M)

2
3 Λ

1
3 , requesting r0 > 0 implies a0 > −a∗

0while −a∗
0 > 0 ≥ a0! Therefore, 0 ≥ E > − (3M)

2
3 Λ

1
3always entails r0 < 0 and we 
on
lude that r0 is al-ways negative when E > − (3M)

2
3 Λ

1
3 . The 
ase when

(3M)
2
Λ < 1 is more interesting as we have three realroots for −1 < E ≤ − (3M)

2
3 Λ

1
3 . Let us use the solu-tions of Eq. (A.6) in the form

rk =
uk + ūk

Λ
1
3

=
2ℜ(uk)

Λ
1
3

. (A.13)We know that
u3

k = − 3M + i

√

(−E)
3

Λ
− (3M)

2 (A.14)so ℑ(u3
k) ≥ 0 and ℜ(u3

k) < 0. We 
an thenrewrite u3
k = ρeiϕk,3 with ρ2 = (−E)3

Λ , and ϕk,3 ∈
[

π
2 + 2kπ ; π + 2kπ

]

k∈Z
. The values of uk are de-du
ed as uk = ρ

1
3 eiϕk with ϕk =

ϕk,3

3 : ϕk ∈
[

π
6 + 2kπ

3 ; π
3 + 2kπ

3

]

k∈Z
. Ea
h uk admits the samemodulus, so the phases, ea
h separated by 2π/3, giveus the ranges and the order in whi
h ea
h root lies. Theresults are the following:

ϕ0 ∈
[

π
6 ; π

3

]

⊂
[

0 ; π
2

]

⇒ r0 >0, (A.15)
ϕ+ ∈

[

π − π
6 ; π

]

⊂
[

π
2 ; π

]

⇒ r+ <0, (A.16)
ϕ− ∈

[

−π
2 ; −π

3

]

⊂
[

−π
2 ; 0

]

⇒ r− ≥0, (A.17)and the order of the 
osine (sin
e rk involves the realpart of uk) yields −r+ ≥ r0 ≥ r− ≥ 0. This is agreeing

with the analysis of Se
. IVA1 understanding that thenegative root shifts from r0 to r+ through the ∆ = 0point, and that below the horizontal tangent, r0 is theexterior turning point while r− gives the interior envelopeof the e�e
tive potential.The above solutions gives us then the expli
it equa-tions for the interse
tion of the e�e
tive potential withthe 
urrent 
urvature involved in eq. IV.1.Appendix B: EXACT SOLUTIONS FOR ANINHOMOGENEOUS ΛCDMThe equation of motion admits analyti
al solutions interms of hyperellipti
 integrals (see also Lemaître [36℄).From Eq. (IV.1)
t =

∫ r

R

√

r

Er + 2M + Λ
3 r3

dr, (B.1)however, in 
onformal time (dt = rdη)
r′2 =Er2 + 2Mr +

Λ

3
r4, (B.2)

⇒ η =

∫ r

R

1
√

Er2 + 2Mr + Λ
3 r4

dr =

∫ r

R

1
√

P4(r)
dr(B.3)Given that the in
omplete ellipti
 integral of the �rstkind is de�ned by

F (x, k) =

∫ x

0

dt
√

(1 − t2) (1 − k2t2)
=

∫ x

0

dt
√

PF (t)
,(B.4)it is possible by a rational 
hange of variable, z = ax+b

cx+dto go from PF to P4:
PF (z(x)) = ((c − a)x + (d − b)) ((c + a)x + (d + b))×

×((c − ka)x + (d − kb)) ((c + ka)x + (d + kb)) / (cx + d)
4

=
P4(x)

(cx + d)
4 . (B.5)The solutions are therefore following, using cr + d =

ad−bc
(a−cz) and dr = ad−bc

(a−cz)2
dz

η =

∫ r

R

1
√

PF (z)

1

(cr + d)
2 dr =

F (ar+b
cr+d

, k) − F (aR+b
cR+d

, k)

