Elena Tushkanova

Alain Giorgetti

Olga Kouchnarenko

Specifying and Proving a Sorting Algorithm

Introduction

From the 16th of March to the 31st of May Elena Tushkanova has performed her diploma project of Yaroslavl State University, Russia, at the Laboratoire d'Informatique de l'Université de Franche-Comté (LIFC) under the guidance of Alain Giorgetti and Olga Kouchnarenko. This work was the rst part of a six month internship supported by the INRIA CeProMi Action de Recherche Collaborative(ARC). This report is the English translation of a part of Elena Tushkanova's diploma project report, entitled Modular Specication of Object Oriented Programs.

One of the objectives of the ARC is the specication and modular proof of properties of imperative Java or C programs. A well conceived program is developed in a modular way, that is by the structured assembly of simpler components. The objective is also to get modularity to specify and prove these modular programs.

People in this project use the Krakatoa Modeling Language (KML). It is a specication language for Java programs. This work prepares future extensions of KML language to make object oriented program specication and proof easier.

Our proposals are illustrated with the example of an algorithm to sort a Java array. We choose this algorithm because every programmers know it and its specications and proofs it have already been proposed [START_REF] Filliâtre | Certication of Sorting Algorithms in the System Coq[END_REF][START_REF] Manna | What's Decidable About Arrays[END_REF][START_REF] Marché | Winter School: instruction for lab session/Krakatoa tool[END_REF]. They will serve to compare approaches. We especially address a question about automaticity: can we prove this algorithm automatically?

The resulting array must satisfy two properties: RR 200903 1. The output is in increasing or decreasing order.

2. The output is a permutation, or reordering, of the input.

In [START_REF] Manna | What's Decidable About Arrays[END_REF] the sorting algorithm specication is incomplete because there is just the rst condition and nothing about the second condition.

In [START_REF] Filliâtre | Certication of Sorting Algorithms in the System Coq[END_REF] the rst condition is presented by the predicate (sorted t i j) which expresses that array t is sorted in increasing order between the bounds i and j. The second condition is presented by the predicate (permut t tt) where t and tt are permutations of each other. This paper describes many ways to dene such a predicate, but the best solution is to express that the set of permutations is the smallest equivalence relation containing the transpositions, i.e. exchanges of two elements. The predicate (exchange t tt i j) is dened for two arrays t and tt and two indexes i and j and the predicate (permut t tt) is dened inductively for the following properties: reexivity, symmetry and transitivity. This algorithm is written in the Why language. Its syntax combines functional and imperative features. It is closed to the syntax of the Caml programming language [START_REF]The Caml language[END_REF] and is proved with the Coq proof assistant [START_REF]The Coq Proof Assistant[END_REF].

The same algorithm is written in Java [START_REF] Marché | Winter School: instruction for lab session/Krakatoa tool[END_REF] and the same specication is written in KML [START_REF] Marché | The Krakatoa tool for Deductive Verication of Java Programs[END_REF]. The algorithm is proved with the Simplify prover. More details can be found in the Section 3.2.

However the idea to introduce an inductive predicate like permut is not natural for Java programmers. They could nd it dicult to guess which axioms dening it are useful for the proof. In fact all the diculty in the proof is hidden in this denition. So, we would like to prove the same algorithm without this predicate, by the property 2 saying that the initial array and the resulting array have the same content. This document is organized as follows. Section 2 presents two specication languages. Section 3 proposes specications of a sorting algorithm and discusses whether they can be proved automatically.

Specication Languages

A specication language is a formal language used in computer science during requirement analysis and system design. Most programming languages are directly executable formal languages. They are used to implement a system. Specication languages are generally not directly executed. They describe the system at a much higher level than a programming language. There are many specication languages like CASL, JML, Spec#, Z, B, etc.

LIFC

In this section we describe two specication languages for the Java programming language, namely Java Modeling Language (JML) and Ktrakatoa Modeling Language (KML). JML is a well-known specication language.

Currently, more and more tools aiming at the verication of Java programs are adopting JML as property specication language (see [START_REF] Burdy | An Overview of JML Tools and Applications[END_REF] for an overview).

KML is a new specication language for Java programs. It is designed to reduce the distance between programming and proving programs. KML has signicant dierences with JML. This section is organized as follows: Section 2.1 presents Java Modeling Language, Section 2.2 presents Krakatoa Modeling Language and Section 2.3 presents a graphical user interface for proving Java programs anotated with KML specications.

