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INTRODUCTION.

When Γ is a discrete torsion free subgroup of SO(n, 1), its critical exponent is defined by δ(Γ) := inf{s > 0, γ∈Γ e -sd(z,γ(z)) < +∞}.

It is easy to see that this definition doesn't depend on the choice of z ∈ H n and that δ(Γ) ≤ n -1. The critical exponent measures the growth of Γ-orbits:

δ(Γ) = lim sup R→+∞ log Card(B(z, R) ∩ Γ.z) R .
An important and beautiful result of D. Sullivan [START_REF]Related aspects of positivity in Riemannian geometry[END_REF] (see also [START_REF] Patterson | The limit set of a Fuchsian group[END_REF] in dimension 2) is a formula between the critical exponent and the bottom of the spectrum of the Laplacian (on functions) on the manifold Γ\H n : If δ(Γ) ≤ (n -1)/2 then λ 0 (Γ\H n ) = (n -1) 2 /4. If δ(Γ) ≥ (n -1)/2 then λ 0 (Γ\H n ) = δ(n -1δ). When Γ is geometrically finite, the critical exponent is linked with the Hausdorff dimension of the limit set Λ(Γ) = Γ.z ∩ ∂ ∞ H n (where the closure is taken in the geodesic compactification of the hyperbolic space H n = H n ∪ ∂ ∞ H n ) or with the entropy of the geodesic flow ( [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF], [START_REF] Patterson | The limit set of a Fuchsian group[END_REF], [START_REF] Bishop | Hausdorff dimension and Kleinian groups[END_REF]).

When Γ is convex-cocompact and isomorphic to a cocompact discrete torsion free subgroup of SO(np, 1), then δ(Γ) ≥ n -1p with equality if and only if Γ stabilizes cocompactly a totally geodesic (np)-hyperbolic subspace H n-p ⊂ H n ([9], [START_REF] Bourdon | Sur le birapport au bord des CAT(-1)-espaces[END_REF], [START_REF] Yue | Dimension and rigidity of quasi-Fuchsian representations[END_REF], [START_REF] Besson | Lemme de Schwarz réel et applications géométriques[END_REF]). Other rigidity results in terms of the critical exponent have been recently obtained for amalgamated products ( [START_REF] Shalom | Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group[END_REF], [START_REF]Hyperbolic manifolds, almagamated products and critical exponents[END_REF], [START_REF]Rigidity of amalgamated products in negative curvature[END_REF]). Using different techniques, H. Izeki, H. Izeki and S. Natayani ( [START_REF] Izeki | Limit sets of Kleinian groups and conformally flat Riemannian manifolds[END_REF], [START_REF] Izeki | Canonical metric on the domain of discontinuity of a Kleinian group[END_REF]) and X. Wang [START_REF]On the L 2 -cohomology of a convex cocompact hyperbolic manifold[END_REF] obtained rigidity results based on the De Rham cohomology with compact support 1 :

1 or cohomology in complementary degree using Poincaré's duality 1 Theorem 1.1. Let X = Γ\H n be a convex-cocompact hyperbolic manifold, assume that for some p < n/2 : H p c (X) = {0} then δ(Γ) ≥ n -1p with equality if and only if Γ stabilizes cocompactly and positively a totally geodesic (np)-hyperbolic subspace H n-p ⊂ H n .

We say that Γ stabilizes cocompactly and positively a totally geodesic (n-p)-hyperbolic subspace H n-p ⊂ H n when Γ stabilizes cocompactly a totally geodesic (n-p)-hyperbolic subspace H n-p ⊂ H n and when Γ acts trivially on the orientation normal bundle of H n-p ⊂ H n .

In fact, R. Mazzeo has shown that the cohomology with compact support of a convex cocompact hyperbolic n-manifold is isomorphic to the space of harmonic L 2 forms in degree p < n/2 [START_REF] Mazzeo | The Hodge cohomology of a conformally compact metric[END_REF]: If X = Γ\H n is convex cocompact and if p < n/2 then H p c (X) ≃ H p (X) := {α ∈ L 2 (Λ p T * X), dα = d * α = 0}. In [START_REF] Carron | On the differential form spectrum of hyperbolic manifolds[END_REF], with E. Pedon, we obtained the following result : Theorem 1.2. Let X = Γ\H n be a hyperbolic manifold, assume that for p < n/2 :

δ(Γ) < n -1 -p, then H p (X) = {0}.
Moreover the bottom of the spectrum of the Hodge-De Rham Laplacian on p forms is bounded from below by :

λ 0 (dd * + d * d, Γ\H n ) ≥ (δ(Γ) -p)(n -1 -p -δ(Γ)) if (n -1)/2 ≤ δ(Γ) < n -1 -p and λ 0 (dd * + d * d, Γ\H n ) ≥ (n -1 -p) 2 4 if δ(Γ) ≤ (n -1)/2.
Together with Mazzeo's interpretation of the space of L 2 harmonics forms, this result implies a part of the theorem 1.1 : convex cocompact hyperbolic manifolds with non trivial cohomology with compact support in some degree p < n/2 have a critical exponent strictly larger than n -1p. In this paper, we study rigidity result without the convex cocompact hypothesis. The case of degree p = 1 is covered by the following very general result of P. Li and J. Wang [START_REF] Li | Complete manifolds with positive spectrum[END_REF] (see also [START_REF] Wang | On conformally compact Einstein manifolds[END_REF] for earlier results):

