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1 Introduction

From the 16th of March to the 31st of May Elena Tushkanova has performed
her diploma project of Yaroslavl State University, Russia, at the Laboratoire
d'Informatique de l'Université de Franche-Comté (LIFC) under the guidance
of Alain Giorgetti and Olga Kouchnarenko. This work was the �rst part of a
six month internship supported by the INRIA CeProMi �Action de Recherche
Collaborative�(ARC). This report is the English translation of a part of Elena
Tushkanova's diploma project report, entitled �Modular Speci�cation of Ob-
ject Oriented Programs�.

One of the objectives of the ARC is the speci�cation and modular proof
of properties of imperative Java or C programs. A well conceived program
is developed in a modular way, that is by the structured assembly of simpler
components. The objective is also to get modularity to specify and prove
these modular programs.

People in this project use the Krakatoa Modeling Language (KML). It
is a speci�cation language for Java programs. This work prepares future
extensions of KML language to make object oriented program speci�cation
and proof easier.

Our proposals are illustrated with the example of an algorithm to sort a
Java array. We choose this algorithm because every programmers know it
and its speci�cations and proofs it have already been proposed [6, 3, 9]. They
will serve to compare approaches. We especially address a question about
automaticity: can we prove this algorithm automatically?

The resulting array must satisfy two properties:
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10 E. Tushkanova, A. Giorgetti, O. Kouchnarenko

1. The output is in increasing or decreasing order.

2. The output is a permutation, or reordering, of the input.

In [3] the sorting algorithm speci�cation is incomplete because there is
just the �rst condition and nothing about the second condition.

In [6] the �rst condition is presented by the predicate (sorted t i j)

which expresses that array t is sorted in increasing order between the bounds
i and j. The second condition is presented by the predicate (permut t tt)

where t and tt are permutations of each other. This paper describes many
ways to de�ne such a predicate, but the best solution is to express that
the set of permutations is the smallest equivalence relation containing the
transpositions, i.e. exchanges of two elements. The predicate (exchange t

tt i j) is de�ned for two arrays t and tt and two indexes i and j and the
predicate (permut t tt) is de�ned inductively for the following properties:
re�exivity, symmetry and transitivity. This algorithm is written in the Why
language. Its syntax combines functional and imperative features. It is closed
to the syntax of the Caml programming language [1] and is proved with the
Coq proof assistant [2].

The same algorithm is written in Java [9] and the same speci�cation is
written in KML [10]. The algorithm is proved with the Simplify prover. More
details can be found in the Section 3.2.

However the idea to introduce an inductive predicate like permut is not
natural for Java programmers. They could �nd it di�cult to guess which
axioms de�ning it are useful for the proof. In fact all the di�culty in the proof
is hidden in this de�nition. So, we would like to prove the same algorithm
without this predicate, by the property 2 saying that the initial array and
the resulting array have the same content.

This document is organized as follows. Section 2 presents two speci�ca-
tion languages. Section 3 proposes speci�cations of a sorting algorithm and
discusses whether they can be proved automatically.

2 Speci�cation Languages

A speci�cation language is a formal language used in computer science during
requirement analysis and system design. Most programming languages are
directly executable formal languages. They are used to implement a system.
Speci�cation languages are generally not directly executed. They describe
the system at a much higher level than a programming language. There are
many speci�cation languages like CASL, JML, Spec#, Z, B, etc.
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In this section we describe two speci�cation languages for the Java pro-
gramming language, namely Java Modeling Language (JML) and Ktraka-
toa Modeling Language (KML). JML is a well-known speci�cation language.
Currently, more and more tools aiming at the veri�cation of Java programs
are adopting JML as property speci�cation language (see [4] for an overview).
KML is a new speci�cation language for Java programs. It is designed to
reduce the distance between programming and proving programs. KML has
signi�cant di�erences with JML.

This section is organized as follows: Section 2.1 presents Java Modeling
Language, Section 2.2 presents Krakatoa Modeling Language and Section 2.3
presents a graphical user interface for proving Java programs anotated with
KML speci�cations.