Java Modeling Language

The Java Modeling Language (JML 1) is a specication language for Java programs, using preconditions, postconditions and invariants. Specications are written as Java annotation comments to the Java program after //@ ... or between /*@ and @*/. Hence the Java program can be compiled with any Java compiler. JML is syntactically and semantically close to Java, thus making specications more accessible to Java programmers.

We present the basic features of JML. For more details the interested reader is refered to papers from http://www.eecs.ucf.edu/~leavens/JML/ papers.shtml. • An assignable clause is used in a method contract to specify which parts of the system state may change as the result of the method execution assignable A;

Basic JML keywords

• In general terms, a pure feature has no side eects when executed. In essence pure only applies to methods and constructors.

Invariants are properties that must be maintained by all methods invariant inv;

Invariants are implicitly included in all pre-and postconditions.

Basic JML expressions

The \result keyword can be used in ensures clauses of a non-void method.

Its value is the value returned by the method. Its type is the return type of the method; hence it is a type error to use \result in a void method or in a constructor. An expression of the form \old(Expr) refers to the value that the expression Expr had in the pre-state of a method. An expression of LIFC the form \pre(Expr) also refers to the value that the expression Expr had in the pre-state of a method. Expressions of this form may only be used in assertions that appear in the methods bodies. The quantiers \forall and \exists are universaly and existentialy quantiers (respectively). The body of a universal or existential quantier must be of boolean type. The type of a universal or existential quantied expression as a whole is boolean.

The operator ==> works only on boolean-subexpressions. The expressions on either side of this operator must be of boolean type, and the type of the result is also boolean. If a is false in a ==> b, then the expression is true and b is not evaluated. For more explanation look at the paper [START_REF] Leavens | JML Reference Manual[END_REF].

Design by contract

Design by contract (DBC) (see [START_REF] Leavens | Design by Contract with JML[END_REF] for an overview) is a method for developing software. The principal idea behind DBC is that a class and its clients have a contract with each other. The client must guarantee certain conditions before calling a method dened by the class, and in return the class guarantees certain properties that will hold after the call. The contracts are dened by program code in the programming language itself, and are translated into executable code by the compiler. Thus, any violation of the contract that occurs while the program is running can be detected immediately.

A contract in software species both obligations and rights of clients and implementors. For example, /*@ requires R; @ ensures E; @*/

The method precondition R species what must be true to call it. The method postcondition E species what must be true when it terminates.

Krakatoa Modeling Language

Krakatoa expects as input a Java source le, annotated with the Krakatoa Modeling Language. KML is largely inspired from the Java Modeling Language. As JML, KML specications are given as annotations in the source code, in a special style of comments after //@ ... or between /*@ and @*/.

KML also shares many features with the ANSI/ISO C Specication Language [START_REF] Filliâtre | ACSL: ANSI/ISO C Specication Language[END_REF].

Method contracts are made of a precondition and a set of behaviors.

The precondition is a proposition introduced by requires keyword which is RR 200903 supposed to hold in the pre-state of the method, i.e. when it is called. It must be checked valid by the caller.

A normal behavior has the form: /*@ ... @ behavior b: @ assumes A; @ assigns L; @ ensures E; @*/

The semantics is as follows:

1. In the post-state, i.e when the method returns normally, the property \old(A)==>E holds. 2. if A holds in the pre-state then each memory location (already allocated in the pre-state) that does not belong to the set L remains allocated and its value is left unchanged in the post-state.

In E, the notation \result denotes the returned value, and \old(e) denotes the value of e in the pre-state.

An exceptional behavior as the form /*@ ... @ behavior b: @ assumes A; @ assigns L; @ signals (Exc x) E; @*/

The semantics is similar to normal behaviors, but here properties must hold when the method returns abruptly with exception Exc.

Loop annotations can be given just in front of loop constructs (while, for, etc.). It has the form /*@ loop_invariant I @ for b: loop_invariant Ib; @ loop_variant V ; @*/ It states that I is an inductive invariant: it must hold at loop entry and be preserved by any iteration of the loop body. The loop invariant Ib must also be an inductive invariant, but only under the assumed clause A of behavior b. The loop variant, if given, must be an expression of integer type, which must decrease at each loop iteration, and remain non-negative.