Theorem 1.3. If (M n>2 , g) is a complete Riemannian manifold with Ricci g ≥ -(n -1)g and λ 0 (M n , g) ≥ (n -2), then either i) M has only one end with infinite volume or ii) (M n , g) is isometric to the warped product (R × N, (dt) 2 + cosh 2 (t)h) with (N, h) compact and Ricci h ≥ -(n -2)h .
This has the following consequence for hyperbolic manifold :

Theorem 1.4. Let X = Γ\H n be a hyperbolic manifold with n > 2 and whose injectivity radius is positive. If

δ(Γ) ≤ n -2 then either i) H 1 c (X, Z) = {0} or ii) H 1 c (X, Z) = {0}, δ(Γ) = n -2 and Γ stabilizes cocompactly a totally geodesic hypersurface H n-1 ⊂ H n
Recently M. Kapovich has studied the link between the critical exponent and the cohomological dimension of a hyperbolic manifold X = Γ\H n relative to the ǫ-ends whose rank is larger or equal to 2 [START_REF] Kapovich | Homological dimension and critical exponent of Kleinian groups[END_REF]. Let ǫ be a positive number smaller that the Margulis constant and denote X <ǫ the ǫ-thin part of X, that is the set of point of X where the injectivity radius is smaller than ǫ. Let M <ǫ ⊂ X <ǫ be the union of the connected component of X <ǫ whose fundamental group has rank larger than or equal to 2. M. Kapovich proves the following result :

Theorem 1.5. Assume that δ(Γ) < n -p -1
and let R be a commutative ring with unit and V be a RΓ-module then

H n-p (X, M <ǫ , V) = {0}.
Moreover, when Γ is assumed to be geometrically finite and when

δ(Γ) = n -p -1 and H n-p (X, M <ǫ , V) = {0}, then Γ stabilizes a totally geodesic n-p-hyperbolic subspace H n-p ⊂ H n with vol(Γ\H n-p ) < ∞.
We'll prove a similar rigidity result for the De Rham cohomology in the space of L 2 harmonic form : Theorem 1.6. Let X = Γ\H n be a oriented hyperbolic manifold with n > 3 and let E ⊂ X <ǫ be the union of all unbounded connected components of the ǫ-thin part and let p < (n -1)/2. There is a natural linear map

H n-p (X) → H n-p (X, E).
Moreover if δ(Γ) = np -1 and if this map is non zero then Γ stabilizes positively a totally geodesic np-hyperbolic subspace H n-p ⊂ H n with vol(Γ\H n-p ) < ∞.

We recall that when δ(Γ) < np -1 and p < n/2, then H n-p (X) = {0}. The above restriction on the range of the degree p < (n -1)/2 comes from the fact that when p ≥ (n -1)/2, we are not able to build a map H n-p (X) → H n-p (X, E), however we'll give a similar result based on the cohomology with compact support (see theorem 3.10).

When Γ is geometrically finite, then a quick look at the topological interpretation of the space of L 2 harmonic forms obtained by R. Mazzeo and R.Phillips [START_REF] Mazzeo | Hodge theory on hyperbolic manifolds[END_REF] shows that we have in this case : H n-p (X) ≃ H n-p (X, E) (see §3.4). Moreover using the proof of [15, lemma 8.1], when np > 1 we obtained H n-p (X, E) = H n-p (X, M <ǫ ). Hence in the geometrically finite case, we are able to recover the rigidity result of M. Kapovich for R = R = V.

We now describe the proof of our result. Our proof owns a lot to X. Wang's proof of the theorem 1.1 but with several new technical points.

The first point is to analyse the case of equality in the refined Kato inequality. When p < n/2 and when ξ is a harmonic L 2 p-form on the hyperbolic manifold X = Γ\H n , then the refined Kato's inequality ( [START_REF] Branson | Kato constants in Riemannian geometry[END_REF] [START_REF] Calderbank | Refined Kato inequalities and conformal weights in Riemannian geometry[END_REF]) implies that the function

φ := |ξ| n-1-p n-p satisfies (1.1) ∆φ ≤ p(n -1 -p)φ.
Our first result describes the equality case in this inequality; it is an extension of a result of X. Wang who described the equality case when ξ is squared integrable and Γ is convex cocompact.

Then we describe how we can define a map

H n-p (X) → H n-p (X, E) or H p c (X \ E) → H p (X) when p < (n -1)/2.
Note that E being an open set, X \ E is a closed subset of X and that forms with compact support in X \ E have a support that can touch ∂E.

The second crucial point is to prove that when the map

H p c (X \ E) → H p (X) is not zero and δ(Γ) = n -1 -p then there is a L 2 harmonic p-form ξ such that φ := |ξ| n-1-p n-p ∈ L 2 .
Then according to D. Sullivan's result, the bottom of the spectrum of the Laplacian on X is δ(Γ)(n-1-δ(Γ)) = p(n-1-p), it is easy to deduce that in fact φ is a eigenfunction of the Laplace operator. Then we use our description of the equality in (1.1).

In the degree p = (n ± 1)/2, then our methods does not apply because we are not able to build a map H p c (X \ E) → H p (X). However, there is always a map H p c (X) → H p (X) and our proof will also show the following result : Theorem 1.7. Let X = Γ\H n be a hyperbolic manifold with n > 3. Assume that for a p < n/2: δ(Γ) ≤ n -1p , then the image of the cohomology with compact support in the absolute cohomology is zero in degree p : Acknowledgements. This text is an attempt to answer some of the questions that have been asked after my talk at the conference "Spectral Theory and Geometry" in honour of my teachers, advisor : P. Bérard and S. Gallot. Hence it is a pleasure to thank G. Besson, L. Bessières, Z. Djadli for having organized this very nice conference. I also take the opportunity to thank P. Bérard and S. Gallot for all the beautiful mathematics that they taught me. I thank V. Minerbe for his useful comments. I was partially supported by the project ANR project GeomEinstein 06-BLAN-0154. Eventually, I want to dedicate my paper to H. Pesce.