2.1 Java Modeling Language

The Java Modeling Language (JML1) is a speci�cation language for Java
programs, using preconditions, postconditions and invariants. Speci�-
cations are written as Java annotation comments to the Java program after
//@ ... or between /*@ and @*/. Hence the Java program can be compiled
with any Java compiler. JML is syntactically and semantically close to Java,
thus making speci�cations more accessible to Java programmers.

We present the basic features of JML. For more details the interested
reader is refered to papers from http://www.eecs.ucf.edu/~leavens/JML/

papers.shtml.

2.1.1 Basic JML keywords

• A requires clause speci�es method precondition. Any number of re-
quires clauses can be included in the single speci�cation case. Multi-
ple requires clauses in a speci�cation case mean the same as a single
requires clause whose precondition predicate is the conjunction of
these precondition predicates in the given requires clauses. For ex-
ample,

requires P;

requires Q;

means the same thing as:

requires P && Q;

1See http://www.jmlspecs.org.

RR 2009�03
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• An ensures clause speci�es a normal postcondition, i.e., a property
that is guaranteed to hold at the end of the method (or constructor)
invocation in the case that this method (or constructor) invocation
returns without throwing an exception.

ensures Q;

Multiple ensures clauses in a speci�cation case mean the same as a sin-
gle ensures clause whose postcondition predicate is the conjunction
of the postcondition predicates in the given ensures clauses, i.e.

ensures P;

ensures Q;

means the same as

ensures P && Q;

• In a speci�cation case a signals clause speci�es the exceptional or
abnormal postcondition, i.e., the property that is guaranteed to hold
at the end of a method (or constructor) invocation when this method
(or constructor) invocation terminates abruptly by throwing a given
exception

signals (E e) P;

• An assignable clause is used in a method contract to specify which
parts of the system state may change as the result of the method exe-
cution

assignable A;

• In general terms, a pure feature has no side e�ects when executed. In
essence pure only applies to methods and constructors.
Invariants are properties that must be maintained by all methods

invariant inv;

Invariants are implicitly included in all pre- and postconditions.

2.1.2 Basic JML expressions

The \result keyword can be used in ensures clauses of a non-void method.
Its value is the value returned by the method. Its type is the return type
of the method; hence it is a type error to use \result in a void method or
in a constructor. An expression of the form \old(Expr) refers to the value
that the expression Expr had in the pre-state of a method. An expression of
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the form \pre(Expr) also refers to the value that the expression Expr had
in the pre-state of a method. Expressions of this form may only be used
in assertions that appear in the methods bodies. The quanti�ers \forall

and \exists are universaly and existentialy quanti�ers (respectively). The
body of a universal or existential quanti�er must be of boolean type. The
type of a universal or existential quanti�ed expression as a whole is boolean.
The operator ==> works only on boolean-subexpressions. The expressions
on either side of this operator must be of boolean type, and the type of the
result is also boolean. If a is false in a ==> b, then the expression is true
and b is not evaluated. For more explanation look at the paper [8].

2.1.3 Design by contract

Design by contract (DBC) (see [7] for an overview) is a method for developing
software. The principal idea behind DBC is that a class and its clients have
a �contract� with each other. The client must guarantee certain conditions
before calling a method de�ned by the class, and in return the class guaran-
tees certain properties that will hold after the call. The contracts are de�ned
by program code in the programming language itself, and are translated into
executable code by the compiler. Thus, any violation of the contract that
occurs while the program is running can be detected immediately.

A contract in software speci�es both obligations and rights of clients and
implementors. For example,

/*@ requires R;

@ ensures E;

@*/

The method precondition R speci�es what must be true to call it. The
method postcondition E speci�es what must be true when it terminates.

2.2 Krakatoa Modeling Language

Krakatoa expects as input a Java source �le, annotated with the Krakatoa
Modeling Language. KML is largely inspired from the Java Modeling Lan-
guage. As JML, KML speci�cations are given as annotations in the source
code, in a special style of comments after //@ ... or between /*@ and @*/.

KML also shares many features with the ANSI/ISO C Speci�cation Lan-
guage [11].

Method contracts are made of a precondition and a set of behaviors.
The precondition is a proposition introduced by requires keyword which is
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supposed to hold in the pre-state of the method, i.e. when it is called. It
must be checked valid by the caller.

