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SHAPE MINIMIZATION OF THE DISSIPATED ENERGY IN DYADIC TREES

Xavier Dubois de La Sablonière1, 2, Benjamin Mauroy3 and Yannick Privat1, 4

Abstract. In this paper, we study the role of boundary conditions on the optimal shape of a dyadic
tree crossed by a newtonian fluid. Our optimization problem consists in finding the shape of the tree
that minimizes the viscous energy dissipated by the fluid with a constrained volume and with the
condition that a given total flow crosses the tree. Two fluid regimes are studied: (i) low flow regime
(Poiseuille) in trees with an arbitrary number of generations using a matricial approach and (ii) non
linear flow regime (Navier-Stokes) in trees of two generations using shape derivatives in an augmented
lagrangian algorithm coupled with a 2D/3D finite elements code to solve Navier-Stokes equations.
It relies on the study of a finite dimensional optimization problem in the case (i) and on a shape
optimization problem in the case (ii). We show that the optimal shape is highly dependant on the
boundary conditions of the fluid applied at the leaves of the tree. Moreover our numerical results seem
to indicate that the behavior of the non linear case is similar to that of the Poiseuille case, at least for
moderate Reynolds number (around 100).

Résumé. Dans cet article, nous étudions le rôle des conditions au bord sur la forme optimale
d’un arbre dichotomique traversé par un fluide newtonien. Notre problème d’optimisation consiste
à déterminer la forme de l’arbre minimisant l’énergie visqueuse dissipée par le fluide, sous contraintes
de volume prescrit et de flux total traversant l’arbre fixé. Deux régimes de fluide sont étudiés : (i)
régime lent (Poiseuille) dans des arbres ayant un nombre de générations abitraire, en utilisant une
approche matricielle et (ii) régime non linéaire (Navier-Stokes) dans des arbres ayant deux générations,
en utilisant la dérivée par rapport au domaine dans un algorithme de Lagrangien augmenté couplé à
un code d’éléments finis 2D/3D pour résoudre les équations de Navier-Stokes. Nous nous ramenons à
l’étude d’un problème d’optimisation en dimension finie dans le cas (i) et à un problème d’optimisation
de forme dans le cas (ii). Nous montrons que l’arbre optimal dépend fortement des conditions au bord
imposées sur le fluide, en sortie de l’arbre. Par ailleurs, nos résultats numériques semblent indiquer
que le comportement du cas non linéaire est similaire au cas Poiseuille, au moins pour des nombres de
Reynolds modérés (de l’ordre de 100).
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Introduction and motivations

Tree structures are very common means to transport a product between two regions of different scales. These
structures are often crossed by a fluid which acts as a transporter. The circulation of the fluid in such structures
can be costly and the question of the optimization of the tree geometry arises.
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Important applications of this problem exist, like in industry, in the study of river basins, in water treatment
or in biology and medicine. An answer, even partial, could help, for instance, to better understand organs
like lungs or cardiovascular system. These two examples have to deal with energy dissipation due to air or
blood circulation (see [28]). These organs are subject to dysfunctions which are often consequences of an
increase of their hydrodynamical resistance and thus of a loss of efficiency of the geometrical structures as
transport systems. Hence, dysfunctions like asthma or vascular accidet are often linked to an increase of the
hydrodynamical resistance of the structure.

Thus, researching the optimal shapes of tree structures is an important problem. Preceding studies have
been made on this topic in the past like in [3, 4, 16, 20, 27] each on particular situations and applications.

In this work, we look for the shape of dyadic trees that minimizise the viscous energy of a Newtonian fluid
under a volume constraint. Such structures are indeed good candidates for the modelling of mammals bronchial
trees [20]. In the first part of this paper, we study the case of low flow regime (Poiseuille flow) and we use
a matricial formulation of the problem as in [12, 21]. In the second part, we study the case of non linear
Navier-Stokes flow (Reynolds ∼ 100) thanks to a numerical shape minimization method based on the use of
shape derivatives (see [13, 24]). We show that the optimal structure depends on the fluid boundary conditions
that are applied at tree root and leaves. Indeed, under the constraint that a given flow crosses the tree, the
optimal shape is very different according to the conditions imposed at the leaves: Dirichlet conditions or strictly
identical Neumann conditions lead to an optimal tree with particular relationships between the flow in a branch
and its diameter; non identical Neumann conditions lead to a degenerated tree reduced to a tube and only one
leaf remains accessible to the fluid from the root. Moreover the numerical simulations in the non linear case
show similar behavior than for the low flow regime and give precisely the geometry of the bifurcation.

Note that we focus here on the 3D case, however it is easy to see, with very few changes in the reasoning,
that our results would also hold for the 2D case.