Im(H p c (X) → H p (X)) = {0}. Moreover either i) The map H p c (X) → H p (X) is zero ii) Or the map H p c (X) → H p (X) is an isomorphism, δ(Γ) = n -1 -p

THE EQUALITY CASE IN THE REFINED KATO'S INEQUALITY ON HYPERBOLIC

SPACE.

The classical Kato inequality says that if ξ is a smooth p-form on a Riemannian manifold (M n , g), then

|d|ξ|| 2 ≤ |∇ξ| 2 .
When ξ is assumed to be moreover closed and coclosed :

dξ = d * ξ = 0,
then this Kato inequality can be refined :

(2.1) n + 1 -p n -p |d|ξ|| 2 ≤ |∇ξ| 2 ,
See [START_REF] Bourguignon | The magic of Weitzenbck formulas[END_REF], for a convincing explanation of the principle leading to this inequality, and [START_REF] Branson | Kato constants in Riemannian geometry[END_REF], [START_REF] Calderbank | Refined Kato inequalities and conformal weights in Riemannian geometry[END_REF] for the computation of the refined Kato constant. Where (M n , g) is a hyperbolic manifold, direct computations show that if ξ is a harmonic p-form then the function φ

:= |ξ| n-1-p n-p satisfies ∆φ ≤ p(n -1 -p)φ
, with equality if and only if we have equality in the refined Kato inequality (2.1). In this situation, X. Wang has described the equality case when ξ is square integrable and when (M, g) is convex cocompact [START_REF]On the L 2 -cohomology of a convex cocompact hyperbolic manifold[END_REF]. Our first preliminary result is an extension of this result of X. Wang : Theorem 2.1. Let p, n be integers with 2p < n and n > 3. If ξ be a harmonic p-form on H n such that we have everywhere equality :

|∇ξ| 2 = n + 1 -p n -p |d|ξ|| 2 ,
then either i) there is a real constant A, an isometry γ and a parallel (p -1)form ω on R n-1 such that in the upper-half-space model of the hyperbolic space

H n ≃ {(y, x) ∈ (0, +∞) × R n-1 } endowed with the Riemannian metric (dx) 2 +(dy) 2 y 2
, we have

γ * ξ = Ay n-1-p π * ω,
where π(y, x) = x, or ii) there is a totally geodesic copy

H n-p ⊂ H n such that in Fermi coordinates around this H n-p H n \ H n-p ≃ (0, +∞) t × S p-1 × H n-p we have ξ = A (sinh t) p+1 (cosh t) n-p+1 dt ∧ dσ;
recall that here t is the geodesic distance to H n-p ⊂ H n and dσ is the volume form of S p-1 .

Our arguments will follow closely those of X. Wang, however in his situation only the case ii) appears.

2.1. Proof of the theorem 2.1. Let p, n be integers with p < n/2 and n > 3. We consider ξ a non trivial harmonic p-form on H n such that we have everywhere:

|∇ξ| 2 = n + 1 -p n -p |d|ξ|| 2 .
Then

φ := |ξ| n-1-p n-p satisfies ∆φ = p(n -1 -p)φ.
Then the Harnack inequalities imply that φ is positive.

According to [START_REF] Calderbank | Refined Kato inequalities and conformal weights in Riemannian geometry[END_REF], there is locally a 1-form α such that

α ∧ ξ = 0 and ∇ξ = α ⊗ ξ - 1 n + 1 -p j θ j ⊗ θ j ∧ α ♯ ξ for a local orthonormal dual frame (θ 1 , ..., θ n ). Now we let k := n -1 -p so φ = |ξ| k k+1 . If X is a vector field, then ∇ X φ = k k + 1 |ξ| -1 k+1 -1 ∇ X ξ, ξ = k k + 1 |ξ| -1 k+1 -1 α(X)|ξ| 2 - 1 k + 2 α ♯ ξ, X ξ But we have α ∧ ξ = 0 hence α ♯ ξ, X ξ = α(X)|ξ| 2
and we obtain

(2.2) ∇φ = k k + 2 φ α
Hence, ∇φ vanishes only where α vanishes and α is a smooth (p -1) form. We work on the open set

U := {z ∈ H n , ∇φ(z) = 0}.
On U , we can locally find a orthonormal dual frame (θ 1 , ..., θ n ) such that

α = (k + 2)u θ 1 with u > 0. Hence (2.3) ∇φ = kuφ θ 1
As α ∧ ξ = 0, we can locally find a (p -1)-form ω such that

ξ = θ 1 ∧ ω.
And we have

∇ξ = u   (k + 1)θ 1 ⊗ θ 1 ∧ ω - n j=2 θ j ⊗ θ j ∧ ω  
Let (e 1 , ..., e n ) be the frame dual to (θ 1 , ..., θ n ), then we obtain

∇ e1 ξ = (k + 1)uθ 1 ∧ ω = ∇ e1 θ 1 ∧ ω + θ 1 ∧ ∇ e1 ω
and for j > 1 :

∇ ej ξ = -uθ j ∧ ω = ∇ ej θ 1 ∧ ω + θ 1 ∧ ∇ ej ω
With the fact that ∇ ej e 1 , e 1 = 0 and ∇ ej θ 1 , θ 1 = 0, we get the following identities (2.4) 

θ 1 ∧ [∇ e1 ω -(k + 1)uω] = 0 (2.5) ∇ e1 θ 1 ∧ ω = 0 (2.6) θ 1 ∧ ∇ ej ω = 0 (2.7) ∇ ej θ 1 + uθ j ∧ ω = 0 Let c ∈ φ(U ) and let Σ c := U ∩ φ -1 {c}
T z Σ c = E z ⊕ E ⊥ z where E z := {v ∈ T z Σ, v ♭ ∧ ω = 0}
Let L be the shape operator of Σ c at z

L : T z Σ c → T z Σ c Lv = -∇ v e 1 ;
we have

∇ ej θ 1 = - n i=2
Le j , e i θ i .

