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We investigate spherically symmetric perfect fluid spacetimes and discuss the existence and sta-
bility of a dividing shell separating expanding and collapsing regions. We perform a 3 + 1 split-
ting and obtain gauge invariant conditions relating the intrinsic spatial curvature of the shells
to the ADM mass and to a function of the pressure which we introduce and that generalises
the Tolman-Oppenheimer-Volkoff equilibrium condition. We analyse the particular cases of the
Lemaitre-Tolman-Bondi dust models with a cosmological constant as an example of a A-CDM
model and its generalization to contain a central perfect fluid core. These models provide simple,
but physically interesting illustrations of our results.

PACS numbers: 98.80.-k, 98.80.Cq, 98.80.Jk, 95.30.5f , 04.40.Nr, 04.20.Jb

I. INTRODUCTION

Models of structure formation generally assume that
small local inhomogeneities grow due the gravitational in-
stability, so that the overdensities collapse and eventually
form the "bound" structures we observe in the present
universe. Underlying this viewpoint is the idea that the
collapse of the overdensities departs from the general ex-
pansion of the universe. This approach often relies on
the idea that a small overdensity can be approached as
a closed patch in an otherwise spatially flat Friedmann
universe and it claims that Birkhoff’s theorem justifies
that, on the one hand, its evolution is independent from
the outside universe, and, on the other hand, that the be-
haviour of the outside Friedmann universe is immune to
the collapse of the closed patch (see e.g. [1-3]).The col-
lapse of overdensities has been extensively studied and
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most works have been focused on the study of the for-
mation both of small structure (astrophysical objects)
and of large-scale structure as the outcome of the growth
of small perturbations in a cosmological context. The
latter subject, comprises the relativistic and newtonian
analysis of the evolution of the fluctuations (see e.g. [1-
4]) and the study of the subsequent amplification of the
growing modes into the non-linear regime resorting to nu-
merical methods (see e.g. [5-8]). In the present work we
consider spherically symmetric, inhomogeneous universes
with pressure, and study the question of whether there
exists a dividing shell separating expanding and collaps-
ing regions. Our goal bears a connection to the general
problem of assessing the influence of global physics into
the local physics [9, 10]. One aspect of this problem
which has always attracted great interest is the endeav-
our to explain the local inertial phenomena in a Machian
sense (see e.g. [11, 12]) and, in fact, Brans-Dicke theory
[13-16] stems from this problem.

Another related aspect has been the study of the influ-
ence of cosmic expansion on local systems. Einstein and
Straus [17] were the first to study this problem by con-
structing a global solution which resulted from matching
the spherically symmetric vacuum Schwarzschild solution
to an expanding dust FLRW exterior across a hypersur-
face preserving the symmetry. Bonnor has made several
investigations along this line (see e.g. [18]). In particu-
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lar, he co-presented an exact solution representing a local
distribution of Electrically Counterpoised Dust embed-
ded in an expanding universe with zero spatial curvature
[19], showing that the distribution participates in the ex-
pansion. Among the generalisations of this model are
settings which keep the spherical symmetry but gener-
alise the interior source fields by considering for exam-
ple Vaidya (see [20] and references therein) or Lemaitre-
Tolman-Bondi (LTB) spacetimes (see [21-25]). On a dif-
ferent context, Herrera and co-workers [26] have studied
the "cracking" of compact objects in astrophysics using
small anisotropic perturbations around spherically sym-
metric homogeneous fluids in equilibrium.

In this work we use a different approach from all the
works described above. In one hand, by making use of
a single coordinate patch, we do not have to handle the
matching problem. On the other hand, our approach
is not perturbative. We adopt the formalism which has
been recently developed in a remarkable series of papers
by Lasky and Lun using Generalised Painlevé-Gullstrand
(hereafter GPG) coordinates [27-29]. We perform a 3+1
splitting and obtain gauge invariant conditions relating
not only the intrinsic spatial curvature of the shells to the
ADM mass', but also a function of the pressure which we
introduce and that generalises the Tolman-Oppenheimer-
Volkoff (TOV) equilibrium condition.

In particular, we consider that the existence of a spher-
ical shell separating an expanding outer region from an
inner region collapsing to the center of symmetry, de-
pends essentially on two conditions. The first condition
establishes that there is no matter exchange across the
shell. The second condition establishes that the general-
ized TOV equation is satisfied on that shell, and hence
that this shell is in some sort of equilibrium. The differ-
ence with respect to the original problem where the TOV
equation was introduced for the first time is twofold. Our
result does not rely on the assumption of a static equi-
librium of the spherical distribution of matter, and con-
sequently does not assume that all the internal spherical
perfect fluid spherical shells are constrained to satisfy the
TOV equation. In our case the generalized TOV equation
is just satisfied at the dividing shell. Besides, the gener-
alized TOV function depends on the spatial 3-curvature
in a more general way than the original TOV equation.
Furthermore, we shall characterise the dividing shell with
kinematic quantities which provide a gauge invariant for-
mulation of the problem.

In order to illustrate our results we will analyse some
particular cases. The simplest example is provided by the
well-known Lemaitre-Tolman-Bondi dust models with a
cosmological constant which can be seen as an example
of a A-CDM model. A preliminary presentation of this
work can be found in [31]. As a second case we consider
generalizations of the previous model to contain a cen-

L also referred to as Misner-Sharp mass[30].

tral perfect fluid core. These models provide simple, but
physically interesting illustrations of our results.

An outline of the paper is: (II) The GPG formalism
of Lasky and Lun: 3 4 1 splitting and gauge invariants
kinematical quantities. (III) Existence of a shell separat-
ing contraction from expansion: general conditions. (IV)
Particular examples (A) A-CDM model (LTB with a cos-
mological constant). (B) Perfect fluid core in a A-CDM
model. (V) Discussion of our results.

We shall use the following index convention: Greek
indices «,(,... = 1,2,3 while latin indices a,b,... =
0,1,2,3.

II. 3+ 1 SPLITTING AND GAUGE
INVARIANTS KINEMATICAL QUANTITIES

In this section we set the basic equations that we shall
subsequently need. For comparison, we follow closely the
formalism used by Lasky and Lun (LL) [28], while slightly
generalising their derivations for the explicit presence of
a cosmological constant A.