In the following, we will call inlet of a dyadic tree either the open surface of the root of the tree or the root
of the tree itself, depending on the context. Similarly, we will call outlets of a tree either the open surfaces of
its leaves or its leaves themselves, also depending on the context. Mainly, we will refer to the open surfaces if
we speak of boundary conditions and to the branches in the other cases. Note that this terminology does not
mean necessarily that fluid is going in the tree through the inlet and out of the tree through the outlet.

1. The case of a fluid driven by Poiseuille’s law:

a theoretical result

We will use the following notations throughout this section:

[x], with x ∈ R the integer part of x
B⊤, where B is a matrix the transpose of B
(e1, . . . , en), with n ∈ N

∗ the standard basis of R

〈x,y〉, where x and y are two vectors with same
length

the euclidean inner product

‖.‖ the euclidian norm, induced by the inner product
〈., .〉

diagu, where u = (ui)i∈[[1,n]] ∈ R
n×1 the diagonal matrix D = (di,j)1≤i,j≤n such that

di,i = ui for all i ∈ [[1, n]].

1.1. The model

We introduce here all the models used in this article.

1.1.1. Poiseuille’s law

We consider the incompressible flow of a viscous fluid (of dynamic viscosity µ > 0) through a cylindrical rigid
pipe whose length is L > 0 and radius is R > 0 in a steady and low regime. We impose a no-slip condition on
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the lateral boundary. We refer the inlet to 0 and the outlet to 1. Pressures (p0 > 0 and p1 > 0) at its ends are
supposed to be uniform over the section. The volumetric flow rate Φ is chosen positive if the flow goes from the
section 0 to the section 1.
If we solve the Navier-Stokes equations which rule the flow of the fluid through the pipe, we obtain that the
velocity profile is parabolic and we find Poiseuille’s law. This law boils down to a linear relationship between
the pressure drop p0 − p1 and the volumetric flow rate Φ through this pipe,

p0 − p1 = rΦ

where

r =
8µL

πR4
> 0.

Therefore, if the pressure drop p0 − p1 is positive, the flow goes from the section 0 to the section 1, which is
physically relevant.
We can draw a comparison between this model and Ohm’s law considering the pressure drop as a potential
difference and the volumetric flow rate as a current. Then, the proportionality constant r could be defined
as a hydrodynamic resistance. Moreover, assuming that the flow is incompressible, the flow rate is conserved
through the pipe.

1.1.2. The dyadic tree

We consider the flow of an incompressible and viscous fluid whose dynamic viscosity is µ through a finite
dyadic tree of N + 1 generations (N ∈ N, N ≥ 1). We will consider that a new generation in this tree occurs
when a bifurcation is created, so that we will say that the root branch corresponds to generation 1 and the
ramified branches at the end of the tree to generation N+1. Nevertheless, we will make the distinction between
the notion of generation and the notion of level in the tree. A level is a number associated to a generation,
equal to 1 for generation 2 and increasing from 1 at each eneration. Therefore, a tree with N + 1 generations
has N levels. The use of levels makes the indexation of all the variables for our problem easier. They will be
denoted in all this section by i.

Thus, this tree has 2N outlets and 2N+1 − 1 branches. This tree is composed of connected rigid cylindrical
pipes through which the fluid follows Poiseuille’s law. We assume that the volumetric flow rate Φ > 0 which
enters this tree and all the pressures at the outlets of the tree are fixed. They are considered as data for our
problem.

Let us define the sets BN,i of couples of indexes which locate each branch belonging to a given level i
(i ∈ [[1, N ]])

BN,i :=
{
(i, j) | j ∈

[[
1, 2i

]]}
. (1)

In other terms, i represents the level and j the position of the branch at this level. Thus, the set BN composed
of all the indexes locating the pipes of the overall tree is defined by

BN :=
⋃

i∈[[1,N ]]

BN,i. (2)

Let us notice that this set does not include the root branch of the tree whose radius is R0 ∈ R
∗
+, length L0 ∈ R

∗
+,

pressure at its inlet p0 ∈ R
∗
+ (the pressure at the inlet of the overall tree) and pressure at its outlet p1 ∈ R

∗
+.

Thus, its hydrodynamic resistance is r0 := 8µL0

πR4
0

. According to Poiseuille’s law, one has

p0 − p1 = r0Φ.

For a given pipe located in the tree by the couple (i, j) ∈ BN , let us denote by Ri,j > 0 its radius and by

Li,j > 0 its length. Therefore, one can characterize this pipe by its hydrodynamic resistance ri,j :=
8µLi,j

πR4
i,j

.
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Moreover, let qi,j and pi,j > 0 be, respectively, the volumetric flow rate through this pipe and the pressure at
its outlet. The flow rate qi,j is chosen positive if the flow goes from this pipe to its daughter pipes and negative
else.