LIFC

Class invariants are declared at the level of class members. It has the form /*@ invariant id: e; @*/ It states that property e must always hold for the current object. The always is quoted here because indeed an invariant may be temporarily invalid inside method execution. Also, it does not need to be true until the object constructor has returned.

Logic functions and predicates

Unlike JML, KML does not allow pure methods to be used in annotations. But it permits to declare new logic functions and predicates. They must be placed at the global level, i.e. outside any class declaration, and respectively have the form //@ logic m id(m1 x1, .. , mn xn) = e; //@ predicate id(m1 x1, .. , mn xn) = p; where e must have type m, and p must be a proposition. The types m and mi can be either Java types or purely logic types: integer, real.

Lemmas and axiomatic blocks

Lemmas are additional properties that can be added, usually to give hints to provers. A lemma is declared as //@ lemma id: p; A predicate may also be dened by an inductive denition.

/*@ inductive P(x1, .. , xn) { @ case c1 : p1; @ .. @ case cn : pn; @} @*/ where each ci is an identier and each pi is a proposition. The semantics of such a denition is that P is the least xpoint of the cases, i.e. is the smallest predicate (in the sense that it is false the most often) satisfying the propositions p1, . . . , pn. To ensure existence of a least xpoint, it is required that each proposition pi is of the form \forall y1, .. , ym, RR 200903

/*@ axiomatic P { @ type new_type; @ logic new_type func1; @ lodic integer func2(new_type v, integer k); @ axiom name_axiom : @ body_axiom; @ } @*/ where P occurs only positively in hypotheses h1, .. , hl.

Instead of an explicit denition, one may introduce an axiomatic definition for a set of types, predicates and logic functions, which amounts to declare the expected proles and a set of axioms (Figure 1). P is the name of axiomatic block, new_type is a new type needed. There are two logic functions in this example and one axiom.

Like inductive denitions, there is no syntactic conditions which would guarantee axiomatic denitions to be consistent. It is usually up to the user to ensure that the introduction of axioms does not lead to a logical inconsistency.

Construct \at and default logic labels

Contruct \at(e,id) refers to the value of the expression e in the state at label id. There are four predened logic labels: Pre, Here, Old and Post.

\old(e) is in fact syntactic sugar for \at(e,Old).

1. The label Here is visible in all statement annotations, where it refers to the state where the annotation appears; and in all contracts, where it refers to the pre-state for the requires and the assumes, variant, terminates, ... clause and the post-state for other clauses.

2. The label Old is visible in assigns and ensures clauses of all contracts and refers to the pre-state of this contract. The more details could be found in [START_REF] Marché | The Krakatoa tool for Deductive Verication of Java Programs[END_REF].

LIFC

Graphical user interface

The graphical user interface gwhy is a tool to help the user in the process of calling the various automatic provers on the goals (in order to analyze the failures and to determine what is wrong in the programs, the specications, or sometimes the provers). On the left side appears the list of all goals (either from goal commands in the Why les or resulting from verication conditions generation). In front of each goal, the result for each automatic prover is displayed. Provers can be launched by clicking on their names at the top of their columns. A green bullet means a proved goal; a red bullet means an unproved goal (that may be either a don't know or an invalid answer from the prover); the scissors means a timeout from the prover (the timeout limit can be set in the bottom bar); nally, a tools icon means an unexpected failure in the prover call.

The top right window displays the currently selected goal. In this window, a right click on some identier displays its location in the corresponding Why input le in the bottom right window. This section refers to [START_REF] Filliâtre | Tutorial and Reference Manual[END_REF].

Specication of a Sorting Algorithm

A sorting algorithm is an algorithm that puts elements of an array in a certain order. The output must satisfy two properties:

1. The output is in increasing or decreasing order.

2. The output is a permutation, or reordering, of the input.

There are many sorting algorithms for arrays like Quicksort, Selection sort, Bubble sort, etc, which are dened in [START_REF] Sedgewick | Algorithms[END_REF]. This section is organized as follows: Section 3.1 presents the sorting algorithm by selection in Java, Section 3.2 presents this algorithm completed with a specication in KML. In Section 3.3, 3.4 and 3.5 we try to specify the array content with a bag and to prove the sorting algorithm automatically. Section 3.6 presents steps to help the prover completing the proof.

Selection sort in Java

The sorting algorithm by selection is written in Java in Figure 2. There are two methods. Method swap just exchanges two array elements of given indexes. In method selectionSort, i and mi are indexes for the current element and the minimal element respectively. mv serves to store this minimal RR 200903 1. Find the minimal value in the subarray remaining to be sorted.