A. Metric and ADM splitting

We adopt the GPG coordinates of Ref. [28] and per-
form an ADM 3+1 splitting [32] in which the spher-
ically symmetric line element assumes a perfect fluid
timelike normalised flow n, := —aV,t = [—«,0,0,0]
(ngn® = —1), defining with its lapse N = « and its radial
shift vector N* = (3,0,0), an evolution of the spatially

curved three-metric ®g,,, = diag (ﬁ, 2,72 sin? 9) with
time (dQ? := df? + sin? 0d¢?),

1

HT(t,T) (ﬁ(f, ’f')dt + dT)2

ds* = —a(t,r)?dt* +

+7r2dQ?. (IL1)
The 341 approach uses the projection operators along
and orthogonal to the flow

4= —nny, A :=g¢® 4 nint (I1.2)
where h? is the 3-metric on the surface ¥ normal to
the flow. Those projectors are also used for covariant
derivatives: Along the flow, the proper time derivative of

any tensor X7, is

rab . _evyab
Xcd '_and;e7

(IL3)

and in the orthogonal 3-surface, each component is pro-
jected with A

ab apbpipipkyv/f
X0 = hGhShihhk X719

edie * ij;k”

(IL4)
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Then the covariant derivative of the flow, from its pro-
jections, is defined as

) 1
Nagp = Ny Nase + ngp = —npig + §®hab + Oab
(IL.5)

where the projection trace, the expansion of the flow, is
© = nf;, the rate of shear oy is its symmetric trace-free
part and its skew-symmetric part is the vorticity wgp.

For perfect fluids we have the Raychaudhuri propaga-
tion equation

+ Wab,

. 1
O —-nl; = —562 + 1%g — 0ap0™ + wapw®
- g (p+3P)+A. (IL6)
where k = 8.
The extrinsic curvature O, := %Enhab gives?
. 1+ F 1] 1]
0% =4 0,—N, ——— - I1.7
zag{ ooa T ard a8 sin29} (D)
1E— BE'
ithN= |/ +=—"" "
wit 6 + 511 E
and?®
(32 1 LB
0=- - = II.
ar? 21+ FE’ (IL8)
which leads to
17 (B\ 1L.E
=——| = - . 1.9
“T3a <r> + 61+FE (I1L.9)

The 3-Ricci tensor on X gives

E 1
- e
At+Er 2"

<—%E’r - E> sin? 9} . (IL.10)

Samely, the 3-Ricci trace and trace-free 3-Ricci tensor
derive from the 3-metric as

3Ruv = diag [—

E /
SR ool ;‘> (IL11)
T
and,
1
SQHV :ZBRHV - gsgm/BR (II].Z)
1 E'r — 2E
= 2Ql = ———PL = q(t,)P} (IL.13)
r (E\’
“q=7; (72) : (IL.14)

2 Recall that for a scalar Ln = n%9, = é@t — gar; [28] called it
Kp but we prefered the Ellis convention.

3 Note that we obtain a sign for K and a different from that of
Ref. [28].

where P! is diag [—2,1, 1].
The trace and trace-free Hessian of o write

1 VI+E /
2 DD =YL (rzx/l—l—Eo/) (IL15)
(0% ar
and,
1D D L D¢D.a = €(t,r)P, (I1.16)
o n e’ 30 Juv cov = €(t, 1) Py .
!
VI+E (VIFE
with e = —— 3+ ( + a') . (I1.17)
(0% T

The Bianchi identity T3, = 0 can be projected along
n? giving:
n'Tg, =—Lup— (p+P)O =0. (I1.18)

while projections orthogonal to n’ give the Euler equa-
tion

!
hETf, = (P’ +(p+P) %) =0 (I1.19)

OO ™

/

=P =—(p+P) % (I1.20)

B. The Einstein Field Equations

It is well known that the ADM approach separates the
ten Einstein Field Equations (EFE) into four constraints
and six evolution equations. Spherical symmetry reduces
them to 2+2 equations.

The Hamiltonian constraint reads, in the presence of a
cosmological constant,

3 22 2
R+ §® — 6a” =16mp + 2A, (IL.21)

the momentum constraint, restricted to the radial direc-
tion by symmetry,

3

3N T
(r’a) = 3@ (I1.22)

and the evolution equations can be reduced to*

1 2
—2£,0 — §3R — 0% —-9a% + DD, =247 P — 3A,
«
(IL.23)

—Lpa—aB + € — g =0. (IL.24)

4 Note the sign differences in front of the Lie derivatives terms
compared with [28]; our results give a sign for H which is con-
sistent with the Raychaudhuri equation restricted to the FLRW
case.
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Using Eqs. (I1.8) and (I1.9) in Eq. (II.22), one can sim-
plify the latter into

L,E 9 B,

1+E a2
Using the guidance that, from Eqs. (II.11) and (IL.14),
3R+ 12q eliminates derivatives in E, we can further sim-
plify the combination of (Eqs. (I1.23) + 6(11.24))xr?/3
with expressions from Eqs. (I1.8,I1.9,11.11,11.14,11.15) as

(I1.25)

2r (14 E) (Ina)’ — 87Pr? + Ar? + 2rL,, (é)
«

- <§>2 = —E. (11.26)

«

Substitution of Eq. (IL.26) into Eq. (I1.21)x72/4 yields,
together with Eqs. (II.8IL.9,I1.11,11.25,r/2%xI1.26), a
Poisson-like equation which, integrated over r defines a
Misner-Sharp mass function [30]

M' = dnpr?

:>M:47r/ pr’dr =72 (1+ E) (Ina)’
0
3 Ly o p
— 4mPr +§Ar +rL, | = |, (IL27)
«

which with Euler’s Eq. (I1.20) rewritten, for P # —p,
leads to the expression

%2 + 47 Pr =L, (§>
T o

The evolution Eq. (II.26) can be recast to recognise the
definition of (II.27):

2
E+2%+1Ar2_<ﬁ> .
T 3

1+ F

—Ar — —P’ (I1.28)
p+P

- (11.29)

With Euler’s Eq. (I1.20)
comes

, the momentum Eq. (IL.25) be-

1+E
L, E 2ELP

11.30
ap+ P ( )

while taking Eq. (I1.29)’s Lie derivative and using (II.30)

with £, 1 = —g@T% = 3/73, then ngq. (I1.28) reads
L, M —4xpr?D. (IL.31)
a

Taking the positive (contracting) root of Eq. (I1.29), the
evolution Eqgs. arx (I1.31) and ax (I1.30) for M and E can
be written in term of time derivatives, expliciting the Lie
derivative:

. M 1
M = a (M’ + 4xPr?) \/2— +3A+ B, (1132)
T

E—a<E/

This system is then closed with a choice of an equation
of state.