A normal behavior has the form:

/*@ ...

@ behavior b:

@ assumes A;

@ assigns L;

@ ensures E;

@*/

The semantics is as follows:
1. In the post-state, i.e when the method returns normally, the property

\old(A)==>E holds.
2. if A holds in the pre-state then each memory location (already allocated

in the pre-state) that does not belong to the set L remains allocated and its
value is left unchanged in the post-state.

In E, the notation \result denotes the returned value, and \old(e)

denotes the value of e in the pre-state.
An exceptional behavior as the form

/*@ ...

@ behavior b:

@ assumes A;

@ assigns L;

@ signals (Exc x) E;

@*/

The semantics is similar to normal behaviors, but here properties must hold
when the method returns abruptly with exception Exc.

Loop annotations can be given just in front of loop constructs (while,
for, etc.). It has the form

/*@ loop_invariant I

@ for b: loop_invariant Ib;

@ loop_variant V ;

@*/

It states that I is an inductive invariant: it must hold at loop entry and be
preserved by any iteration of the loop body. The loop invariant Ib must also
be an inductive invariant, but only under the assumed clause A of behavior
b. The loop variant, if given, must be an expression of integer type, which
must decrease at each loop iteration, and remain non-negative.
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Class invariants are declared at the level of class members. It has the
form

/*@ invariant id: e; @*/

It states that property e must �always� hold for the current object. The
always is quoted here because indeed an invariant may be temporarily invalid
inside method execution. Also, it does not need to be true until the object
constructor has returned.

2.2.1 Logic functions and predicates

Unlike JML, KML does not allow pure methods to be used in annota-
tions. But it permits to declare new logic functions and predicates. They
must be placed at the global level, i.e. outside any class declaration, and
respectively have the form

//@ logic m id(m1 x1, .. , mn xn) = e;

//@ predicate id(m1 x1, .. , mn xn) = p;

where e must have type m, and p must be a proposition. The types m and
mi can be either Java types or purely logic types: integer, real.

2.2.2 Lemmas and axiomatic blocks

Lemmas are additional properties that can be added, usually to give hints to
provers. A lemma is declared as

//@ lemma id: p;

A predicate may also be de�ned by an inductive de�nition.

/*@ inductive P(x1, .. , xn) {

@ case c1 : p1;

@ ..

@ case cn : pn;

@}

@*/

where each ci is an identi�er and each pi is a proposition. The semantics
of such a de�nition is that P is the least �xpoint of the cases, i.e. is the
smallest predicate (in the sense that it is false the most often) satisfying the
propositions p1, . . . , pn. To ensure existence of a least �xpoint, it is required
that each proposition pi is of the form

\forall y1, .. , ym,
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16 E. Tushkanova, A. Giorgetti, O. Kouchnarenko

/*@ axiomatic P {

@ type new_type;

@ logic new_type func1;

@ lodic integer func2(new_type v, integer k);

@ axiom name_axiom :

@ body_axiom;

@ }

@*/

Figure 1: Axiomatic block

h1 ==> ... ==> hl ==> P(t1, .. , tn)

where P occurs only positively in hypotheses h1, .. , hl.

Instead of an explicit de�nition, one may introduce an axiomatic def-
inition for a set of types, predicates and logic functions, which amounts to
declare the expected pro�les and a set of axioms (Figure 1). P is the name
of axiomatic block, new_type is a new type needed. There are two logic
functions in this example and one axiom.

Like inductive de�nitions, there is no syntactic conditions which would
guarantee axiomatic de�nitions to be consistent. It is usually up to the
user to ensure that the introduction of axioms does not lead to a logical
inconsistency.

2.2.3 Construct \at and default logic labels

Contruct \at(e,id) refers to the value of the expression e in the state at
label id. There are four prede�ned logic labels: Pre, Here, Old and Post.
\old(e) is in fact syntactic sugar for \at(e,Old).

1. The label Here is visible in all statement annotations, where it refers
to the state where the annotation appears; and in all contracts, where it
refers to the pre-state for the requires and the assumes, variant, terminates,
... clause and the post-state for other clauses.