2. Swap it with the value in the rst position of this subarray.

3. Eliminate this position from the subarray to be sorted and repeat the steps above for the new subarray remaining to be sorted.

We can test this algorithm with dierent array examples, but we cannot be sure that it is always correct, i.e. it satises properties 1 and 2 for any array. A formal specication of these two properties is the rst step towards a formal proof of its correctness.

LIFC

Sorting algorithm with a KML specication

The selection sort algorithm is realized in Sort.java. This le can be found in [START_REF] Marché | Winter School: instruction for lab session/Krakatoa tool[END_REF]. /*@ requires t != null && @ 0 <= i < t.length && 0 <= j < t.length; @ assigns t[i],t[j]; @ ensures Swap{Old,Here}(t,i,j); @*/ void swap(int t[], int i, int j) The specication of the method swap is given in Figure 3. It tells that the array t is not null and that only two array elements may change. The postcondition says that some instance of the predicate Swap holds. This predicate Swap is reproduced in Figure 4. Swap{L1,L2}(a,i,j) is true if and only if the value of a[i] in the state at label L2 equals to the value of a[j] in the state at label L1, the value of a[j] in the state at label L2 equals to the value of a[i] in the state at label L1, and the value of a[k] is the same in both states, if k is dierent from i and j.

Property 1 is expressed with the predicate Sorted.

/*@ predicate Sorted{L}(int a[], integer l, integer h) = @ \forall integer i; l <= i < h ==> @ \at(a[i],L) <= \at(a[i+1],L) ; @*/ Property 2 is specied in Sort.java with the Permut inductive predicate (Figure 5) which denes four properties: reexivity, symmetry, transitivity and swap. /*@ predicate Swap{L1,L2}(int a[], integer i, integer j) = @ \at(a /*@ inductive Permut{L1,L2}(int a[], integer l, integer h) { @ case Permut_refl{L}: @ \forall int a[], integer l h; Permut{L,L}(a, l, h) ; @ case Permut_sym{L1,L2}: @ \forall int a[], integer l h; @ Permut{L1,L2}(a, l, h) ==> Permut{L2,L1}(a, l, h) ; @ case Permut_trans{L1,L2,L3}: @ \forall int a[], integer l h; @ Permut{L1,L2}(a, l, h) && Permut{L2,L3}(a, l, h) ==> @ Permut{L1,L3}(a, l, h) ; @ case Permut_swap{L1,L2}: @ \forall int a[], integer l h i j; @ l <= i <= h && l <= j <= h && Swap{L1,L2}(a, i, j) ==> @ Permut{L1,L2}(a, l, h) ; @ } @*/ Figure 5: Inductive predicate Permut /*@ requires t != null; @ behavior sorts: @ ensures Sorted(t,0,t.length-1); @ behavior permuts: @ ensures Permut{Old,Here}(t,0,t.length-1); @*/ void selectionSort(int t[]){...} Figure 6: Specication of the method selectionSort

[i],L1) == \at(a[j],L2) && @ \at(a[j],L1) == \at(a[i],L2) && @ \forall integer k; k != i && k != j ==> @ \at(a[k],L1) == \at(a[k],L2); @*/
The specication of the method selectionSort is presented in Figure 6. sorts and permuts are two behavior names. For more details, refer to page 23 in [START_REF] Filliâtre | ACSL: ANSI/ISO C Specication Language[END_REF]. Old means old state, Here means current state. For more explanations please look at page 34 in [START_REF] Filliâtre | ACSL: ANSI/ISO C Specication Language[END_REF] or previous section. The precondition tells that array t is not null. The postcondition in behavior sorts uses the predicate Sorted to say that the array t is sorted in increasing order. The postcondition in behavior permuts uses the inductive predicate Permut to say that the resulting array is a permutation of the starting array.