1+ E
2LP>\/2—+ “Ar2 4 B, (IL33)

C. Generalized LTB

Getting the metric (IL.1) into the LTB form, as in [28],
requires a coordinate transform so that Bdt + dr « dR.
Taking ¢(T') and r(T, R), we have then the condition

BOrt + Orr = 0, (I1.34)

which becomes

B=—r (I1.35)

Consequently, the line element (II.1) can be rewritten as

(Orr)*

0 ) 22, \TRY
ds®> = —a(T, R)* (drt)* dT "TYETR)

dR?+r2dQ?,
(I1.36)

where E(T, R) > —1 and we can freely absorb the time
function in the new time by choosing t = T'. Using now
and ' for Or and Jg respectively, Eq. (I1.29) now reads

M 1
72 =a? (2— + §Ar2 + E) (11.37)
T

and Eq. (I1.32) rewrites, using Eq. (I1.35),

. M 1
M =p4nPr? = 47rPr2a\/ 2— + gAr2 +E, (IL38)
T

while Eq. (IL.33)xr’ rewrites

1+E,_1+E,\/M12
r =24 P +PP0< 2T+3A7‘ + E
(I1.39)
and Euler’s Eq. (I1.20) xr’ is unchanged
o P’
— =— . I1.40
o} p+ P ( )

D. Remarks on A

In all that precedes, the cosmological constant was kept
explicit. However, from the EFEs, one can include its ef-
fects in the total density and pressure as that of a fluid
with pp = —Py = % We then obtain expressions iden-
tical to Lasky & Lun [28]. It is interesting to note that
the Misner-Sharp mass, in the explicit A formulation, is
only referring to the initial, “Aless* mixture, while en-
compassing the gravitational effects of the presence of
A. From Eq. (I1.27) we can define the mass My, and
pressure term 47 P> for the sum of the total perfect
fluid mixture plus A by taking Eq. (I1.27) for a perfect
fluid and setting A = 0. We can also interpret the sum
of the total mass and pressure terms as the mass of an
equivalent dust model M.4. We can then integrate the
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mass of A fluid and introduce the “Misner-Sharp mass”
[30] pressure term for the A fluid:

Mio; + 47 Pyoyr® =1 (1 + E) (In a)/ +7r2L, <é> = Mg,
o

(IL.41)
4 A
My :—WT3pA = —r3 (IL.42)
3 6
1
4 Ppr® = — §Ar3. (I1.43)

Thus we can rewrite the Misner-Sharp sum of the mass
and pressure term from its components from Eq. (I1.27)

1
M 4 47 Pr® =My + 47 Pyoyr® + gArg, (I1.44)

3 1 3 A 3 1 3
My + 47 Pare = — 5/\7‘ + 5 = —gAT ,  (IL.45)

sO Miyot = M + Mp and Pyoy = P+ Py. In Sec. III,
unless stated otherwise, we will use M, p and P to mean
their total values while referring to the perfect-fluid-only
values as My, ppy and Ppr. In addition, the mass evo-
lution Eq. (I1.31) refers to the “Aless” mixture mass and
pressure. We can thus extrapolate that this mass conser-
vation equation is valid for each component of minimally
coupled fluid in the mixture: we thus have for indepen-
dent fluids

M=y M, (I1.46)
fluidi

P= Z P, (I1.47)
fluidi

[ M
L, M,; =4sz-¢2§ =ddnPr®\[2— + E.  (IL48)
[ T

III. GEOMETRICAL AND PHYSICAL
CONDITIONS FOR THE EXISTENCE OF A
DIVIDING SHELL

In our spherical symmetric approach, we are looking
for shells dividing expansion at all time from regions of
mixed behaviour involving periods of collapse.

This leads to an investigation of the conditions for the
dynamical separation of sections of matter trapped inside
a dividing surface (physical condition). We will see that
this approach is distinct from a purely kinematic sepa-
ration of contraction from expansion (geometrical condi-
tion) and will express the physical condition using kine-
matic quantities.

A. Misner-Sharp mass conservation

In the previous section we have seen how the Misner-
Sharp mass is evolving with the flow under Eq. (IL.31).

We can thus define a surface for which this mass is con-
served with respect to the flow:

Vt, Lo M(t, 7. (t)) =0

M
&S Vt, E=—-2—, or P, =0o0r r, =0,

Tx

(IIL.1)

While the second case, P = 0, defines a dust-like layer in
the perfect fluid mix, and the third case, r = 0, is trivial,
we shall concentrate on the first case, £ = —2%. In this
case, from Eq. (IL.30) we get

M 1+ E
L,E=+2 2—+ELP’:0,
T

o (I11.2)

so the shell is characterised by fixed curvature and
Misner-Sharp mass. This implies that if a prescribed
initial P and p distribution is given such that there exist
a shell where
M
E, = —2—,

Tx

(I11.3)

then this shell can locally separate inner and outer re-

gions that can be expanding and contracting differently.

We call the separating shell a “limit shell”, and denote

it with x. In GPG coordinates the above condition is

equivalent to g’ =0,orto B, =0. We can then use
*

it to compute

2M [ L, M
Ty = — Fa |: M — E X = 0, (1114)
) oM ,[L2M [2E
Ty = — Fa [7 - E *, (1115)
and
__8 _
L,r= - = Lyry =0, (I11.6)

so the limit shell appears as a “turnaround”® shell, in
terms of areal radius.

However, these conditions are coordinate dependent
and give limited insight as to how they would express for
different observers. This calls for a definition using gauge
invariant quantities.

B. Expansion and Shear

Newtonian structure formation in spherical symmetry
provides a natural limiting shell that is a locus separating
at a given time expansion from collapse: the turnaround
radius (see e.g.[33]). The definition of that locus is given

5 See discussion in [1, Section 19, p77]
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by the vanishing of the expansion with respect to the
flow. Nevertheless, this is not necessarily the case result-
ing from condition III.1. Let us first start from the previ-
ous mass flow definition and examine the corresponding
expansion.

In GPG coordinates [28], defining the flow by the
shift /lapse vector, we can compute the expansion (the
trace of the symmetric part of the projected covariant
derivative of the flow vector), using Eqs. (I1.25,I1.8):

0=_ <§>/_231
« ar

At 7, (for g = 0), we have non-zero expansion given by

0. (2).

The shear can also be expressed here from Eqgs. (IL.9)

and (I1.25) as
1 /3 B1
“73 (5) Carl|’

and we can then relate shear and expansion as (using

(IIL.7)

(ITL.8)

(ITL.9)

Eq. I11.6)
S}
T (g + a> =- g =L, (II1.10)
so on the limit shell,
O, +3a, =0< (L,r), =0. (II1.11)

1. Generalising TOV

The TOV equation, following [28], emerges from
Eq. (I1.28) in the static case.

We now generalise the TOV equation by defining a
functional gTOV from Eq. (I1.28) as

1+ FE M, 1
TOV=|— " P 4 dxPyr+ 2L =
g L)pf"'pr pf TATEpfT =5 = AT
1+F M
= |—=P +47P — . (III.12
L} yz +arPr+ — } ( )
The definitions (II1.10), (I11.28) and (III.12) combine to
yield
C) CHAN
=— L3 (IT1.14)

We can then obtain local conditions that yield the TOV
equation on the limit shell when

gTOV, =0 &

= Ly (g + a>* =0.