The equation (2.7) implies that L(E z ) ⊂ E z . Since L is a self adjoint operator we also have L E ⊥ z ⊂ E ⊥ z and moreover still according to equation (2.7), we have

L(X) = uX, ∀X ∈ E ⊥ z .
Then ω being parallel, the decomposition (2.8) induced a parallel decomposition of the tangent bundle of Σ c , in particular if X ∈ E z , Y ∈ E ⊥ z are unit vectors then the sectional curvature of Σ c in the direction of X ∧ Y is zero and the Gauss Egregium theorem implies that

-1 = ( LX, Y ) 2 -LX, X LY, Y hence we have LY = 1 u Y, ∀Y ∈ E z .
We can now compute the Ricci curvature of Σ c , it is given by the formula

ricci Σc = (rank E z -1) -1 + 1 u 2 g Ez + rank E ⊥ z -1 (-1 + u 2 )g E ⊥ z
The hypothesis n -1 > 2 and the trace of the Bianchi identity

δ gΣ c ricci Σc = -dScal Σc
implies that the function u is constant on each connected component of Σ c . As u is proportional to the length of ∇φ, this implies that ∀j > 1, 0 = ∇ ej ∇φ, e 1 = e j , ∇ e1 ∇φ .

So that ∇ e1 e 1 = 0, and θ 1 is (locally and up to a sign) the differential of the distance to Σ c and φ is a function of the sign distance to Σ c . First case : u = 1 at a point z: then the connected component of Σ c which contains z is a totally umbilical flat hypersurface of H n . Up to an isometry, we can assume that this connected component of Σ c is included in the horosphere :

{y = 1}
in the upper half-space model of the hyperbolic space.

The facts that φ depends only on the distance to Σ c and that φ is a eigenfunction of the Laplace operator imply that there are constants A, B such that in a neighborhood of z, we have φ(y, x) = Ay n-1-p + By p

In this case we have

|∇φ| = A(n -1 -p)y n-1-p + Bpy p . But p ≤ (n -1)/2, hence |∇φ| ≤ (n -1 -p)φ
with equality at a point if and only if B = 0. But at z, we have u = 1 hence (cf. 2.3) at z we have |∇φ| = (n -1p)φ.

So that B = 0 and u = 1 around z. The unique continuation property for eigenfunctions of the Laplace operator implies that we have everywhere :

φ(y, x) = Ay n-1-p .
Hence we have also : U = H n , e 1 = y∂ y and that ω is a parallel (p -1)-form on each horosphere {y = c}. Finally, the equation

∇ e1 ω = (k + 1)ω implies that for a certain ω ∈ Λ p-1 R n-1 * we have ξ = Ay n-1-p dy ∧ π * ω
where π(y, x) = x. Second case : u = 1 nowhere. The distributions induced by E z and E ⊥ z are parallel hence integrable. Locally there is a splitting

Σ c = Σ c (E) × Σ c E ⊥ . And each Σ c (E) has curvature -1 + u -2 and each Σ c E ⊥ has curvature -1 + u 2 . We have ω = Ω E ∧ τ , where Ω E is the volume form of Σ c (E) and τ is a parallel form on Σ c E ⊥ ; however, the curvature of Σ c E ⊥ is constant, not zero hence Σ c E ⊥ has only parallel form in degree 0 or in degree dim Σ c E ⊥ . This implies that deg ω = rank E = p -1.
We fixed now z 0 ∈ U and c 0 = φ(z 0 ). We consider a neighborhood O of z 0 such that O ∩ Σ c0 is connected and isometric to S × T where S has curvature -1 + u -2 and T has curvature -1 + u 2 . This neighborhood can be choosen so that the exponential map

E : (-δ, δ) × Σ c ∩ O → O (t, z) → E(t, z) = exp z (te 1 )
is a diffeomorphism. Because locally φ is a function of the sign distance to Σ c0 , we have for a certain function f :

φ • E(t, z) = f (t).
By 2.3, we have

f ′ f = ku ,
hence u is also a function of t. We also have

∆t = -tr ∇dt = tr L = (n -p)u + (p -1) 1 u .
The equation ∆φ = p(n -1p)φ = pkφ implies :

f ′′ -(n -p)u + (p -1) 1 u f ′ + kpf = 0
We obtain

f ′′ f = k + 1 k f ′ f 2 -k.
If we let g(t) := f (t) -1/k , we obtain the equation

g ′′ -g = 0.
There are two constants A, B such that g(t) = Ae t + Be -t . We remark that AB = 0 because u = 1 hence we can find a constant C and a real τ such that

g(t) = C cosh(t + τ ) if AB > 0 C sinh(t + τ ) if AB < 0 so that u = -tanh(t + τ ) if AB > 0 -1/ tanh(t + τ ) if AB < 0
Moreover, because u is always positive we have τ < 0. We endow (-∞, -τ ) × S × T with the hyperbolic metric 2 g T so that the map E is a isometry from (-δ, δ) × S × T onto O, the natural extension of this map E(t, z) = exp z (te 1 ) becomes an isometric immersion. The unique continuation property (applied to φ| E ) implies again that on (-∞, -τ