Figure 7 presents the specication of the rst for loop. The loop invariant says that i is non-negative at the loop entry and stay non-negative during the execution of all the iterations of the loop body. The specication of the second for loop is given in Figure 8. The loop invariant states that i is less LIFC /*@ loop_invariant 0 <= i; @ for sorts: @ loop_invariant Sorted(t,0,i) && @ (\forall integer k1 k2 ; @ 0 <= k1 < i <= k2 < t.length ==> t[k1] <= t[k2]); @ for permuts: @ loop_invariant @ Permut{Pre,Here}(t,0,t.length-1); @*/ Figure 7: Specication of the external loop than j, that mi is between i, included and t.length, excluded and that mv equals to t[mi]. /*@ loop_invariant @ i < j && @ i <= mi < t.length && @ mv == t[mi]; @ for sorts: @ loop_invariant @ (\forall integer k; i <= k < j ==> t[k] >= mv); @ for permuts: @ loop_invariant @ Permut{Pre,Here}(t,0,t.length-1); @*/ The proof results are satisfactory but the idea to dene an inductive predicate like Permut to specify a sorting algorithm is not that natural. We investigate another approach in the remainder of this section. We try to prove the same algorithm but with a property 2 saying that the initial array and the resulting array have the same content. The algorithm and its specication are now dened in a new Java le named SortBag.java. We describe a new type of bags by the functions from Figure 10 and the set of rst-order axioms from Figure 11 that present some properties of bags.

The rst four axioms tell that union is associative, commutative and that the empty_bag is a neutral element for the union of bags. The next axiom tells that the number of occurences of element n in bag b is non-negative.

We add this axiom because KML does not have a type for natural integers.

The subsequent four axioms characterize a function occ by its relation with functions empty_bag, singleton and union. The last axiom denes bag equality by extensionality.

The IntArray class is the rst way we have found to link a Java array with a bag, with a model eld. We declare a Java class IntArray with a model eld //@ model ibag content; and implement two methods get and set as shown in Figure 12. LIFC //@ type ibag; // empty bag //@ logic ibag empty_bag(); // create_bag(n,v) is n times the value v //@ logic ibag create_bag(integer n, integer val); // singleton(n) //@ logic ibag singleton(integer n); // union b1 and b2 //@ logic ibag union(ibag b1, ibag b2); // number of occurences of element n in bag b //@ logic integer occ(integer n, ibag b); The length behavior tells that the array length does not change. The assignment behavior tells that we change just one element in the array. The other elements stay unchanged. These behaviors are proved. The content behavior is not provable, because it is a renement property, not a classical postcondition. Renement is not yet supported by KML.

As depicted in Figure 13 diculties appear when proving the method get (for pointer dereferencing) and the method set (for pointer dereferencing and content behavior).

Dening content as a model eld is not the right way in KML because there is no relation between the Java array and its logical content. A solution is to remove the class IntArray and to use a hybrid function which returns a bag from an input array. This solution is presented in the next section.

Hybrid function

The content model eld is replaced by a content(int[] a) hybrid function added to the signature of bags presented in Figure 10.

@ logic ibag content(int[] a);

In the previous version the cont behavior for method swap was /*@ .. @ ensures cont:

RR 200903 @ axiom union_assoc: @ \forall ibag b1 b2 b3; @ union(union(b1,b2),b3) == union(b1,union(b2,b3)); @ axiom union_comm: @ \forall ibag b1 b2; union(b1,b2) == union(b2,b1); @ axiom union_empty_id_left: @ \forall ibag b; union(empty_bag(),b) == b; @ axiom union_empty_id_right: @ \forall ibag b; union(b,empty_bag()) == b; @ axiom occ_non_negative: @ \forall int n; \forall ibag b; @ occ(n,b) >= 0; @ axiom occ_empty: @ \forall int n; occ(n, empty_bag()) == 0; @ axiom occ_singleton_eq: @ \forall int n; occ(n, singleton(n)) == 1; @ axiom occ_singleton_neq: @ \forall int n m; n != m ==> @ occ(n, singleton(m)) == 0; @ axiom occ_union: @ \forall int n; \forall ibag b1 b2; @ occ(n, union(b1,b2)) == occ(n, b1) + occ(n,b2); @ axiom bag_ext: @ \forall ibag b1 b2; @ (\forall int n; @ occ(n, b1) == occ(n,b2)) ==> b1 == b2; /*@ requires 0 <= index < a.length && a != null; @ assigns \nothing; @ ensures \result == a[index]; @*/ public int get(int index) {...} /*@ @ requires 0 <= index < a.length && a != null; @ assigns a[index]; @ behavior length : ensures @ \at(a.length,Here) == \at(a.length,Old); @ behavior assignment : ensures @ (\at(a[index],Here) == value && @ (\forall integer j; 0 <= j < a.length && j != index @ ==> \at(a[j],Here) == \at(a[j],Old))); @ behavior content : ensures @ (\exists ibag b; @ \at(content,Old) == @ union(b,singleton(\at(a[index],Old))) && @ \at(content,Here) == union(b,singleton(value))); @*/ public void set(int value, int index) @ \at(t.content,Old) == \at(t.content,Here); @ .. @*/ void swap(IntArray t, int i, int j) {...} and now it is /*@ .. @ behavior cont: @ ensures \at(content(a),Old) == \at(content(a),Here); @ .. @*/ void swap(int a[], int i, int j) {...}