L2r =0

(I11.15)

We can further express gTOV in a form that re-
minds of the FLRW Raychaudhuri equation by using
(p) = M/(47r3/3), i.e.

1+ F 47
TOV =——P + — 3P II1.1
g = + 57 ({p) +3P), (IIL.16)
and for FLRW it reduces to
4 ..
gTOVp, =3 (p+3P)=—+. (II1.17)

2. Dynamics of the limit shell

We have seen that we could define the limit shell by
only setting E, = —2M,/r, (so B, = 0), so that ©, =
3ay. Now, using Egs. (11.29,11.32,11.33,111.12) we find

(2) = (2) +estov
(0% (0%

= (=3 <5’ — 6%/ + g) +a?gTOV, (I11.19)

(I11.18)

so on the limit shell, we have

<E) =agTOV,
o *

= B* :a2gTOV*.

(I11.20)

(IIL.21)
Recall that, in the LTB frame, § = —r, so this tells us

Frres = —a’gTOV,, (I1L.22)
and thus when gTOV, = 0 that shell has no acceleration
and is therefore really static, as expressed in the origi-
nal TOV equation. For completeness, we can réexpress
Eq. (II1.6) with Eqs. (II.31,I1.30,III.12) in GPG coordi-
nates:

S
&

TOV?
=—a? [gTOV* - rfg %

*

} . (I11.23)

3. Raychaudhurt expansion evolution

From Egs. (II.21) and (II.23), with A included as a
fluid component, we have in the GPG frame,

2 2
—2£,0 — 562 —12a* + EDkaoa =87 (p+3P),
(I11.24)

and on the limit shell, that reads

2 . 2
—=0, - 202 + EDkaoa* =87 (p+3P), (IIL.25)
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showing that this shell can still be dynamic. Using the
Euler Eq. (I1.20), the Hessian (II.15) gives

2 1+F E’ 2(041"2)/
—D"Dya = P —
i +P 1+F ar?
1+E )\
-2 ——= . (IIL.26
<p+P ) ( )
Thus Eq. (II1.24) reads
2 3
- L£,0-06%— 25 {264— —E} =4r(p+ 3P)
ro ro
P’ 1+E )\
_ 7E/+ —P/)
2(p+P) <p+P
2 P 1+F
+1-- ——P. (IIL.27
(r p+P> p+P ( )

Here, we can recognise the first term of TOV. On the
limit shell the above equation reads

—19*—93:47r(p+3p)
«

u E+<li£P)/

" 2(p+ P) p+P
2 P \1+FE
+(=———= ) ——=P, (128
(r p+P)p—|—P ( )

and we recast the Raychaudhuri equation for the FLRW
case

2

S
~L4© — —- =4 (p+3P) (I11.29)

= —3H — 3H>. (I11.30)

4. Remarks on null expansion limit shells

We now explore the consequences of having, in addition
to (III.11), the condition O, = Ofor the limit shell. In
this case, the shear must also vanish on the shell and

!/
(2).-

« *
which constrains the gradient of the generalised velocity

field 8/«

In addition, and most importantly, the Raychaudhuri
Eq. (II1.27) shows that an initially expansion-free divid-
ing shell is not likely to remain so, and will drift radially.

If we impose the vanishing of £,0 in Eq. (111.24), we
derive

(I11.31)

1
— D*Dya, =47 (p+ 3P)

Qe

(I11.32)

* 7

which then translates into a thermodynamic condition
on the second-order derivative of P, which should induce

2M /
(_Zi_’[ B %r2> \ % r
IS _
23
Elnn (‘;;[)" \F\< -
E
< o - >

Figure 1: Kinematic analysis for a given shell of constant M
and E. Depending on E relative to Ej;,, the fate of the
shell is either to remain bound (E< < Ei;m) or to escape and
cosmologically expand (FE~ > Ej;»). There exists a critical
behaviour where the shell will forever expand, but within a
finite, bound radius (E = Elim, 7 < Tiim)

a very specific and ad hoc local equation of state of the
perfect fluid, namely

P; ,
2(p+P), "

2 P’ 1+ FE,
- -=- P/. (IIL.33
(T p+P>*p*+P* * ( )

We conclude that the case of a static, expansion-free,
limit shell is very restrictive: for example, in the sim-
plest case, discussed below, of an inhomogeneous A-CDM
model, Eq. (II1.33) induces a restrictive equation of state
P = —p/3 on the shell, which is neither verified by the
dust component, nor by the A fluid, whereas the limit
shell in this case derives from a staticity condition (see
Sec. IV A).

1+E )\
*

IV. APPLICATIONS TO SIMPLE MODELS

We now will illustrate the behaviour according to the
limit shell of simple models. First we will see how it
appears in a A-CDM model, that is a Lemaitre-Tolman-
Bondi dust model with a cosmological constant. We will
then look at more general models including perfect fluids.

A. Overdensity in a A-CDM model

In what follows we consider a A-LTB model which, be-
sides the bare LTB case, is exactly solvable, the most
simple perfect fluid model with a cosmological context
departing from LTB and which satisfies the conditions
for the existence of an asymptotically r-static dividing
shell. Indeed, as stated in [28], choosing P = 0 leads to
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/A

>>&
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Figure 2: Phase space of a shell of fixed M and E. The

scales are set by the value of rim = \3/ % while the actual

kinematic of the shell is given by F.

the usual LTB solutions. Setting P = 0 in Eq. (IL.38)
implies® M =0 and it is somewhat remarkable that this
mass is still conserved for each shell in spite of the pres-
ence of A. A gives a homogeneous pressure, which in
Eq. (I1.40) gives o = 0 so we can redefine adT = dT*
into the line element (I1.36), and finally in Eq. (I1.39),
assuming no shell crossing ' # 0. We are therefore left
with Eq. (I1.37) in the classic LTB form, with

M 1
72 =2"— + EATQ + E. (IV.1
T

~—

Adding a cosmological constant modifies the mass def-
inition but not the dust equation of motion. However,
we have an extra term that leads to a different dynam-
ics. We can thus write the Raychaudhuri-like equation
corresponding to time derivation of Eq. (IV.1):
. M A
rT=— 7"_2 —+ g'l",
and this shows there exists a radius without acceleration
for strictly positive A, contrary to pure dust. However,
the first integral (IV.1) suffices for analysis of what hap-
pens to each shell (with fixed R).