2. The label Old is visible in assigns and ensures clauses of all contracts
and refers to the pre-state of this contract.

3. The label Pre is visible in all statement annotations, and refers to the
pre-state of the function it occurs in.

4. The label Post is visible in assigns and ensures clauses.

The more details could be found in [10].
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2.3 Graphical user interface

The graphical user interface gwhy is a tool to help the user in the process
of calling the various automatic provers on the goals (in order to analyze the
failures and to determine what is wrong in the programs, the speci�cations,
or sometimes the provers). On the left side appears the list of all goals
(either from goal commands in the Why �les or resulting from veri�cation
conditions generation). In front of each goal, the result for each automatic
prover is displayed. Provers can be launched by clicking on their names at
the top of their columns. A green bullet means a proved goal; a red bullet
means an unproved goal (that may be either a �don't know� or an �invalid�
answer from the prover); the scissors means a timeout from the prover (the
timeout limit can be set in the bottom bar); �nally, a �tools� icon means an
unexpected failure in the prover call.

The top right window displays the currently selected goal. In this window,
a right click on some identi�er displays its location in the corresponding Why
input �le in the bottom right window. This section refers to [5].

3 Speci�cation of a Sorting Algorithm

A sorting algorithm is an algorithm that puts elements of an array in a certain
order. The output must satisfy two properties:

1. The output is in increasing or decreasing order.

2. The output is a permutation, or reordering, of the input.

There are many sorting algorithms for arrays like Quicksort, Selection
sort, Bubble sort, etc, which are de�ned in [12].

This section is organized as follows: Section 3.1 presents the sorting al-
gorithm by selection in Java, Section 3.2 presents this algorithm completed
with a speci�cation in KML. In Section 3.3, 3.4 and 3.5 we try to specify the
array content with a bag and to prove the sorting algorithm automatically.
Section 3.6 presents steps to help the prover completing the proof.

3.1 Selection sort in Java

The sorting algorithm by selection is written in Java in Figure 2. There
are two methods. Method swap just exchanges two array elements of given
indexes. In method selectionSort, i and mi are indexes for the current
element and the minimal element respectively. mv serves to store this minimal
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18 E. Tushkanova, A. Giorgetti, O. Kouchnarenko

1. class Sort {

2. /** method swapping 2 elements */

3. void swap(int t[], int i, int j) {

4. int tmp = t[i];

5. t[i] = t[j];

6. t[j] = tmp;

7. }

8.

9. void selectionSort(int t[]) {

10. int i, j;

11. int mi, mv;

12. for (i = 0; i < t.length - 1; i++) {

13. mv = t[i];

14. mi = i;

15. for (j = i + 1; j < t.length; j++) {

16. if (t[j] < mv) {

17. mi = j;

18. mv = t[j];

19. }

20. }

21. swap(t, i, mi);

22. }

23. }

24.}

Figure 2: Selection sort in Java

element. This algorithm divides the array into two parts: the subarray of
items already sorted, built up from left to right and found at the beginning,
and the subarray of items remaining to be sorted, occupying the remainder
of the array. The algorithm works as follows:

1. Find the minimal value in the subarray remaining to be sorted.

2. Swap it with the value in the �rst position of this subarray.

3. Eliminate this position from the subarray to be sorted and repeat the
steps above for the new subarray remaining to be sorted.

We can test this algorithm with di�erent array examples, but we cannot
be sure that it is always correct, i.e. it satis�es properties 1 and 2 for any
array. A formal speci�cation of these two properties is the �rst step towards
a formal proof of its correctness.
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3.2 Sorting algorithm with a KML speci�cation

The selection sort algorithm is realized in Sort.java. This �le can be found
in [9].

/*@ requires t != null &&

@ 0 <= i < t.length && 0 <= j < t.length;

@ assigns t[i],t[j];

@ ensures Swap{Old,Here}(t,i,j);

@*/

void swap(int t[], int i, int j)

Figure 3: Speci�cation of the method swap

The speci�cation of the method swap is given in Figure 3. It tells that
the array t is not null and that only two array elements may change. The
postcondition says that some instance of the predicate Swap holds. This
predicate Swap is reproduced in Figure 4. Swap{L1,L2}(a,i,j) is true if
and only if the value of a[i] in the state at label L2 equals to the value of
a[j] in the state at label L1, the value of a[j] in the state at label L2 equals
to the value of a[i] in the state at label L1, and the value of a[k] is the
same in both states, if k is di�erent from i and j.