Then, we consider a pipe whose index is (i, j) ∈
⋃

i∈[[1,N−1]]

BN,i. Since the tree is dyadic, the hydrodynamic

resistances of its (two) daughter pipes are ri+1,2j−1 and ri+1,2j , which belong to the (i+ 1)-th level. Then, we
define the ratios xi+1,2j and xi+1,2j+1, representing the evolution of the geometry of the tree between the levels
i and i+ 1 by

xi+1,2j−1 :=
ri,j

ri+1,2j−1
=

Li,j

Li+1,2j−1

(
Ri+1,2j−1

Ri,j

)4

and xi+1,2j :=
ri,j

ri+1,2j
=

Li,j

Li+1,2j

(
Ri+1,2j

Ri,j

)4

. (3)

Moreover, we assume that the ratio of reduction is the same for the radius and the length between a mother
branch and its daughter, then

xi+1,2j−1 =

(
Ri+1,2j−1

Ri,j

)3

and xi+1,2j =

(
Ri+1,2j

Ri,j

)3

. (4)

Figure 1 shows an example of a dyadic tree and of our notations in the special case where N is equal to 2.

Φ

p0

p1

p1,1 p1,2

p2,1 p2,2 p2,3 p2,4

q1,1 q1,2

q2,1 q2,2 q2,3 q2,4

x1,1 x1,2

x2,1 x2,2 x2,3 x2,4

i = 1

i = 2

r0

Figure 1. An example of dyadic tree with three generations (N = 2). Note that the flows qi,j
can be either positive or negative ((i, j) ∈ BN).

With a view to establishing a relationship between the 2N pressures and the 2N volumetric rate flows at
the outlets of the tree, we need to follow the fluid through paths in the tree. Therefore, one has to define the
notions of path and subpath in the tree.

Definition 1.1. Notion of path and subpath.

(1) The path Π0→(i,j) (with (i, j) ∈ BN ) is the set of couples of indexes of the i branches needed to link the
root branch denoted by 0 and the branch located by (i, j). It includes the branch denoted by (i, j) but
not the root branch. More precisely,

Π0→(i,j) := {(1,mi) , . . . , (i− 1,m2) , (i,m1)} , (5)
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where (mk)1≤k≤i denotes the sequence of positive integers defined by





m1 = j

mk+1 =

[
mk + 1

2

]
, ∀k ∈ [[1, i− 1]] .

(2) Let (i, j) ∈ BN and s ∈ [[0, i]]. For a given path Π0→(i,j), the subpath Π0→(i,j)(s) is the set of couples
of indexes of the m branches needed to link the root branch and a branch located at the s-th level
following a part of the path Π0→(i,j). More precisely, the subpath Π0→(i,j)(s) is the subset of Π0→(i,j)

defined by

Π0→(i,j)(s) :=

{
{(1,mi) , . . . , (s,mi−s+1)} if s ≥ 1
∅ if s = 0.

(6)

Thanks to this notion, one can make a change of variables, which will be very useful in the second part of this
section, devoted to the optimization of a given criterion with respect to the geometry of the tree, represented
by the 2N+1 − 2 variables {xi,j}(i,j)∈BN

. From now on, we replace variables xi,j by ξi,j defined by

∀(i, j) ∈ BN , ξi,j :=
∏

(k,l)∈Π0→(i,j)

xk,l. (7)

It has to be noticed that the map {xi,j}(i,j)∈BN
7−→ {ξi,j}(i,j)∈BN

is obviously a C1-diffeomorphism so that it
defines a change of variable.
Moreover, r0

ξi,j
represents the hydrodynamic resistance ri,j of the pipe denoted by (i, j).

For instance, in the case N = 2 (see figure 1), the path linking the inlet to the first outlet is Π0→(2,1) :=
{(1, 1); (2, 1)} and the geometric variables of theses branches are

x1,1 :=
r0
r1,1

=

(
R1,1

R0

)3

, ξ1,1 := x1,1, and x2,1 :=
r0
r2,1

=

(
R2,1

R0

)3

, ξ2,1 := x1,1x1,2.

Definition 1.2. Let us define:

• the vector p containing all the pressures at the outlets of the tree, i.e.

p := (pN,1, . . . , pN,2N )⊤ ∈ (R∗
+)2

N×1,

• the vector q containing all the volumetric flow rates crossing the leaves of the tree, i.e.

q := (qN,1, . . . , qN,2N )⊤ ∈ R
2N×1,

• the vector ξ representing the resistances of the tree, i.e.

ξ := (ξ1,1, ξ1,2, . . . , ξN,1, . . . , ξN,2N )⊤ ∈ (R∗
+)(2

N+1−2)×1.