(IV.2

~—

1. Kinematic analysis

The Friedmann-like equation (IV.1) can be used to get
the dynamics in a purely kinematical way. It can be
expressed with a polynomial

72 :A <T3+£T+%) :AP

3r A A 3r 5.0 (1), (Iv.3

~—

6 M can be understood as the mass of the dust alone but interact-
ing with A, see Sec. IID.

16 In(p)
o« R~!
14+

124

10

x RS

_ ~ Pb
° mR) *°

Figure 3: NFW with background density profile

which roots (given in appendix A) should obey the effec-
tive potential equation

oM A,
Since 72 > 0, we have the condition
E>V(r). (IV.5)

The motion of a given shell over time thus follows F =
const curves above the effective potential V. Roots,
the points of changing direction, translate as a geomet-
ric intersections between those curves and V. The ef-
fective potential admits one real negative root (0 en-

ergy/curvature) at
3/ 6M
r=—4——
A )

and one double solution at its horizontal tangent (V' = 0)

(IV.6)

[3M
Tlim = y T, (IV?)

for which the value of E becomes
Eim = — (3M)3 A5 (IV.8)

It can be easily shown that any shell standing at 7y,
with FEj;,, will automatically be a limit shell

2Mtot,lim
Elim

M+ &3 3M

= —2 - —
Elim Elim ,

(IV.9)

Tlim = —

and calculating its gTOV, using the definition of
Eq. (III.12) and recognising Eq. (IV.2),

that such a shell will be r-static (gTOV,;,,, = —Fiim = 0).

(IV.10)
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x R?

Figure 4: NFW with background Ej;, and an example of
E profile given by Eq. (IV.20), for Enin = —1 + ¢ % and
rL=e€.

The effective potential analysis is shown in fig. 1.

We can thus reconstruct the phase space of that shell in
the (7, 7) plane. Above the energy Ej;,, there is only one
root in the negative region, thus the flow is qualitatively
defined by its initial conditions. At Ej;,,, the double
positive root gives a repulsive point, thus a saddle, while,
below Ej;p,, the pair of roots give closed and open orbits
as shown on fig. 2.

The Raychaudhuri-like equation can also be expressed
with a polynomial

. A [, 3M A
P35z ( B T) = 32 5r(r);

admitting only one real root; the acceleration is always

positive for
S5 [3M
r
- A )

thus at infinity (cosmological constant dominates, M is
monotonous in 7). Therefore, at this root, there exist a
limit radius beyond which there is no recollapse:

riom (R) =1 3MA(R) .

Note that this radius corresponds to the saddle point,
which initial energy radial profile is fixed with ini-
tial conditions for the mass distribution Ej;n(R) =

- (3M(R))% A%. Therefore the last intersection between
the initial curvature profile, set by combining velocity
and mass profiles, and this saddle point profile yields a
global shell beyond which there is no recollapse, recover-
ing separation of expansion from collapse. Explicit exact
solutions for this ALTB evolution model are shown in
appendix B. It is nevertheless crutial to realise that the
selection of the limit shell from initial curvature does not
entail necessarily that it should start as r-static. Indeed

(IV.11)

(IV.12)

(IV.13)

log(p(R))

x R™¢

~ Pb
Tog(R)

Figure 5: power law density profile without cusp and with
background

the opposite should be true in general, as can be seen in

Egs. (IV.1) using Eiim, Riim in (IV.4), and fig. 1: for any

choice of the initial Ry;,, < rm, the radial velocity
Rlzzm :Elim -

V(Riim) > 0, (IV.14)

so it appears that the r-static behaviour of the shell
should only emerge asymptotically as it approaches zero
velocity for infinite time. The selected limit shell there-
fore agrees with the conditions (III.11,II1.15) only at in-
finity in time, and is traced back to initial conditions
owing to the A+dust conservation of M and F in time.
More general fluids should not always allow for this con-
servation on the limit shell, however once a shell verifies
Eqs.(III.11,I11.15), its staticity guaranties that it should
verify it at time-infinity. It is remarkable that the ex-
istence of the limit shell only matters at time-infinity,
suggesting that a weaker definition than (III.11,I11.15)
should a be sufficient condition.

2. Time dependent TOV

The shape of Eq. (IV.10) shows that, at the root of
the Raychaudhuri-like polynomial, gTOV = 0 and that
it is positive inside and negative outside. The trapped
region is thus characterised by gTOV > 0. We can also
compute, using M = 4w (p) r3/3,

2 A
gTOV' = [47r (p -3 <p)> - g] r (IV.15)
so TOV is a decreasing function of r (for ' > 0, a fair
assumption as seen when r(t = 0) = R), except in regions

where p > 2 ((p) + pa), that is in density peaks. It is also
a time dependent function through the evolution of r:

2M A) 2M (IV.16)

p A

TOV = — + = E+4+—+ —r?
& + ( = 3 et 3
thus for a given shell, it increases with time for ingoing
dust shells and decreases for outgoing ones. The main
point is that with dust, turnaround shells have r-static
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Figure 6: power law density without cusp + background
inlog(—Ejim) — log(R) and log(—FE) — log(R) scales

7

log(m

gTOV, and that balanced shells (between their mass pull
and that of A) verify the TOV equation and are thus
static.

3. Ezamples of initial density

It is obvious then that initial conditions are crucial to
determine the existence of a separating shell in the ALTB
model since they set the profile of E' and that of Ej;p,. A
single crossing of the two curves ensures locally the exis-
tence of such a shell, while its global effect remains if the
initial conditions do not foster shell crossing. This is the
case if there is only one crossing from bound to unbound
Es of Ejjy,. More complicated cases will be examined in
a future work. We now proceed with examples of initial
density profiles and then deduct the conditions on the
corresponding curvature profile for a limit shell to exist.

a. NFW with background: The choice of an NFW
[34] density profile is motivated by their prevalence in
large cosmological dark matter haloes ([35, and references
therein|). If we initialise the halo with such a density pro-
file, with concentration 1/Ry and inflexion density po/4,
placed on a constant background pp, we can compute the
corresponding mass profile. The density profile, as illus-
trated on fig. 3, is given by [34]

Po
R R\
% (1 &)
The corresponding mass then reads

R R R3
M =4 300 In 1+ =) — — .
W{ropo[n( +T0) R+T0]+pb 3}

(IV.18)

p= + . (IV.17)

Now armed with the expression for the maximum en-
ergy function, the double root solution above, we can
obtain from Eq. (IV.8) the bound upper limit for the ini-
tial Energy/curvature profile that separates between ever

expanding and bound shells

Elim = —(127T)%A% {’I‘S’po [ln (14‘5) R ]

To B R+ To
RS 3
+pb?} . (IV.19)

Figure 4 shows that profile corresponding to the NF'W
with background mass. We then propose an example for
the E(R) profile, motivated by its cosmological Fried-
mann asymptotic curvature and its simple radial evolu-
tion from bound to unbound, as