Property 1 is expressed with the predicate Sorted.

/*@ predicate Sorted{L}(int a[], integer l, integer h) =

@ \forall integer i; l <= i < h ==>

@ \at(a[i],L) <= \at(a[i+1],L) ;

@*/

Property 2 is speci�ed in Sort.java with the Permut inductive predicate
(Figure 5) which de�nes four properties: re�exivity, symmetry, transitivity
and swap.

/*@ predicate Swap{L1,L2}(int a[], integer i, integer j) =

@ \at(a[i],L1) == \at(a[j],L2) &&

@ \at(a[j],L1) == \at(a[i],L2) &&

@ \forall integer k; k != i && k != j ==>

@ \at(a[k],L1) == \at(a[k],L2);

@*/

Figure 4: Predicate Swap
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/*@ inductive Permut{L1,L2}(int a[], integer l, integer h) {

@ case Permut_refl{L}:

@ \forall int a[], integer l h; Permut{L,L}(a, l, h) ;

@ case Permut_sym{L1,L2}:

@ \forall int a[], integer l h;

@ Permut{L1,L2}(a, l, h) ==> Permut{L2,L1}(a, l, h) ;

@ case Permut_trans{L1,L2,L3}:

@ \forall int a[], integer l h;

@ Permut{L1,L2}(a, l, h) && Permut{L2,L3}(a, l, h) ==>

@ Permut{L1,L3}(a, l, h) ;

@ case Permut_swap{L1,L2}:

@ \forall int a[], integer l h i j;

@ l <= i <= h && l <= j <= h && Swap{L1,L2}(a, i, j) ==>

@ Permut{L1,L2}(a, l, h) ;

@ }

@*/

Figure 5: Inductive predicate Permut

/*@ requires t != null;

@ behavior sorts:

@ ensures Sorted(t,0,t.length-1);

@ behavior permuts:

@ ensures Permut{Old,Here}(t,0,t.length-1);

@*/

void selectionSort(int t[]){...}

Figure 6: Speci�cation of the method selectionSort

The speci�cation of the method selectionSort is presented in Figure 6.
sorts and permuts are two behavior names. For more details, refer to page
23 in [11]. Old means old state, Here means current state. For more expla-
nations please look at page 34 in [11] or previous section. The precondition
tells that array t is not null. The postcondition in behavior sorts uses the
predicate Sorted to say that the array t is sorted in increasing order. The
postcondition in behavior permuts uses the inductive predicate Permut to
say that the resulting array is a permutation of the starting array.

Figure 7 presents the speci�cation of the �rst for loop. The loop invariant
says that i is non-negative at the loop entry and stay non-negative during
the execution of all the iterations of the loop body. The speci�cation of the
second for loop is given in Figure 8. The loop invariant states that i is less
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/*@ loop_invariant 0 <= i;

@ for sorts:

@ loop_invariant Sorted(t,0,i) &&

@ (\forall integer k1 k2 ;

@ 0 <= k1 < i <= k2 < t.length ==> t[k1] <= t[k2]);

@ for permuts:

@ loop_invariant

@ Permut{Pre,Here}(t,0,t.length-1);

@*/

Figure 7: Speci�cation of the external loop

than j, that mi is between i, included and t.length, excluded and that mv
equals to t[mi].

/*@ loop_invariant

@ i < j &&

@ i <= mi < t.length &&

@ mv == t[mi];

@ for sorts:

@ loop_invariant

@ (\forall integer k; i <= k < j ==> t[k] >= mv);

@ for permuts:

@ loop_invariant

@ Permut{Pre,Here}(t,0,t.length-1);

@*/

Figure 8: Speci�cation of the internal loop

Figure 9 shows a screenshot of the graphical interface gwhy presented in
Section 2 attempting to prove this KML speci�cation. Parts of it are proved
by provers like Alt-Ergo and Simplify but no prover proves it completely. At
the present time the speci�cation is not proved by Yices.