(ad − bc) (B.6)We then just need to �nd a, b, c, d, k in terms of E, M, Λ.We already have the roots of P4 = P3,f rΛ
3 from AppendixA and we 
an write from Eq. (B.5)

r1 = −d − b

c − a
, r2 = −d + b

c + a
, r3 = −d − kb

c − ka
, r4 = −d + kb

c + ka
.(B.7)
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ally symmetri
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an obtain expressions for d and b, isolating them inthe �rst and se
ond pairs of roots:
d = −r1(c − a) + r2(c + a)

2
, b =

r1(c − a) − r2(c + a)

2
,(B.8)

= −r3(c − ka) + r4(c + ka)

2
, =

r3(c − ka) − r4(c + ka)

2k
.(B.9)Equating the two ways of writing b+d, we obtain a linearrelation between c and a,

c =
r3k(1 − k) + r4k(1 + k) − 2kr2

r3(1 − k) + 2kr2 − r4(1 + k)
a. (B.10)Now re
all that the fa
tors of x4 and x0 in P4 are respe
-tively

(c2 − a2)(c2 − k2a2) =
Λ

3
, (B.11)

r1r2r3r4 =0. (B.12)The 
osmologi
al 
onstant means from Eq. (B.11) thatneither c = ±a nor c = ±ka, while Eq. (B.12) entailsthat one of the roots is 0. If we 
hoose r4 = 0, then wehave d = −kb and therefore, from Eqs. (B.8), d + kb = 0yields
c

a
=

r1(1 − k) − r2(1 + k)

r1(1 − k) + r2(1 + k)
, (B.13)so with Eq. (B.10) and r4 = 0, we obtain a third degreepolynomial in k (re
all k 6= 1 for non-degenera
y of PF )

(k − 1)

{

(

k +
2r1r2 − r1r3 − r2r3

r1r3 − r2r3

)2

+ 1

−
(

2r1r2 − r1r3 − r2r3

r1r3 − r2r3

)2
}

= 0 (B.14)
⇒ k =

2r1r2 − r1r3 − r2r3

r2r3 − r1r3
±

√

(

2r1r2 − r1r3 − r2r3

r1r3 − r2r3

)2

− 1.(B.15)We also 
an rewrite the 
ondition (B.10) to obtain a withEq. (B.11): the positivity of Λ in Eq. (B.11),
Λ

3
=

4k2
(

1 − k2
)2
[

(1 − k)
2
r3 + 4r2k

]

[r3 − r2] r2r3

[2r2k + (1 − k) r3]
4 a4,(B.16)

imposes to 
hoose r3 > r2 > 0, and thus
a = ± [2r2k + (1 − k) r3]

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| .(B.17)We dedu
e then c from Eq. (B.10)
c = ± k [(1 − k) r3 − 2r2]

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| ,(B.18)derive b from in
luding the solutions (B.17,B.10) in itsexpression in Eq. (B.8)
b = ∓

[

4r2k + (1 − k)
2
r3

]

r1 +
[(

1 − k2
)

r3

]

r2

2
×

×

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| , (B.19)and obtain d with our 
hoi
e of r4 = 0 that indu
es
d = −kb

d = ±
k
[

4r2k + (1 − k)2 r3

]

r1 + k
[(

1 − k2
)

r3

]

r2

2
×

×

√

√

√

√

√

Λ

3[(1−k)2r3+4r2k][r3−r2]r2r3

2k |1 − k2| . (B.20)Inputting the values of the roots from appendix A, andthe values of the transformation 
oe�
ients a, b, c, and
d into Eq. (B.21) yields the 
onformal time evolution so-lution, that 
an be related to the 
osmi
 time a

ordingto

t =

∫

rdη =

∫ r

R

r
∂

∂r

(

F (ar+b
cr+d

, k)

(ad − bc)

)

dr. (B.21)Therefore there is an analyti
 solution to the ΛLTBmodel (see also Lemaître [36℄).[1℄ P. J. E. Peebles, The Large-S
ale Stru
ture of the Uni-verse, (Prin
eton University Press, Prin
eton, 1981)[2℄ T. Padmanabhan, The Formation of Stru
ture in the Universe, (Cambridge University Press, Cambridge,1993)[3℄ C. Cattoen and M. Visser, Class. Quant. Grav. 22, 4913
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