Definition 1.3. Given two positive integers i and j and their binary expressions

i =

∞∑

k=0

αk2k, j =

∞∑

k=0

βk2k with (αk, βk) ∈ {0, 1}2, ∀k ∈ N,
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we define νi,j as
νi,j := min{k ∈ N

∗ | αl = βl, ∀l ≥ k}.

Thanks to Poiseuille’s law, we are able to establish a linear relationship between the vectors p and q.

Proposition 1.4. Let N ∈ N
∗. One has

p0uN − p = AN (ξ)q, (8)

where

• AN (ξ) ∈ R
2N×2N

is the resistance matrix of the tree, defined by

AN (ξ) = (aN
i,j)1≤i,j≤2N , aN

i,j :=





r0 +
∑

(k,l)∈Π0→(N,i)(N−νi−1,j−1)

r0
ξk,l

if νi−1,j−1 > 0

r0 if νi−1,j−1 = 0

(9)

• uN ∈ R
2N×1 denotes the ones vector i.e. uN = (1, . . . , 1)⊤.

Remark 1.5. What is the meaning of Π0→(N,i)(N − νi−1,j−1)? Π0→(N,i)(N − νi−1,j−1) is a subpath corre-
sponding to the intersection of the two paths Π0→(N,i) and Π0→(N,j).

Proof. (see [12], where a close result is proved) The linearity of the relationship between p and q comes from
Poiseuille’s law. Hence it is sufficient to compute the pressure vectors p related to the elements of canonical

basis of R
2N×1. Let us begin with q = (1, 0, . . . , 0)⊤ ∈ R

2N×1. It boils down to the case in which the fluid
exits the tree only by the outlet denoted by (N, 1). In other terms, the fluid flows through the tree using the
path Π0→(N,1). By conservation, the volumetric flow rate which enters the tree through the root branch is
exactly Φ = 1, so that the pressure p1 at the outlet of the root branch is p0 − r0. As there is no flow in the
right-hand subtree stemming from the root branch, the pressure at its outlets (whose couples of indexes are
between (N, 2N−1+1) and (N, 2N )) is the same as at the outlet of the root branch, namely p0−r0. Similarly, the

pressure p1,1 at the outlet of the branch denoted by (1, 1) is p0− (r0 + r1,1) = p0− r0
(
1 + 1

ξ1,1

)
. Following this

approach recursively, one finds pressures at the outlet of the branches of the path Π0→(N,1) denoted by (i, 1) with

i ∈ [[1, N ]] to be p0 −


r0 +

∑

(k,l)∈Π0→(N,1)(i)

rk,l


 = p0 − r0


1 +

∑

(k,l)∈Π0→(N,1)(i)

1

ξk,l


, respectively. Therefore,

the pressure pN,j (with j ∈
[[
1, 2N

]]
) at the outlets of the tree is p0 − r0


1 +

∑

(k,l)∈Π0→(N,1)(N−ν0,j−1)

1

ξk,l


.

Applying the same reasoning to any vector q = (0, . . . , 0, 1, 0, . . . , 0)⊤ ∈ R
2N×1 (with 1 at the i-th position)

yields

p =


p0 − r0


1 +

∑

(k,l)∈Π0→(N,i)(N−νi,0)

1

ξk,l


 , . . . , p0 − r0


1 +

∑

(k,l)∈Π0→(N,i)(N−ν
i,2N −1

)

1

ξk,l






⊤

.

Consequently, we obtain

∀i ∈
[[
1, 2N

]]
, pN,i = p0 − r0

2N∑

j=1

qj


1 +

∑

(k,l)∈Π0→(N,i)(N−νi−1,j−1)

1

ξk,l




�



7

Remark 1.6. AN (ξ) is a real symmetric matrix and thus, can be diagonalized over R in an orthonormal basis

of eigenvectors. There exist an orthogonal matrix P ∈ R
2N×2N

and a diagonal matrix D ∈ R
2N×2N

such that
AN (ξ) = P⊤DP . P and D obviously depend on ξ, but we decided it not to be mentioned for a sake of clarity.

Proposition 1.7. The resistance matrix AN (ξ) ∈ R
2N×2N

is invertible.

Proof. By Remark 1.6, AN (ξ) ∈ R
2N×2N

is a real symmetric matrix and thus, can be diagonalized over R. Let
λmin be its smallest eigenvalue. We now use Courant-Fisher minimax theorem:

λmin = min
y∈R

2N
×1

y 6=0

R(y) with R(y) :=
y⊤AN (ξ)y

‖y‖2
, the quotient of Rayleigh of y.