The proof results are satisfactory but the idea to de�ne an inductive
predicate like Permut to specify a sorting algorithm is not that natural. We
investigate another approach in the remainder of this section. We try to prove
the same algorithm but with a property 2 saying that the initial array and the
resulting array have the same content. The algorithm and its speci�cation
are now de�ned in a new Java �le named SortBag.java.
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Figure 9: Proving sorting algorithm with inductive predicate

3.3 Bag as a model �eld

A bag (or multiset) is a collection without order. We want to associate to
each array the bag of its elements, and to express that the output array is a
permutation of the input array by writing that the corresponding bags are
the same. It is a new way to prove property 2.

We describe a new type of bags by the functions from Figure 10 and the
set of �rst-order axioms from Figure 11 that present some properties of bags.
The �rst four axioms tell that union is associative, commutative and that
the empty_bag is a neutral element for the union of bags. The next axiom
tells that the number of occurences of element n in bag b is non-negative.
We add this axiom because KML does not have a type for natural integers.
The subsequent four axioms characterize a function occ by its relation with
functions empty_bag, singleton and union. The last axiom de�nes bag
equality by extensionality.

The IntArray class is the �rst way we have found to link a Java array
with a bag, with a model �eld. We declare a Java class IntArray with a
model �eld

//@ model ibag content;

and implement two methods get and set as shown in Figure 12.
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//@ type ibag;

// empty bag

//@ logic ibag empty_bag();

// create_bag(n,v) is n times the value v

//@ logic ibag create_bag(integer n, integer val);

// singleton(n)

//@ logic ibag singleton(integer n);

// union b1 and b2

//@ logic ibag union(ibag b1, ibag b2);

// number of occurences of element n in bag b

//@ logic integer occ(integer n, ibag b);

Figure 10: Signature for bags

The length behavior tells that the array length does not change. The
assignment behavior tells that we change just one element in the array. The
other elements stay unchanged. These behaviors are proved. The content

behavior is not provable, because it is a re�nement property, not a classical
postcondition. Re�nement is not yet supported by KML.

As depicted in Figure 13 di�culties appear when proving the method get

(for pointer dereferencing) and the method set (for pointer dereferencing and
content behavior).

De�ning content as a model �eld is not the right way in KML because
there is no relation between the Java array and its logical content. A solution
is to remove the class IntArray and to use a hybrid function which returns
a bag from an input array. This solution is presented in the next section.

3.4 Hybrid function

The content model �eld is replaced by a content(int[] a) hybrid function
added to the signature of bags presented in Figure 10.

@ logic ibag content(int[] a);

In the previous version the cont behavior for method swap was

/*@ ..

@ ensures cont:
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@ axiom union_assoc:

@ \forall ibag b1 b2 b3;

@ union(union(b1,b2),b3) == union(b1,union(b2,b3));

@ axiom union_comm:

@ \forall ibag b1 b2; union(b1,b2) == union(b2,b1);

@ axiom union_empty_id_left:

@ \forall ibag b; union(empty_bag(),b) == b;

@ axiom union_empty_id_right:

@ \forall ibag b; union(b,empty_bag()) == b;

@ axiom occ_non_negative:

@ \forall int n; \forall ibag b;

@ occ(n,b) >= 0;

@ axiom occ_empty:

@ \forall int n; occ(n, empty_bag()) == 0;

@ axiom occ_singleton_eq:

@ \forall int n; occ(n, singleton(n)) == 1;

@ axiom occ_singleton_neq:

@ \forall int n m; n != m ==>

@ occ(n, singleton(m)) == 0;

@ axiom occ_union:

@ \forall int n; \forall ibag b1 b2;

@ occ(n, union(b1,b2)) == occ(n, b1) + occ(n,b2);

@ axiom bag_ext:

@ \forall ibag b1 b2;

@ (\forall int n;

@ occ(n, b1) == occ(n,b2)) ==> b1 == b2;

Figure 11: Algebraic speci�cation of bags
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/*@ requires 0 <= index < a.length && a != null;