(dt) 2 + [f ′ (t)/f ′ (0)] 2 g S + c -2 0 f (t)
) × S × T , φ • E(t, z) = f (t) -k .
As φ • E remains bounded as t tends to -τ , hence we must have AB > 0. And the above hyperbolic metric on (-∞, -τ ) × S × T is

(dt) 2 + sinh(t + τ ) sinh(τ ) 2 g S + cosh(t + τ ) cosh(τ ) 2 g T .
The metric sinh -2 (τ )g S has constant curvature 1 and the metric cosh -2 (τ )g T has constant curvature -1, and

(2.9)

E * ξ = C (sinh t) p+1 (cosh t) n-p+1 dt ∧ dσ;
dσ being the volume form of (S, sinh -2 (τ )g S ).

But in Fermi coordinate (0, +∞) × S p-1 × H n-p around a totally geodesic copy of H n-p ⊂ H n , the hyperbolic metric is

(ds) 2 + sinh 2 (s)g S p-1 + cosh 2 (s)g H n-p .
If O is small enough, we can find an isometry ι : (-∞, -τ ) × S × T → H n \ H n-p . Eventually, the isometry ι • E -1 a priori defined on O can be extended to an isometry γ of H n . Using this isometry and 2.9, we find the desired expression of ξ on O, then the result follows by the unique continuation property.

PROOF OF THE MAIN THEOREM

3.1. Margulis's decomposition. (See [2, Chapter D] or [21, §12.6]) Let X = Γ\H n be a complete hyperbolic manifold and let ǫ be a positive number smaller than the Margulis's constant ǫ n . The ǫ-thin part of X is the set X <ǫ , where the injectivity radius is smaller that ǫ; we have X <ǫ = V (Γ, ǫ)/Γ where

V (Γ, ǫ) := {z ∈ H n , ∃γ ∈ Γ \ {id}, d(z, γ.z) < 2ǫ}.
Let E be the union of all unbounded connected components of X <ǫ :

E = ∪E j
where {E j } j is the set of the unbounded connected component of X <ǫ .

The topology of such an ǫ-end is well known. When E j is an unbounded connected component of X <ǫ , there is a point p j ∈ ∂ ∞ H n and a parabolic subgroup

Γ j := {γ ∈ Γ, γ.p j = p j },
such that on the description of the hyperbolic space as the upper-half space model

(0, ∞) × R n-1 , y -2 ((dy) 2 + (dx) 2 )
where the point p j is at ∞, then Γ j acts freely on R n-1 and E j is homeomorphic to (1, ∞) × Γ j \R n-1 . Let F j be the flat manifold Γ j \R n-1 and S j ⊂ F j be a soul of F j , then there is a maximal Γ j -invariant r-plane Sj ⊂ R n-1 that is the pull-back of a soul by the natural projection R n-1 → F j := Γ j \R n-1 , i.e. S j = Γ j \ Sj .

Moreover, there are always positive constants y j , r j such that if Ñj is the r j -neighborhood of Sj ⊂ R n-1 :

Ñj := {x ∈ R n-1 , d(x, Sj ) < r j }
and N j = Γ j \ Ñj , then the inclusion (y j , ∞) × N j ⊂ E j is a homotopy equivalence. We consider E j = [y j , ∞) × N j and E = ∪ j E j . We let

Σ j = {y j } × N j ⊂ ∂ E j .
And let X := X \ E ∪ j Σ j , it is a manifold with boundary

∂ X = j Σ j .
We consider the cohomology H • c ( X) of the complex of differential forms α which are smooth on X and with compact support, that is there is a R 0 such that support α ⊂ B(o, R 0 ) and support α ∩ ∂ X is a compact subset of ∂ X = j Σ j . In particular for all but a finite number of j we have support α ∩ Σ j = ∅. We have that

H • c (X \ X <ǫ ) ≃ H • c ( X)
moreover, when X is oriented we have the Poincaré duality isomorphism :

H • (X, X <ǫ ) ≃ H n-• c (X \ X <ǫ ) *
The relative cohomology H • (X, X <ǫ ) is also isomorphic to H • (Γ, ∪ j Γ j , R) which is similar to a cohomology studied by M. Kapovich [START_REF] Kapovich | Homological dimension and critical exponent of Kleinian groups[END_REF]; more exactly, if Π is the union of the Γ j 's whose rank is larger or equal to 2, he studied H • (Γ, Π, V) where V is a RΓ-module (for R a commutative ring with unit).

3.2. L 2 cohomology and harmonic forms. We first recall some classical facts on the space of L 2 harmonic forms on a complete Riemannian manifold (X, g).