The proof obligation for this behavior is not generated by gwhy, for the same reason. There is no relation between function content and the Java LIFC heap where array a lives. We did not provide any axiom talking about function content, and we did not give a label to this function. Labels say that the content result depends on the heap.

The solution to this problem is to dene the link between bags and arrays in axioms. It is presented in the next section.

Function boundContent

The function boundContent recursively denes the relation between a bag and an array with axioms. It is a more general function than function content. We add the following denition in the axiomatic bloc IntBag presented in Figures 10 and11. @ logic ibag boundContent{L1}(int[] a, integer i, integer j); @ @ axiom emptyContent{L4}: @ \forall int[] a; \forall integer i j; @ (i > j ==> boundContent{L4}(a,i,j) == empty_bag()); @ @ axiom nonemptyContent{L4}: @ \forall int[] a, integer i j; @ i <= j ==> boundContent{L4}(a,i,j) == @ union(boundContent{L4}(a,i+1,j),singleton(a[i]));

The cont behavior becomes /*@ .. @ behavior cont: @ ensures boundContent{Old}(a,0,a.length-1) == @ boundContent{Here}(a,0,a.length-1); @ .. void swap(int a[], int i, int j) {...}

The problem now is that there are not enough axioms to prove the behavior cont. The equality == in this behavior has the properties of reexivity, symmetry, transitivity and congruence. But we have ve functions returning an ibag, namely boundContent, empty_bag, singleton, create_bag and union, and just two axioms dening function boundContent: emptyContent and nonemptyContent. We could dene function boundContent more completely, i.e. add axioms or lemmas, but there is another way. The prover should nd the axiom bag_ext, apply it and reason with occurrences. We have observed that no prover succeeds this selection. To help provers working so we force this selection by changing the behavior to RR 200903 /*@ .. @ behavior cont: @ (\forall integer i;occ(i,boundContent{Old}(a,0,a.length-1)) @ == occ(i,boundContent{Here}(a,0,a.length-1))); @ .. @*/ void swap(int a[], int i, int j) {...} Finally the sorting algorithm is proved but the cont behavior is proved just with the prover Yices and the content behavior is not proved as can be seen in Figure 14. The rst step is to use the KML reads keyword to say that boundContent just reads the array between i and j, it does not modify it. The reads keyword was a deprecated KML feature that has been re-activated by C. Marché for this purpose.

@ logic ibag boundContent{L1}(int[] a, @ integer i, integer j) reads a[i..j]

The second step is to add a function remove and to dene it as presented in Figure 15.

The third step is to simplify the specication by removing the methods set and get, the function occ and all axioms concerned with this function.

We add the new lemma shown in Figure 16. It says that whenever the elements of an array are the same at two states, except in some position k, then the array content at the second state can be obtained from its content at the rst state by removing the element occupying position k at the rst state and adding the element occupying position k at the second state.

In method swap we add a new label Middle between label Old and label Here and three assertions to guide the provers step by step. The resulting specication is presented in Figure 17. Each assertion says what happens with boundContent on some step. The rst assertion tells that the new content is obtained from the old content by replacing the old value of a[i] by the value of a[j] in the old content. The second assertion tells that the RR 200903 /*@ lemma UpdateContent{L1,L2}: @ \forall int[] a, integer i j k; @ // update of a[k] @ i <= k <= j && @ (\forall integer l; @ i <= l <= j && k != l ==> @ \at(a[l],L1) == \at(a[l],L2)) @ ==> boundContent{L2}(a,i,j) == @ union(remove(\at(a[k],L1), @ boundContent{L1}(a,i,j)), @ singleton(\at(a[k],L2))); @ @*/ Figure 16: New lemma value of a[j] has not changed. The last assertion tells that the new content is obtained from the previous content by removing the previous value of a [j] and adding the value of the local variable tmp (which is the old value of a[i]).