@ assigns \nothing;

@ ensures \result == a[index];

@*/

public int get(int index) {...}

/*@

@ requires 0 <= index < a.length && a != null;

@ assigns a[index];

@ behavior length : ensures

@ \at(a.length,Here) == \at(a.length,Old);

@ behavior assignment : ensures

@ (\at(a[index],Here) == value &&

@ (\forall integer j; 0 <= j < a.length && j != index

@ ==> \at(a[j],Here) == \at(a[j],Old)));

@ behavior content : ensures

@ (\exists ibag b;

@ \at(content,Old) ==

@ union(b,singleton(\at(a[index],Old))) &&

@ \at(content,Here) == union(b,singleton(value)));

@*/

public void set(int value, int index)

Figure 12: Speci�cations of get and set methods
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Figure 13: The attempt to prove IntArraySort class

@ \at(t.content,Old) == \at(t.content,Here);

@ ..

@*/

void swap(IntArray t, int i, int j) {...}

and now it is

/*@ ..

@ behavior cont:

@ ensures \at(content(a),Old) == \at(content(a),Here);

@ ..

@*/

void swap(int a[], int i, int j) {...}

The proof obligation for this behavior is not generated by gwhy, for the
same reason. There is no relation between function content and the Java

LIFC



Specifying and Proving a Sorting Algorithm 27

heap where array a lives. We did not provide any axiom talking about
function content, and we did not give a label to this function. Labels say
that the content result depends on the heap.

The solution to this problem is to de�ne the link between bags and arrays
in axioms. It is presented in the next section.

3.5 Function boundContent

The function boundContent recursively de�nes the relation between a bag
and an array with axioms. It is a more general function than function
content. We add the following de�nition in the axiomatic bloc IntBag

presented in Figures 10 and 11.

@ logic ibag boundContent{L1}(int[] a, integer i, integer j);

@

@ axiom emptyContent{L4}:

@ \forall int[] a; \forall integer i j;

@ (i > j ==> boundContent{L4}(a,i,j) == empty_bag());

@

@ axiom nonemptyContent{L4}:

@ \forall int[] a, integer i j;

@ i <= j ==> boundContent{L4}(a,i,j) ==

@ union(boundContent{L4}(a,i+1,j),singleton(a[i]));

The cont behavior becomes

/*@ ..

@ behavior cont:

@ ensures boundContent{Old}(a,0,a.length-1) ==

@ boundContent{Here}(a,0,a.length-1);

@ ..

void swap(int a[], int i, int j) {...}

The problem now is that there are not enough axioms to prove the behav-
ior cont. The equality == in this behavior has the properties of re�exivity,
symmetry, transitivity and congruence. But we have �ve functions returning
an ibag, namely boundContent, empty_bag, singleton, create_bag and
union, and just two axioms de�ning function boundContent: emptyContent
and nonemptyContent. We could de�ne function boundContent more com-
pletely, i.e. add axioms or lemmas, but there is another way. The prover
should �nd the axiom bag_ext, apply it and reason with occurrences. We
have observed that no prover succeeds this selection. To help provers working
so we force this selection by changing the behavior to
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/*@ ..

@ behavior cont:

@ (\forall integer i;occ(i,boundContent{Old}(a,0,a.length-1))

@ == occ(i,boundContent{Here}(a,0,a.length-1)));

@ ..

@*/

void swap(int a[], int i, int j) {...}

Finally the sorting algorithm is proved but the cont behavior is proved
just with the prover Yices and the content behavior is not proved as can be
seen in Figure 14.

Figure 14: Attempt to prove SortBag.java

Now we would like to prove the cont behavior without occurrences and
the content behavior by de�ning boundContent more completely. This ex-
periment is presented step by step in the following two sections.
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@ logic ibag remove(integer n, ibag b);

@

@ axiom remove_union:

@ \forall ibag b, integer x;

@ remove(x,union(singleton(x),b)) == b;

@

Figure 15: Signature for bags

3.6 Steps for completing function boundContent

Function boundContent only depends on L1, a, i and j.