The first one is the Hodge-De Rham-Kodaira orthogonal decomposition :

L 2 (Λ p T * X) = H p (X) ⊕ dC ∞ 0 (Λ p-1 T * X) ⊕ d * C ∞ 0 (Λ p+1 T * X)
where the closure are understood for the L 2 topology. The second one is the reduced L 2 cohomology interpretation of the space of L 2 harmonic forms. Let Z p L 2 (X) be the space of weakly closed L 2 p-forms :

Z p L 2 (X) := α ∈ L 2 (Λ p T * X), dα = 0 ;
By definition,we have

Z p L 2 (X) = d * C ∞ 0 (Λ p+1 T * X) ⊥ = H p (X) ⊕ dC ∞ 0 (Λ p-1 T * X).
Hence if we introduce the reduced L 2 -cohomology space :

H p L 2 (X) ≃ Z p L 2 (X)/dC ∞ 0 (Λ p-1 T * X). H p (X) ≃ Z p L 2 (X)/dC ∞ 0 (Λ p-1 T * X).
We can now describe the natural map from cohomology with compact support to the space of L 2 harmonic forms H p c (X) → H p (X) in two closely related ways. The first one is induced by the natural inclusions

Z p c (X) := {α ∈ C ∞ c (Λ p T * X), dα = 0} ⊂ Z p L 2 (X) and dC ∞ 0 (Λ p-1 T * X) ⊂ dC ∞ 0 (Λ p-1 T * X) which induces a map H p c (X) = Z p c (X) dC ∞ c (Λ p-1 T * X) → H p (X) ≃ Z p L 2 (X) dC ∞ c (Λ p-1 T * X)
.

The second one is induced by the orthogonal projector onto H p (X) restricted to Z p c (X). This map is zero on dC ∞ c (Λ p-1 T * X) hence induces a map H p c (X) → H p (X).

3.3. L 2 cohomology and "cuspidal" cohomology. Let X = Γ\H n be a complete hyperbolic manifold. We'll build a natural map from the cohomology space H p c ( X) in the space of harmonic L 2 p-form H p L 2 (X) for the degrees p < (n -1)/2. The main point is to extend a closed p-form with compact support in X to a closed L 2 -form on X. Let p j be the projection

p j : [y j , ∞) × N j → Σ j = {y j } × N j
and let ι j be the inclusion Σ j ⊂ X Let α be a smooth closed p-form with compact support in X. We extend α to X by defining ᾱ = α on X ⊂ X and

ᾱ = p * j ι * j α on [y j , ∞) × N j . It is easy to verify that ᾱ 2 L 2 ([yj,∞)×Nj ) = ι * j α 2 L 2 (Σj ) ∞ yj y -n+2p dy is finite if p < (n -1)/2. Because α has compact support in X, there is only a finite number of j such that ι * j α = 0 hence ᾱ ∈ L 2 .
Remark that by definition, the Σ j 's are open, hence ι * j α has compact support in Σ j . Moreover, it is easy to check that ᾱ is weakly closed and that dα = dα .

Hence we have a well-defined map :

H p c ( X) → H p L 2 (X) ≃ H p (X)
Remark 3.1. When c ∈ H p c ( X), we can always find a α ∈ c such that for each j, α has no normal component on a neighborhood of Σ j : ∇d(., Σ j ) α = 0, α being moreover closed, this will imply that near Σ j , α is independant of r = d(., Σ j ) (i.e. invariant by the flow of the radial vector field ∇d(., Σ j )). Then the extension ᾱ is smooth on X.

3.4.

Remark on the geometrically finite case. When Γ is geometrically finite, R. Mazzeo and R. Phillips have computed the L 2 cohomology of X = Γ\H n in terms of the cohomology of a complex of differential forms which vanish on certain faces of a compactification of X [START_REF] Mazzeo | Hodge theory on hyperbolic manifolds[END_REF].

Indeed such a X can be compactified as a manifold X with corner

∂ r X ∩ ∂ c X with boundary ∂ X = ∂ r X ∪ ∂ c X where ∂ r X is the regular boundary of X (the conformally compact boundary of X) and ∂ c X = ∪ n-1 t=1 ∂ c (t) is the cuspidal boundary of X, where ∂ c (t) is the union of the cuspidal face with rank t. X is homeomorphic to X \ ∂ r X. Let F p := t<n-1-p ∂ c (t). When p < (n -1)/2, the result of R.Mazzeo and R.Phillips is that H p L 2 (X) ≃ H p ( X, ∂ r X ∪ F p ). We clearly have a map H p ( X, ∂ r X ∪ F p ) → H p ( X, ∂ r X)
We consider the long exact sequence :

... → H p-1 (F p , ∂ r X) → H p ( X, ∂ r X ∪ F p ) → H p ( X, ∂ r X) → H p (F p , ∂ r X) → ... Now if t = n -1, then H k (∂ c (n -1), ∂ r X) = H k (∂ c (n -1)). And when t < n -1, then H k (∂ c (t), ∂ r X) ≃ H n-k (∂ c (t), o)
where o is the orientation bundle. But the connected component of ∂ c (t) are homotopic to compact flat manifold of dimension t, hence we have

n -k > t ⇒ H k (∂ c (t), ∂ r X) = {0}.
Hence the above long exact sequence implies that :

Proposition 3.2. If Γ is a geometrically finite discrete torsion free subgroup of SO(n, 1) and if p < (n -1)/2 then H p L 2 (X) ≃ H p ( X, ∂ r X ∪ F p ) ≃ H p ( X, ∂ r X).

Hence we obtain

Corollary 3.3. If Γ is a geometrically finite discrete torsion free subgroup of SO(n, 1) then for p < (n -1)/2 the map

H p c ( X) → H p L 2 (X) ≃ H p (X) is an isomorphism.
3.5. The main result. Theorem 3.4. Let X = Γ\H be a hyperbolic manifold and assume that δ(Γ) = n -1p for some integer p < (n -1)/2. If the map H p c ( X) → H p (X) is not zero, then then Γ stabilizes positively a totally geodesic np-hyperbolic subspace H n-p ⊂ H n with vol(Γ\H n-p ) < ∞.