E(R) = — 4Ein (g) (1 - %) ,

where r1 > 0 and —1 < FEp;, < 0, chosen so that F
crosses Fjy;, near its constant density region. With the
asymptotic constant density and Friedmann negative cur-
vature (F ~ %R2 = —koo R?), these initial conditions

(IV.20)

model well a collapsing structure in an open background
of curvature radius 5. The resulting curves are shown
in fig. 4. We have here an example where shells with
E < Eyiy, are trapped inside the limit shell defined by
the intersection of the two profiles. Moreover, that limit
shell in the case of dust with A has been shown to be
static. Thus, with this set of physically motivated initial
conditions, the limit shell defined in this way delimits a
constant region of collapsing mass, separated from ex-
panding shells.

b. Cosmological background with power law overden-
sity: The most natural cosmological initial condition is
a power law overdensity, with or without cusp, upon a
uniform background with an initial Hubble flow ([35]).
The uniform background and initial Hubble flow ensures
the asymptotic solution starts FLRW. In this second ex-
ample of initial conditions, we explored both density pro-
files but illustrate only the cuspless case as it is more ob-
servationally sounded ([35, and refs. therein]). The den-
sity profiles, as illustrated for the second case on fig. 5,
are given by (e > 0, and in the first case € < 3 for a finite

central mass)
B R —€
P =pPo RO Pb;

= 1+ AN +
P =po Ro Pb-
Observations of the Cosmic Microwave Background
(CMB) would imply to chose initial time at recombina-
tion and amplitudes of the order of py ~ 107°p; ([see 35,
and refs. therein]). The corresponding mass then reads,
for the cuspy profile,

(IV.21)

(IV.22)

4
+—7prR3,

_ 3
Mewsy = drropo (5 ] ,0<e<3 3

(IV.23)
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7y escape to oq if 7; > 0

B> Ejjm = ry collapse to (| /if 7; < 0

log(R)
Ty 9,

log(~ Eyjm(R)).-

Figure 7: riim < ra, < ra, case for a dust layer with A. Full
space A-CDM diagram for log(— Eiin, ) —log(R) and log(—FE)—
log(R) in dashed line. This region is characterised by E >
Elim, so the dynamical analysis of fig. 1 yields continuation
of initial velocities directions.

and for the profile with constant density in the centre

3
Mpocusp = 4mrypo X

I
(R 22 R _
_(%)u;ﬁ_?m(l*ﬂ]’ €=2
o R

Ti"z—kln(l—kr—) , e=3
(%) °

1+2)7 1+2)7 1+a2) T

( nge -2 ( nge + ( T(ljze ; €2 0

+ %”pr? (IV.24)

The resulting boundary profile for E again follows
Eq. (IV.8), using the obtained mass profiles. Taking an
initial Hubble flow, R = H;R, the E(R) profile is then
defined by Eq. (IV.1) to be

E(R) = (Hf - é) g2 M

. = (IV.25)

The resulting comparison between E and FEj;, for the
non-cuspy case is shown in fig. 6. Once again, the in-
tersection defines a static limit shell for which 74, =
—Wé;’ﬂ and gTOV = 0, all shells inside it are in the
kinematically bound region of fig. 1 while those outside
are in the free region. Initial conditions ensure they will

expand in a quasi FLRW manner.

These examples illustrate that cosmologically moti-
vated initial conditions lead to a clear separation be-
tween expanding and collapsing regions. Therefore for
these systems, expansion ignores the effects of collapse
and conversely the details of the collapsing region can
ignore the presence of a background expanding universe.

E> Ejim
E < By, £ 1y collapse to 0 r<(:r9—0
7 >0 rg— o0
,«‘/
log(R)

R, N
. X T im T
log(~Eyjm(R)) - o e

Figure 8: rs, < rum < rs, case for a dust layer with A,
A-CDM for log(—Ejim) — log(R) and log(—FE) — log(R) in
dashed line. The region with E < Ej;,, is trapped by its set
of effective potentials and will recollapse, that with E > Ej;p,,
so the dynamical analysis of fig. 1 yields continuation of initial
velocities. Separating shell remains in between those regions.

B. Perfect fluid core in a A-CDM model

Before examining the possibility of existence for a limit
shell inside a perfect fluid in a sequel paper, where we
shall present an ansatz for a perfect fluid inhomogeneous
core in a Friedmann environment, let us turn to the con-
figuration where a perfect fluid ball is surrounded by a)
vacuum with a cosmological constant, b) dust and A.

1. Pure A exterior

In the same way as [28] did for a perfect fluid sur-
rounded by a A = 0 vacuum, We can examine the inter-
face between the perfect fluid and the A vacuum. In the
latter region, both the pressure radial derivative P’ =
and the sum px + Py = 0 for all time and place by def-
inition of A. In the same way as [28] showed for such
a configuration with A = 0 vacuum, such a simple in-
terface implies, through Eqs. (I1.40) and (I1.30), that the
energy and lapse functions, F and «, are undefined there.
These equations show that only if the fluid’s pressure ra-
dial derivative P’ vanishes faster than p+ P can E and «
remain defined. This condition sets an unusual boundary
constraint to the perfect fluid’s EoS (simple linear EoS
do not agree with it), but it is more fruitful to point out
that such behaviour mimics that of a vanishingly thin
layer of A-dust. Thus, the transition between the two
regimes give rise to an inescapable A-dust atmosphere,
however vanishingly thin, as was found in the pure vac-
uum case [28]. We have two free boundaries, s, (t) where
the pressure vanishes and rg, (t) > g, (t) where the den-
sity vanishes, at which the EoS is defined as

O:{ﬂp,m for 7 € (0575

IV.26
P for r € [ro,;79,] - ( )
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E < Ejyp, :?Id collapse to 0

log(R)

L, . o T,
log(— By (R))~ '

Figure 9: rs, < ra, < Tum case for a dust layer with A,
A-CDM for log(—Eiim) — log(R) and log(—FE) — log(R) in
dashed line. This region is characterised by E' < Ejim, so the
dynamical analysis of fig. 1 yields eventual recollapse.

Evolution of ry, (t) and rg, (t) follows from setting respec-
tively P =0, then P = p = 0 in Egs. (11.32), (I1.33) and
(I1.40) to evolve those radii from initial conditions. The
continuity of the curvature through both boundaries im-
poses again

[ lim — lim | {E (¢, 7)} =0, (IV.27)

+ —
”"Vr‘ai ’I"Vr‘ai

that can be used to transmit the value of the mass pa-
rameter from the outer Schwarzschild-de Sitter spacetime
down to the perfect fluid boundary curvature.