@ logic ibag boundContent{L1}(int[] a,

@ integer i, integer j)

L1 means that any heap part can be read. a means it depends on all the
array a.

The �rst step is to use the KML reads keyword to say that boundContent
just reads the array between i and j, it does not modify it. The reads key-
word was a deprecated KML feature that has been re-activated by C. Marché
for this purpose.

@ logic ibag boundContent{L1}(int[] a,

@ integer i, integer j) reads a[i..j]

The second step is to add a function remove and to de�ne it as presented
in Figure 15.

The third step is to simplify the speci�cation by removing the methods
set and get, the function occ and all axioms concerned with this function.

We add the new lemma shown in Figure 16. It says that whenever the
elements of an array are the same at two states, except in some position k,
then the array content at the second state can be obtained from its content
at the �rst state by removing the element occupying position k at the �rst
state and adding the element occupying position k at the second state.

In method swap we add a new label Middle between label Old and label
Here and three assertions to guide the provers step by step. The resulting
speci�cation is presented in Figure 17. Each assertion says what happens
with boundContent on some step. The �rst assertion tells that the new
content is obtained from the old content by replacing the old value of a[i]
by the value of a[j] in the old content. The second assertion tells that the
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/*@ lemma UpdateContent{L1,L2}:

@ \forall int[] a, integer i j k;

@ // update of a[k]

@ i <= k <= j &&

@ (\forall integer l;

@ i <= l <= j && k != l ==>

@ \at(a[l],L1) == \at(a[l],L2))

@ ==> boundContent{L2}(a,i,j) ==

@ union(remove(\at(a[k],L1),

@ boundContent{L1}(a,i,j)),

@ singleton(\at(a[k],L2)));

@

@*/

Figure 16: New lemma

value of a[j] has not changed. The last assertion tells that the new content
is obtained from the previous content by removing the previous value of a[j]
and adding the value of the local variable tmp (which is the old value of a[i]).

The speci�cation for method selectionSort does not change. This ver-
sion of the sorting algorithm is proved with the prover Simplify, as shown in
Figure 18.
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void swap(int a[], int i, int j) {

int tmp = a[i];

a[i] = a[j];

/*@ for cont: assert

@ boundContent{Here}(a,0,a.length-1) ==

@ union(remove(\at(a[i],Pre),

@ boundContent{Pre}(a,0,a.length-1)),

@ singleton(\at(a[j],Pre)));

@*/

/*@ for cont: assert

@ a[j] == \at(a[j],Pre);

@*/

Middle: {

a[j] = tmp;

/*@ for cont: assert

@ boundContent{Here}(a,0,a.length-1) ==

@ union(remove(\at(a[j],Middle),

@ boundContent{Middle}(a,0,a.length-1)),

@ singleton(tmp));

@*/

}

}

Figure 17: Signature for bags
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Figure 18: Proving sorting algorithm

4 Conclusion

We have described two speci�cation languages for the Java programming
language, namely JML and KML. To the question �Can we prove a sorting
algorithm automatically?� our answer is �Yes�. We have proved a sorting
algorithm by selection by using a hybrid function which takes an array as
a parameter and returns a bag. A bag is a collection without order. Given
an array, this function returns the bag of its elements. We have expressed
that the output array is a permutation of the input array by writing that the
corresponding bags are the same.

One consequence of our work is that the read keyword has been activated
again in KML. This keyword is used to say that the boundContent reads the
corresponding part of the array. This supported feature helps the provers.
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The work in [6] suggests to de�ne an inductive predicate to axiomatize the
property that the output array is a permutation of the input array. Specifying
with bags is more natural for Java engineers. But this new way of specifying
a sorting algorithm leads to some di�culties. For instance, the swap method
has three lines of Java code which are exchanging two elements in an array
and for each line we had to write a long assertion. Each assertion speci�es
what happens with the array content at the corresponding Java code line.
These three assertions are required by provers to succeed their proofs. Now
we would like to investigate an intermediary solution, namely de�ning a
permutation datatype. It is less familiar than bags for Java engineers, but
more familiar than inductive predicates. Another direction of future work is
to sort polymorphic arrays. KML does not support polymorphism yet, so we
plan to implement this new feature.
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