3.6. Proof of the main result.

3.6.1. Preliminary. We assume that Γ ⊂ SO(n, 1) is a discrete torsion free subgroup and that δ(Γ) = n -1p with p an integer such that 2p < (n -1) and we assume moreover that we can find

• a non zero L 2 harmonic p-form ξ,

• a closed p-form with compact support in X, α such that ξ and ᾱ define the same reduced L 2 -cohomology class in H p L 2 (X). That is to say there is a sequence of smooth (p -1)-forms with compact support (β k ) k such that

ξ -ᾱ = L 2 -lim k→∞ dβ k .
According to [12, theorem B], the spectrum of the Hodge-De Rham Laplacian on the (p -1)-forms on X is bounded from below with

σ p := n -2p.
That is we have the spectral gap estimate :

(3.1) ∀ϕ ∈ C ∞ c (Λ p-1 T * X), (n -2p) ϕ 2 L 2 ≤ dϕ 2 L 2 + d * ϕ 2 L 2 = ϕ, ∆ϕ .
According to the remark (3.1) we can always assume that ᾱ is smooth. Hence according to [27, prop. 1.3], we can find a smooth (p -1)-form β ∈ L 2 (Λ p-1 T * X) such that ξ = ᾱ + dβ, and d * β = 0.

Note in particular that this implies ∆β = (dd * + d * d)β = d * ᾱ, so ∆β vanishes outside the support of ᾱ.

3.6.2. Some estimates. We are going to prove that φ := |ξ| δ(Γ) δ(Γ)+1 is square integrable. For this purpose we 'll use Agmon's type estimates as P. Li and J. Wang [START_REF] Li | Complete manifolds with positive spectrum[END_REF] (finite propagation speed argument can also be used) in order to estimate on the growth of β and dβ. There is a finite set J and R 0 > 0 such that

support ᾱ ⊂ B(o, R 0 ) ∪ j∈J p -1 j (N j )
Let ρ be the function distance in X to B(o, R 0 ) ∪ j∈J p -1 j (N j ), we have support ᾱ ⊂ ρ -1 {0}.

For τ > 0, we define ρ τ = min(τ, ρ) ; using the fact that β ∈ L 2 , it is not hard to justify the integration by part formula :

X (d + d * ) e c 2 ρτ β 2 = X ∆β, β e cρτ + c 2 4 X |dρ τ | 2 |β| 2 e cρτ ,
remenbering that ρ is zero on the support of d * ᾱ, we get :

X (d + d * ) e c 2 ρτ β 2 ≤ X d * ᾱ, β + c 2 4 ρ -1 ([0,τ ]) |β| 2 e cρτ
Using the spectral gap estimate (3.1), we obtain

σ p X |β| 2 e cρτ ≤ X (d + d * ) e c 2 ρτ β 2 ,
and we easily deduce

σ p - c 2 4 ρ -1 ([0,τ ]) |β| 2 e cρτ ≤ X d * ᾱ, β .
Letting, τ going to infinity, we obtain the Lemma 3.5. Let σ p = n -2p. Then there is a constant C such that for any c > 2 √ σ p then

(3.2) σ p - c 2 4 X |β| 2 (x)e cρ(x) d vol(x) ≤ C.
The second estimate of the proof is the following : Lemma 3.6. There is a constant C such that for any R > 0 :

ρ -1 ([0,R])
|β| 2 e 2 √ σp ρ(x) ≤ CR.

Proof of the lemma 3.6.-As a matter of fact, according to the inequality (3.2), we have for all c ∈ [0, 2 √ σ p ) :

ρ -1 ([0,R]) |β| 2 e 2 √ σp ρ d vol ≤ e (2 √ σp -c)R ρ -1 ([0,R]) |β| 2 e cρ d vol ≤ C σ p - c 2 4 -1 e (2 √ σp -c)R
Hence applying this inequality for c = 2

√ σ p -1/R we get ρ -1 ([0,R]) |β| 2 (x)e 2σpρ(x) d vol(x) ≤ C 4R 4 √ σ p -1/R e 1
This lemma 3.6 implies the following control on the growth of dβ: Lemma 3.7. There is a constant C such that for all R ≥ 1 :

ρ -1 ([R,R+1]) |dβ| 2 ≤ CRe -2 √ σpR . Proof. Let R ≥ 1, we use a cut off function χ such that support χ ⊂ ρ -1 [R -1, R + 2]) and χ = 1 on ρ -1 [R, R + 1]) :
and |dχ| ≤ 2. We have

ρ -1 ([R,R+1]) |dβ| 2 ≤ X |(d + d * )(χβ)| 2 .
Integrating by part, we get :

X |(d + d * )(χβ)| 2 = X χ 2 β, ∆β + X |dχ| 2 |β| 2 .
As ∆β is zero on the support of χ, we get

ρ -1 ([R,R+1]) |dβ| 2 ≤ 4 ρ -1 ([R-1,R+2]) |β| 2 .
The last estimate is about the volume growth of the sub-level set of the function ρ: Lemma 3.8. There is a constant such that for all R ≥ 1 vol ρ -1 ([0, R]) ≤ Ce (n-1)R .