Let y be a nonzero vector in R
2N×1. It is well known (see for instance [21]) that

y⊤AN (ξ)y = r0




(∑2N−1

j=1 yj

)2

ξ1,1
+

(∑2N

j=2N−1+1 yj

)2

ξ1,2
+ · · ·+

2N∑

j=1

y2
j

ξN,j
+

2N∑

j=1

y2
j


 . (10)

Then, obviously, y⊤AN (ξ)y ≥ r0‖y‖2. Thus, R(y) =
y⊤AN (ξ)y

‖y‖2
≥ r0 > 0. Therefore, by virtue of Courant-

Fischer minimax theorem, λmin > 0 and, thus, all the eigenvalues of AN (ξ) are strictly positive which ends the
proof. �

Example 1.8. So as to have an idea of the structure of the matrix AN (ξ), let us use an example of a tree with
N = 2 levels (thus, with N + 1 = 3 generations, 2N−1 = 4 outlets and 2N − 1 = 7 branches). Its resistance
matrix A2(ξ) ∈ R

4×4 is defined as follows:

A2(ξ) := r0




1 + 1
ξ1,1

+ 1
ξ2,1

1 + 1
ξ1,1

1 1

1 + 1
ξ1,1

1 + 1
ξ1,1

+ 1
ξ2,2

1 1

1 1 1 + 1
ξ1,2

+ 1
ξ2,3

1 + 1
ξ1,2

1 1 1 + 1
ξ1,2

1 + 1
ξ1,2

+ 1
ξ2,4




The tree corresponding to this example is drawn on the figure 1.

From now, we assume fixed the pressures at the outlets of the tree and the flow in the tree root to Φ. Note

that it implies that Φ =

2N∑

j=1

qN,j.

Proposition 1.9. The vector q is the unique solution of the linear system

MN(ξ)q = bN (11)

where

MN(ξ) :=




(AN (ξ)v1)⊤

...
(AN (ξ)v2N

−1)⊤

uN
⊤


 ∈ R

2N×2N

, bN :=




−〈p,v1〉
...

−〈p,v2N
−1〉

Φ


 ∈ R

2N×1 (12)

and for all i ∈
[[
1, 2N − 1

]]
, vi := (0, . . . , 0, 1,−1, 0, . . . , 0)⊤ ∈ R

2N×1, with 1 at the i-th position and −1 at the
(i+ 1)-th position.
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Proof. The set of vectors (vi)i∈[[1,2N−1]] forms a basis of the orthogonal complement {uN}⊥ of the vector uN .

Let i ∈
[[
1, 2N − 1

]]
. Multiplying (8) by vi in the sense of the inner product yields

∀i ∈
[[
1, 2N − 1

]]
, −〈p,vi〉 = 〈AN (ξ)q,vi〉. (13)

Furthermore, by conservation of the flow rate, one has a relationship between the volumetric flow rate Φ which
enters the tree and the flow rates q at the outlets of the tree 〈q,uN 〉 = Φ.

Thus, since AN (ξ) is real symmetric, the vector q verifies the following system

{
〈q, AN (ξ)vi〉 = −〈p,vi〉, ∀i ∈

[[
1, 2N − 1

]]

〈q,uN 〉 = Φ.
(14)

That explains the structure of the matrixMN (ξ). Let us now to prove that MN (ξ) is invertible. It amounts to
proving that the set of vectors (AN (ξ)v1, . . . , AN (ξ)v2N −1,uN ) is linearly independent. This is almost trivial
that the set (AN (ξ)v1, . . . , AN (ξ)v2N

−1) is linearly independent, combining the facts that AN (ξ) is invertible
(by Proposition 1.7) and that the set (vi)i∈[[1,2N−1]] is obviously linearly independent.

Now, assume that

λuN +
2N−1∑

i=1

µiAN (ξ)vi = 0 with (λ, µ1, . . . , µ2N−1) ∈ R
2N

. (15)

By Remark 1.6 and Proposition 1.7, AN (ξ) = P⊤DP with P ∈ R
2N×2N

, D = diag
(
{λi}i∈[[1,2N ]]

)
, and all the

eigenvalues of AN (ξ) are strictly positive. Hence, one has AN (ξ)−1 = diag
(
{λ−1

i }i∈[[1,2N ]]

)
and it is possible to

factorize AN (ξ)−1 as follows: AN (ξ)−1 = P⊤δ2P , where δ := diag

({
λ
−1/2
i

}
i∈[[1,2N ]]

)
.

Multiplying the equation (15) by the vector AN (ξ)−1uN in the sense of the inner product yields

λ〈uN , AN (ξ)−1uN 〉+
2N−1∑

i=1

µi〈AN (ξ)vi, AN (ξ)−1uN 〉 = 0. (16)

Since vi ∈ {uN}⊥ for all i ∈
[[
1, 2N − 1

]]
, it follows that

〈AN (ξ)vi, AN (ξ)−1uN 〉 = 〈vi,uN 〉 = 0, ∀i ∈
[[
1, 2N − 1

]]
.