2. Limat shell

At this stage, the possibility opens for a limit shell in
the A-CDM atmosphere of the core, provided that such
shell verifies in conjunction Egs. (II1.3), or equivalently
(IT1.11), and (III.15), which is only possible in a positively
curved region. Given the surrounding Schwarzschild-
de Sitter environment, the positive curvature require-
ment is at least locally filled near the outer bound-
ary. There the analysis of Sec. (IV A) applies fully to
yield, given initial conditions, the location of the previ-

ously discussed static virtual shell. Recall that in the
_2M52 . Arz
T 3

while

Schwarzschild-de Sitter region, £ =

Eiim = — (3M32)% AF = cst, however the analysis only
applies in the presence of dust, thus between 75, and g, .
Owing to the preservation of continuity in M and E at
rs,, whichever behaviour the perfect fluid may have, it
will be confined by that of the previously explored A-
CDM at its boundary.

Let us exhibit examples of such configurations: we
can start from a similar example as presented in Sec.
(IVA3). Nevertheless, to preserve curvature continu-
ity (IV.27), the initial velocity at rs, should go to O,
and therefore the previous E profile should be modified
accordingly. Then we are faced with three possibilities

due to the location of the dust layer boundaries com-
pared with the limit shell in the full space dust model:
Tiim < T < Tdy, Toy < Tlim < T8, OT T9, < T3y < Tiim-
Those cases are illustrated respectively on figs. 7, 8 and
9. In the first case, the dust layer locates above the max-
imum of their effective potential (IV.4) so their initial
velocities gives the direction of their unhindered asymp-
totic behaviour, i.e. an initially expanding dust layer
should expand forever. If a separating shell exists, it
should lie within the perfect fluid region. The second
case shows the existence of a separating shell, the perfect
fluid being bound by the eventual recollapse of the rp,
shell, while some of the dust shell will expand through
the vacuum region and eventually squeeze it to infinity.
In the third case all the dust shells locate below the max-
imum of their effective potential (IV.4) so the whole mass
will eventually recollapse, as if the separating shell was
virtually located in the vacuum region.

Now sending the rs, boundary to infinity, we can ex-
pand the dust layer accordingly and so long as Sec.
(IV A)’s analysis yields a limit shell within the dust re-
gion, the perfect fluid shall be contained by the collapsing
inner boundary (i.e. the third case disappear and we are
left with cases 1y, < ra, and rp, < rim as treated in
figs. 7 and 8).

In this section we have found that the presence of a
cosmological constant does not modify the need for a dust
layer around a perfect fluid core surrounded by vacuum.
We have also given examples of limit shell separation
behaviours for appropriately set initial conditions in the
dust layer with A. We have even hinted at that possibility
inside the perfect fluid from the dust behaviour, although
such study should be left for a sequel paper.

V. SUMMARY AND DISCUSSION

In the present work we have considered spherically
symmetric, inhomogeneous universes in order to ascer-
tain under which conditions a dividing shell separating
expanding and collapsing regions exists. This endeavour
is important in relation with the present understanding of
structure formation as the outcome of gravitational col-
lapse of overdense patches within an overall expanding
universe.

We have addressed this problematics by resort-
ing to an ADM 341 splitting, utilising the so-called
Generalized-Painlevé-Gullstrand coordinates as devel-
oped in Refs. [27, 28]. This enables us to follow a non-
perturbative approach and to avoid having to consider
the matching of the two regions with the contrasting be-
haviours. We have found local conditions characterising
the existence of a dividing shell. We have related these
conditions to a gauge invariant definition of the proper-
ties of the dividing shell. These require the vanishing of
a linear combination of the expansion scalar and of the
shear on the shell, as well as that of its flow derivative. In
GPG coordinates, it summarises as a vanishing of both
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first and second order flow derivatives of the areal radius.

In order to illustrate our findings we have considered
some simple examples of cosmological interest that pro-
vide realizations of our results. We have considered a A-
CDM model whereby we consider an LTB universe with
dust and a cosmological constant. Notice that the simul-
taneous consideration of the latter two components yields
a perfect fluid model for the combined matter content.
Moreover it can be seen as simplified model of a dust
universe within a cosmological setting coarsely provided
by A which would then mimic the energy content of the
background cosmological model with a rate of expansion
much smaller than that of the pure dust collapse.

We have chosen initial conditions motivated by cosmo-
logical considerations and have discussed the existence of
a dividing shell for those cases. We have also generalised
a result of Ref. [28] for the case where a cosmological
constant is present, which states that a perfect fluid core
embedded in a universe filled with a cosmological con-
stant necessarily exhibits a dust transition between the
perfect fluid inner region and the outer vacuum region.
This permits to envisage this case as a generalization of
the former A-CDM examples.

Finally we should mention that, a thorough discussion
of global conditions represent a much harder problem,
and remain an open problem since this involves the full
characterisation of a partial differential equations prob-
lem with boundary conditions in an open domain.
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Appendix A: ROOTS OF P; ¢(r)
1. Roots for the polynomial

The roots (rps) of Eq. (IV.3) proceed from the poly-
nomial P3 ¢. We change variable such that r = u 4+ v
and use the extra degree of freedom to choose to rewrite

Py = 0 such that

E
==, (A1)
O RGECI NS

Solutions for the latter second degree polynomial come
naturally as

(A.3)

(A4)

We are left with six solutions for w and v, which are
symmetrical and related by Eq. (A.1) so uv being real,
choosing u? as the positive squareroot solution, the cor-
responding v® becomes the negative one while v and v
are complex conjugate, so

3 (3M) ———(3M) E
uv—\/ = (A.5)

A2

therefore the roots are:

Tk=0,41 — \/ 3M+\/ (3M) 2gi%5h
\/ 3M—\/—+ 3M)%e %50 | JAS

(A.6)

2. Real root(s)

For the positive discriminant, A = ETS + (3M)2, there
is only one real root for k¥ = 0. A negative or null dis-
criminant, yields again the real kK = 0 root and two other
real roots for k = +1, since then v = u. We are then left
with the single real root, noting

3
ag :{/—3M+ \/E— + (3M)?,

(A.7)

\/ 3M—\/—+ 30M)? (A8)

_oFap (A.9)
A'a
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and, when —3 + (3M)* < 0, the two other real roots

3
e =\|3M +i (_AE) — (3M)*(1 FiV3), (A.10)
G =\|3M —i (_?3 (BM)*(1+iV3), (A.11)
ry ”zzfi, (A.12)

3. Signs of the real roots:

So as to order the roots, it is necessary to look at their
sign. This is important as r should be positive, r < 0 be-
ing unphysical. Recall that M,A > 0and £ > —1. When
A >0,i.e when > — (3M)% A3 = Ejp,, we have only
one real root and 79 > 0 = ag > —ay. We always have