The specication for method selectionSort does not change. This version of the sorting algorithm is proved with the prover Simplify, as shown in /*@ for cont: assert @ boundContent{Here}(a,0,a.length-1) == @ union(remove(\at(a[i],Pre), @ boundContent{Pre}(a,0,a.length-1)), @ singleton(\at(a[j],Pre))); @*/ /*@ for cont: assert @ a[j] == \at(a[j],Pre); @*/ Middle: { a[j] = tmp; /*@ for cont: assert @ boundContent{Here}(a,0,a.length-1) == @ union(remove(\at(a[j],Middle), @ boundContent{Middle}(a,0,a.length-1)), @ singleton(tmp)); @*/ } } We have described two specication languages for the Java programming language, namely JML and KML. To the question Can we prove a sorting algorithm automatically? our answer is Yes. We have proved a sorting algorithm by selection by using a hybrid function which takes an array as a parameter and returns a bag. A bag is a collection without order. Given an array, this function returns the bag of its elements. We have expressed that the output array is a permutation of the input array by writing that the corresponding bags are the same.

One consequence of our work is that the read keyword has been activated again in KML. This keyword is used to say that the boundContent reads the corresponding part of the array. This supported feature helps the provers.

LIFC

The work in [START_REF] Filliâtre | Certication of Sorting Algorithms in the System Coq[END_REF] suggests to dene an inductive predicate to axiomatize the property that the output array is a permutation of the input array. Specifying with bags is more natural for Java engineers. But this new way of specifying a sorting algorithm leads to some diculties. For instance, the swap method has three lines of Java code which are exchanging two elements in an array and for each line we had to write a long assertion. Each assertion species what happens with the array content at the corresponding Java code line.

These three assertions are required by provers to succeed their proofs. Now we would like to investigate an intermediary solution, namely dening a permutation datatype. It is less familiar than bags for Java engineers, but more familiar than inductive predicates. Another direction of future work is to sort polymorphic arrays. KML does not support polymorphism yet, so we plan to implement this new feature.

Figure 1 :

 1 Figure 1: Axiomatic block

3 .

 3 The label Pre is visible in all statement annotations, and refers to the pre-state of the function it occurs in.[START_REF] Burdy | An Overview of JML Tools and Applications[END_REF]. The label Post is visible in assigns and ensures clauses.

Figure 2 :

 2 Figure 2: Selection sort in Java

Figure 3 :

 3 Figure 3: Specication of the method swap

Figure 4 :

 4 Figure 4: Predicate Swap

Figure 8 :Figure 9

 89 Figure 8: Specication of the internal loop

Figure 9 :

 9 Figure 9: Proving sorting algorithm with inductive predicate

Figure 10 :

 10 Figure 10: Signature for bags

Figure 11 :

 11 Figure 11: Algebraic specication of bags

Figure 12 :

 12 Figure 12: Specications of get and set methods

Figure 13 :

 13 Figure 13: The attempt to prove IntArraySort class

Figure 14 :Figure 15 :

 1415 Figure 14: Attempt to prove SortBag.java

 Figure 18.

Figure 17 :

 17 Figure 17: Signature for bags

Figure 18 :

 18 Figure 18: Proving sorting algorithm

 • A requires clause species method precondition. Any number of requires clauses can be included in the single specication case. Multiple requires clauses in a specication case mean the same as a single requires clause whose precondition predicate is the conjunction of these precondition predicates in the given requires clauses. For ex-

	• An ensures clause species a normal postcondition, i.e., a property
	that is guaranteed to hold at the end of the method (or constructor)
	invocation in the case that this method (or constructor) invocation
	returns without throwing an exception.
	ensures Q;
	Multiple ensures clauses in a specication case mean the same as a sin-
	gle ensures clause whose postcondition predicate is the conjunction
	of the postcondition predicates in the given ensures clauses, i.e.
	ensures P;
	ensures Q;
	means the same as
	ensures P && Q;
	• In a specication case a signals clause species the exceptional or
	abnormal postcondition, i.e., the property that is guaranteed to hold
	at the end of a method (or constructor) invocation when this method
	(or constructor) invocation terminates abruptly by throwing a given
	exception
	signals (E e) P;
	ample,
	requires P;
	requires Q;
	means the same thing as:
	requires P && Q;
	1 See http://www.jmlspecs.org.
	RR 200903

Acknowledgments

We would like to thank Claude Marché for helpful discussions and suggestions.