Moreover, 〈uN , AN (ξ)−1uN 〉 = ‖δPuN‖2 > 0, because uN 6= 0, det(P ) 6= 0 and det(δ) 6= 0.
The relation (16) yields λ‖δPuN‖2 = 0. Hence, λ = 0 so that, by (15),

2N−1∑

i=1

µiAN (ξ)vi = 0.

By the linear independence of the set (AN (ξ)vi)i∈[[1,2N−1]], we conclude that ∀i ∈
[[
1, 2N − 1

]]
, µi = 0.

Consequently, the set of vectors (AN (ξ)v1, . . . , AN (ξ)v2N
−1,uN ) is linearly independent. Thus, the matrix

MN(ξ) is invertible, which ends the proof. �

1.2. The optimization problems

In this section, we will study a finite-dimensional constrained optimization problem. We use the notations
introduced in the previous subsection 1.1. We consider the same rigid dyadic tree with N + 1 generations
(N ∈ N, N ≥ 1) through which flows the same fluid as previously introduced. The tree is characterized by its
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geometry ξ (ξ ∈ (R∗
+)(2

N+1−2)×1), its resistance matrix AN (ξ) (AN (ξ) ∈ R
2N×2N

) and their volumetric flow

rates q (q ∈ R
2N×1) at the outlets of the tree.

We try to minimize the total viscous dissipated energy with respect to the variables q and ξ under constraints
of Poiseuille-like flow and of constant volume.

It is well known (see [12, 21]) that the total viscous dissipated energy by the fluid during one second in the
tree is, up to a multiplicative constant,

E(q, ξ) := q⊤AN (ξ)q. (17)

Since the tree is dyadic, it is usual to compute approximately the total volume V of the tree by summing the
volume of each cylindrical branch, i.e.

V = πR2
0L0 +

∑

(i,j)∈BN

πR2
i,jLi,j = πR2

0L0


1 +

∑

(i,j)∈BN

(
Ri,j

R0

)2
Li,j

L0




= πR2
0L0


1 +

∑

(i,j)∈BN

(
Ri,j

R0

)3

 = πR2

0L0


1 +

∑

(i,j)∈BN

∏

(k,l)∈Π0→(i,j)

xk,l




= πR2
0L0


1 +

∑

(i,j)∈BN

ξi,j


 . (18)

Then, the constraint of total volume V comes down to

∑

(i,j)∈BN

ξi,j = Λ− 1 (19)

where Λ := V
πR2

0L0
> 1, which is directly proportional to the total volume of the tree V .

From now on, we will not distinguish Λ and the total volume of the tree V .
One imposes another constraint on the geometry: lengths and radii of the tree are assumed to decrease as

we go along its levels. More precisely,

∀(i, j) ∈
⋃

i∈[[1,N−1]]

BN,i, max(ξi+1,2j−1, ξi+1,2j) ≤ ξi,j . (20)

Finally, we define the set AΛ by

AΛ :=
{
ξ ∈ (R∗

+)(2
N+1−2)×1 | ξ verifies the conditions (19) and (20)

}
. (21)

1.2.1. Case where the flow rate at the inlet and the pressures at the outlets are known

The volumetric flow rate Φ > 0 which enters the overall tree through the root branch and the pressures at

the outlet of the tree (i.e. the vector p, p ∈ (R∗
+)2

N×1) are assumed to be fixed.
Let us define an admissible set UΛ for the variables (q, ξ) as

UΛ :=
{

(q, ξ) | ξ ∈ AΛ and q = (MN(ξ))
−1

bN

}
. (22)

Remark 1.10. This constraint comes down to impose an incompressible and Poiseuille-like flow through the
tree (see Proposition 1.9).
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Then, our optimization problem can be stated

(P)

{
min E(q, ξ)
(q, ξ) ∈ UΛ.

(23)

Let us set out the highlights of this section. First, we investigate the case where (P) has a solution.

Theorem 1.11. The problem (P) has a solution if, and only if

p ∈ Span(uN ).

That is the case when all the pressures are equal at the outlets. Moreover,

min
(q,ξ)∈UΛ

E(q, ξ) = r0Φ
2

(
1 +

N2

Λ− 1

)
.

This theorem emphasizes the fact that if two pressures at the outlets are different, then, the problem (P)
has no solution. Nevertheless, we are able to exhibit a minimizing sequence. It has to be noticed that the value
of the minimum does not differ according to the case considered.

Theorem 1.12. Let us consider a dyadic tree whose number of generations is fixed, equal to N + 1 (N ∈
N, N ≥ 1) and whose total volume is Λ > 1. The volumetric flow rate Φ > 0 which enters the overall tree
through the root branch and the pressures at the outlet of the tree are assumed to be fixed. Moreover, at least
two pressures at the outlet are assumed to be different, which writes

∃j ∈
[[
1, 2N

]]
| pN,j 6= pN,j+1.