—ah = \/3M+

(and thus @ > 0) then —aj?a = ETB >0 E >0
Therefore, with the hypothesis £ > 0, the condition
ro > 0 implies ag > —aj < a3 > —a}® & —3M > 3M!
Hence for £ > 0 we have rg < 0. Samely, for 0 >
E > - (3M)% A3, requesting ro > 0 implies ag > —a;
while —af > 0 > ao! Therefore, 0 > E > — (3M)% As
always entails 19 < 0 and we conclude that ry is al-
ways negative when £ > — (3M)% As.
(3M)*A < 1 is more interesting as we have three real
roots for —1 < E < —(3M)%A%.
tions of Eq. (A.6) in the form

+ (3M)* > 0. Supposing ag > 0

The case when

Let us use the solu-

U + ug 2%(1140
= = . A.13
A Al (4.13)
We know that
(—EB)° 2
ul =—3M +i 1 — (3M) (A.14)
so S(up) > 0 and R(uj) < 0. We can then
rewrite uz = pe'r3 with p? = #, and o3 €
[ 5+ 2km ; 7r+2k7r]kez. The values of uj are de-
duced as u, = pie'? with ¢p = i ¢ €

[Z+ %Tﬂ ;T4 %T’T }kez. Each u; admits the same
modulus, so the phases, each separated by 27/3, give
us the ranges and the order in which each root lies. The
results are the following:

welg i 5lcos 5] =10 >0, (A.15)
pre[r—% ;m]c[3:im] =ry<0, (A.16)
ooel-%i-3]c[-510] =r >0 (A1)

and the order of the cosine (since ry involves the real
part of uy) yields —ry > rg > r— > 0. This is agreeing

with the analysis of Sec. IV A1 understanding that the
negative root shifts from ry to r; through the A = 0
point, and that below the horizontal tangent, ro is the
exterior turning point while r_ gives the interior envelope
of the effective potential.

The above solutions gives us then the explicit equa-
tions for the intersection of the effective potential with
the current curvature involved in eq. IV.1.

Appendix B: EXACT SOLUTIONS FOR AN
INHOMOGENEOUS ACDM

The equation of motion admits analytical solutions in
terms of hyperelliptic integrals (see also Lemaitre [36]).
From Eq. (IV.1)

" r
t= ————dr, B.1
/R\/E’I”+2M+%T3 " (B.1)
however, in conformal time (dt = rdn)
2 2 A,
=Er® +2Mr + 37 (B.2)
" 1 " 1
= dr = / —dr
/R \/ET2—|—2MT—|—%T4 R \/Pu(r)

(B.3)

Given that the incomplete elliptic integral of the first
kind is defined by

/\/l—tQ 1— k2t2) /\/T

(B.4)

axr+b
cx+d

it is possible by a rational change of variable, z =
to go from Pp to Py:

Pp (2(z)) = ((c —a)z + (d = b)) ((c + a)z + (d + b)) x

x((¢ — ka)x + (d — kb)) (¢ + ka)z + (d + kb)) / (cz + d)*
_ Pu(=)

_(c:E+d)4' (B:5)

The solutions are therefore following, using cr +d =
ad—bc and dr = ad—bc dz

(a CZ) (a cz)2
o REp - R
r V/Pr(2) (cr +d)* (ad — bc)
(B.6)

We then just need to find a, b, ¢, d, k in terms of E, M, A.
We already have the roots of Py = P, fr% from Appendix
A and we can write from Eq. (B.5)

, __d—b , __d+b . d—kb d+ kb
A c—|—a’3_ c—ka’4 c—|—ka'
(B.7)
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We can obtain expressions for d and b, isolating them in
the first and second pairs of roots:

ri(c —a)+ra(c+a)

ri(c—a) —re(c+a)

d=— . b=
2
(B.8)

r3(c—ka) +ra(c+ ka)

r3(c — ka) — rq(c+ ka)

B 2 T 2k

(B.9)
Equating the two ways of writing b+ d, we obtain a linear
relation between ¢ and a,

77”3]{3(1 — k) + T4I€(1 =+ k) — 2]{3’[”2

B.1
ro(1— k) + 2krs —ra(1+ %) (B-10)

Now recall that the factors of z* and z° in P, are respec-
tively

(62_a2)(62_k2a2): (

A
= B.
3

r1r2rare =0. (B.12)

11)

The cosmological constant means from Eq. (B.11) that
neither ¢ = 4a nor ¢ = +ka, while Eq. (B.12) entails
that one of the roots is 0. If we choose r4y = 0, then we
have d = —kb and therefore, from Eqgs. (B.8), d+kb=0
yields

¢ rm(l—-k)—ro(1+k)

ale(l—k)—f'Tg(l—f'k), (B13)

so with Eq. (B.10) and 74 = 0, we obtain a third degree
polynomial in k (recall k # 1 for non-degeneracy of Pr)

2
(k— 1) { (k—l— 2T1T2 — T3 —TQTg) + 1

r1r3 — 1raors

2
27”17”2 — T1r3 —raors 0
rir3 — 2’3

(B.14)

2
2T1T2 — T1r3 —Traors 2T1T2 — T1r3 —1rars
=k = +
Tr2r3 — T1T3 rir3 — T2’T3

(B.15)

We also can rewrite the condition (B.10) to obtain a with
Eq. (B.11): the positivity of A in Eq. (B.11),

4k? (1_k2)2 [(1—k)27"3+47"2/€ [rs — 2] Tar3 .
= a

[2r2k + (1 — k) rg)*

3

w| >

(B.16)

imposes to choose r3 > r2 > 0, and thus

A
17k)2r3+4r2k] [rs—ra]rars

a==[2rok 4+ (1 — k) r3) \/3[(

&7
(B.17)
We deduce then ¢ from Eq. (B.10)
\/3[(1—]{})27‘3-'1-47[}2]6] [T‘3—’I‘2]’I‘2T3
=+k[(1-k -2
c [( )T3 TQ] 2k|1—]€2| )
(B.18)

derive b from including the solutions (B.17,B.10) in its
expression in Eq. (B.8)

Pwk+u—kfm}n+[@—kﬂmpa

b =
+ 5 X
\/3[(171{2)2T3+47’1‘2k][T37T2]T2’I"g
- : : B.1
2k |1 — k2| > (B.19)
and obtain d with our choice of 74 = 0 that induces

d=—kb

k |:4T21€ + (1 — k)2 T3:| 1+ k [(1 — kz) Tg} T2
+

d =
2

X

A
\/ 3[(1 —]C)Q’I‘g +4ro k] [T‘3 —7‘2]7‘27‘3
W= k7]

(B.20)

Inputting the values of the roots from appendix A, and
the values of the transformation coefficients a, b, ¢, and

— 1.d into Eq. (B.21) yields the conformal time evolution so-

lution, that can be related to the cosmic time according
to

T (P k)

Therefore there is an analytic solution to the ALTB
model (see also Lemaitre [36]).
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