Proof. We have

ρ -1 ([0, R]) ⊂ B(o, R 0 + R) ∪ j∈J V j (R)
where V j (R) is the R-neighborhood of p -1 j (N j ). We can always choose R 0 large enough so that for j ∈ J :

Σ j ⊂ B(o, R 0 ). It is clear that the volume of B(o, R 0 +R) satisfies such an estimate. Now the volume of V j (R) \ B(R 0 + R) is always smaller that the R + y -1 j R j neighborhood of [y j , ∞) × S j inside [y j , ∞) × F j . Defined r := d(., S j ) the distance to the soul (0, ∞) × S j . In Fermi coordinate around (0, ∞) × S j the Riemannian metric of the manifold (0, ∞) × F j is cosh 2 (r) (dy) 2 + (dx) 2 y 2 + (dr) 2 + sinh 2 (r)(dσ) 2 .
Hence the volume of

V j (R) \ B(R 0 + R) is less than C ∞ yj dy y n R+y -1 j Rj 0 sinh n-1-tj (r) cosh tj (r)dr ≤ Ce (n-1)R ,
where t j = dim S j . Proof. As a matter of fact : we have

{ρ≤1} φ 2 ≤ (vol({ρ ≤ 1})) 1 δ+1 {ρ≤1} |ξ| 2 δ δ+1 . Moreover for k ∈ N \ {0} : we have {k≤ρ≤k+1} φ 2 ≤ (vol({k ≤ ρ ≤ k + 1})) 1 δ+1 {k≤ρ≤k+1} |ξ| 2 δ δ+1 ≤ Ce k (n-1) δ+1 k δ δ+1 exp -2 √ σ p kδ δ + 1 ≤ Ck δ δ+1 exp k (n -1) -2 √ σ p δ δ + 1 But if p < (n -1)/2 then (n -1) -2 √ σ p δ = (n -1) -2 n -2p(n -1 -p) < 0,
hence the result.

Remark 3.10. The only place where the hypothesis p < (n -1)/2 is used is about the construction of the map

H p c ( X) → H p L 2 ( 
X). However, there is always a natural map from the cohomology of X with compact support in the reduced L 2 cohomology. Our above arguments show that if ξ ∈ H p (X) \ {0} with p < n/2 has in its H p L 2 (X) class a representative with compact support, i.e. ξ is the range of the map H p c (X) → H p (X)

then the function φ := |ξ| δ δ+1 satisfies : i) If p < (n -1)/2, then φ ∈ L 2 ii) If p = (n -1)/2, then there is a constant R such that for any R ≥ 1 :

B(o,R) φ 2 ≤ CR 2δ+1 δ+1 .
We can now finish the proof of the theorem : According to D. Sullivan's result, the bottom of spectrum of the Laplacian on function on X is p(n -1p) hence we have the spectral gap estimate :

∀f ∈ C ∞ c (X) p(n -1 -p) X f 2 ≤ X |df | 2 .
We use a cutoff function χ R such that Then

p(n -1 -p) X |χ R φ| 2 ≤ X |d(χ R φ)| 2 ≤ X χ 2 R φ∆φ + X φ 2 |dχ R | 2
ξ being closed and co-closed, the Bochner formula and the refined Kato inequality imply that ∆φ ≤ p(n -1p)φ hence :

B(o,R) φ (p(n -1 -p)φ -∆φ) ≤ X φ 2 |dχ R | 2 = O R -2 .
Letting R → ∞ we obtain p(n -1p)φ -∆φ = 0 everywhere and we have equality everywhere if the refined Kato inequality :

|∇ξ| 2 = n + 1 -p n -p |d|ξ|| 2
We apply our theorem (2.1) to ξ the pull back of ξ on H n . We notice that Γ must stabilize the level set of | ξ|. We have two cases : i) In the first case, we have a fundamental domain for the Γ of the type {(y, x) ∈ (0, +∞) × R n-1 , x ∈ D} where D is a fundamental domain for the action of Γ on R n-1 ≃ {y = 1}. Then ξ can not be in L 2 . ii) In the second case, Γ must stabilize the level set

| ξ| = sup | ξ|.
That is Γ stabilizes a totally geodesic copy of H n-p ⊂ H n and ξ being L 2 , we have vol(Γ\H n-p ) < ∞.

Eventually, because ξ is Γ-invariant, the formula given for ξ in the theorem (2.1) implies that Γ acts trivially on the orientation bundle of the normal bundle of H n-p ⊂ H n . Im (H p c (X) → H p (X)) = {0} then Γ stabilizes cocompactly and positively a totally geodesic (np)-hyperbolic subspace H n-p ⊂ H n .

Eventually, it is true that we always have a injective map [START_REF] Anderson | L 2 Harmonic Forms on Complete Riemannian manifolds[END_REF] :

Im(H p c (X) → H p (X)) → H p (X) hence a corollary of the above rigidity result is : Corollary 3.12. Let X = Γ\H n be a hyperbolic manifold and assume that p < n/2. If the critical exponent of Γ satisfies δ(Γ) ≤ n -1p, then

Im(H p c (X) → H p (X)) = {0}.

3. 6 . 3 .Lemma 3 . 9 .

 6339 Conclusion. if δ := δ(Γ) = n -1p, then the function φ := |ξ| δ δ+1 is L 2 .

  suppχ R ⊂ B(o, 2R) , χ R = 1 on B(o, R) and |dχ R | ≤ 2 R .
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 7311 Final remarks. The above argument and the remark(3.10) show that we also obtain a rigidity result in the case p = (n -1)/2 related the cohomology with compact support : Let X = Γ\H n be a hyperbolic manifold and assume that p < n/2, then i) If the critical exponent of Γ satisfiesδ(Γ) < n -1p then X carries no non trivial L 2 harmonic p-form. ii) If the critical exponent of Γ satisfies δ(Γ) = n -1p and if

  , this is a smooth hypersurface and e 1 is an unit normal vector field to Σ c . Then the equality (2.6) implies that the pull back of ω to Σ c is parallel.

At z ∈ Σ c , we decompose

(2.8)