Then,

(1) the problem (P) has no solution,
(2) a minimizing sequence (ξε, qε)ε>0 is given by





ξε
i,j := Λ−1

N −
(

2N+1−2
N − 1

)
ε ∀(i, j) ∈ Π0→(N,1),

ξε
i,j := ε ∀(i, j) ∈ BN\Π0→(N,1),

qε = MN(ξε)−1bN ,

(24)

with ε > 0 sufficiently small to respect the constraint: ∀(i, j) ∈ BN , ξ
ε
i,j > 0,

(3) One has

m := inf
(q,ξ)∈UΛ

E(q, ξ) = r0Φ
2

(
1 +

N2

Λ− 1

)
.

Remark 1.13. The sequence (qε)ε>0 converges to the vector (Φ, 0, . . . , 0)⊤ when ε converges to zero. It boils
down to the case in which the fluid exits the tree only by the outlet denoted by (N, 1). The use of some symmetry
properties in the structure of the objective function E yields that we would easily get another minimizer by
choosing any other outlet as main exit of the fluid, which would correspond to the closure of every path linking
the root branch to the outlet except Π0→(N,i), for any i ∈

[[
1, 2N

]]
. Note that the symmetry property does not

hold for the pressures at outlets. However, when we take the limit in the minimizing sequence, since the flow is
imposed, the pressure drop between the root and the outlet that remains open is the same whatever the outlet
chosen. Thus, the pressure at root will depend on the pressure imposed at the outlet. This is the reason why
it is well adapted to introduce the matrix MN(ξ), independent on the root pressure.

With a view to proving this theorem, one will proceed in two steps

(1) firstly, determination of a lower bound for the total viscous dissipated energy,
(2) secondly, construction of the minimizing sequence (qε, ξε)ε>0.
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1.2.2. Determination of a lower bound for the total viscous dissipated energy

Let us now focus on an auxiliary optimization problem whose results turn out to be useful in the proof of

Theorem 1.12. Let q ∈ R
(2N+1−2)×1 and ξ ∈ (R∗

+)(2
N+1−2)×1 be the two vectors

q := (q1,1, q1,2, . . . , qN,1, . . . , qN,2N )⊤ and ξ := (ξ1,1, ξ1,2, . . . , ξN,1, . . . , ξN,2N )⊤.

Notice that, in the rest of the paper and apart from the section 1.2.2, the notation q points out the vector only
composed of the flow rates at the outlet of the tree.

Let r0 > 0, Φ > 0 and Λ > 1. Let (Q) be the finite-dimensional constrained optimization problem

(Q)





min E(q, ξ)

q ∈ R
(2N+1−2)×1 | ∀i ∈ [[1, N ]] ,

2i∑

j=1

qi,j = Φ

ξ ∈ (R∗
+)(2

N+1−2)×1 |
∑

(k,l)∈BN

ξk,l = Λ− 1

(25)

where E(q, ξ) is defined by

E(q, ξ) := r0Φ
2 +

∑

(k,l)∈BN

r0
q2k,l

ξk,l
. (26)

Remark 1.14. It is sufficient to solve the problem (Q) considering that the flow rates at the outlet are

positive, i.e. q ∈ (R+)(2
N+1−2)×1. Indeed, since this energy is only composed of square terms, one has ∀q1,1 ∈

R, E(−q1,1, . . .) = E(q1,1, . . .) and so on for the other volumetric flow rates at the outlet of the tree.

Therefore, we will again denote by (Q) the problem

(Q)

{
min E(q, ξ)
(q, ξ) ∈ C1 × C2,

(27)

where

C1 =



q ∈ (R+)(2

N+1−2)×1 | ∀i ∈ [[1, N ]] ,

2i∑

j=1

qi,j = Φ





and C2 =



ξ ∈ (R∗

+)(2
N+1−2)×1 |

∑

(k,l)∈BN

ξk,l = Λ− 1



 .

Proposition 1.15. The problem (Q) has a solution (q∗, ξ∗) and one has necessarily

∀(i, j) ∈ BN , q
∗
i,j =

NΦ

Λ− 1
ξ∗i,j . (28)

Moreover, the value of the minimum is equal to r0Φ
2
(
1 + N2

Λ−1

)
.

Proof. One obviously has

∀(q, ξ) ∈ CΛ, E(q, ξ) ≥ 0.

Therefore, the lower bound inf
(q,ξ)∈C1×C2

E(q, ξ) exists and is positive.
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Since the constraints are uncoupled, it follows that

inf
(q,ξ)∈C1×C2

E(q, ξ) = inf
ξ∈C2

inf
q∈C1

E(q, ξ). (29)

Let us first focus on the optimization problem, where ξ ∈ C2 is fixed

(Qξ)

{
min E(q, ξ)
q ∈ C1

(30)

Any q ∈ C1 verifies
∑

(i,j)∈BN

qi,j =
∑

(i,j)∈BN

|qi,j | = NΦ. Therefore, C1 is closed and bounded. Since the

energy E(., ξ) is continuous as a polynomial function and strictly convex, on the convex compact set C1, then
the problem (Qξ) has a unique solution.

By virtue of Kuhn-Tucker’s theorem, there exists a real Lagrange multiplier µ1 such that

∂E

∂q1,1
=

2r0q1,1

ξ1,1
= µ1 and

∂E

∂q1,2
=

2r0q1,2

ξ1,2
= µ1. (31)

Since q1,1 + q1,2 = Φ, one has

q1,1 =
r0ξ1,1

ξ1,1 + ξ1,2
Φ and q1,2 =

r0ξ1,2

ξ1,1 + ξ1,2
Φ. (32)

Similarly,

∀i ∈ [[1, N ]] , ∀j ∈
[[
1, 2i

]]
, qi,j =

r0ξi,j∑2i

k=1 ξi,k
Φ. (33)

Let us now focus on minimizing the functional ξ ∈ C2 7→ E(q(ξ), ξ). By (32) and (33), one has

E(q(ξ), ξ) = r0Φ
2

(
1 +

1

ξ1,1 + ξ1,2
+ · · ·+

1
∑2N

i=1 ξN,i

)
. (34)

Let us use the change of variables

yi :=

2i∑

j=1

ξi,j , i ∈
[[
1, 2N

]]
. (35)

Then, our optimization problem becomes





min

[
r0Φ

2

(
1 +

N∑

i=1

1

yi

)]

N∑

i=1

yi = Λ− 1.

(36)

Thanks to Kuhn-Tucker’s theorem, this minimum is obviously reached for y∗ = (Λ−1
N , . . . , Λ−1

N ) and is equal

to r0Φ
2
(
1 + N2

Λ−1

)
.

Consequently, the minimum of E over C1 × C2 is r0Φ
2
(
1 + N2

Λ−1

)
. Combining of (33) with the expression of

y∗ shows that, if (q∗, ξ∗) denotes a minimizer of the optimization problem (Q), one has necessarily

∀(i, j) ∈ BN , q
∗
i,j =

NΦ

Λ− 1
ξ∗i,j . (37)
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�

Remark 1.16. The expression of the necessarily first-order optimality conditions in the proof of Proposition
1.15 leads easily to conclude that the problem (Q) has an infinite number of minimizers.

Moreover, an interesting minimizing sequence (qε, ξε)ε>0 in C1 × C2, of E for our problem is given by

∀ε > 0,

{
∀(i, j) ∈ Π0→(N,1), qε

i,j := Φ and ξε
i,j := Λ−1

N −
(

2N+1−2
N − 1

)
ε

∀(i, j) ∈ BN\Π0→(N,1), qε
i,j := 0 and ξε

i,j := ε.
(38)

Physically, this is the case where the fluid exits the tree only by the outlet denoted by (N, 1).

1.2.3. Proof of the theorem 1.11

Since the problem (Q) is less constrained than (P), the solution of (P) needs to respect the necessary
first-order optimality conditions for the problem (Q), namely

∀(i, j) ∈ BN , qi,j =
Nξi,j
Λ− 1

Φ. (39)

Let us denote as previously by p0 the pressure at the inlet of the tree. According to the Poiseuille law and
reasoning by induction, one has





p0 − p1,1 = NΦ
Λ−1

p0 − p1,2 = NΦ
Λ−1

}
=⇒ p1,1 = p1,2

...
pi,j − pi+1,2j−1 = NΦ

Λ−1

pi,j − pi+1,2j = NΦ
Λ−1

}
=⇒ pi+1,2j−1 = pi+1,2j , ∀(i, j) ∈

⋃

i∈[[1,N−1]]

BN,i.

In particular, it implies that
pN,1 = pN,2 = · · · = pN,2N−1 = pN,2N .

Reversely, let us prove that, if there exists p ∈ R such that p = puN , then, the problem (P) has a solution. In
this case, we are able to exhibit an element (q, ξ) which belongs to the admissible set UΛ. For instance, let us
take

∀(i, j) ∈ BN , ξi,j :=
Λ − 1

N2i
.

Then, it is easy to make the calculation of the flow throughout the tree. Indeed

pN−1,1 − pN,1 =
qN,1

ξN,1

pN−1,1 − pN,2 =
qN,2

ξN,2

}
=⇒ qN,1 = qN,2 since pN,1 = pN,2 = p and ξN,1 = ξN,2.

Iterating this reasoning proves that q ∈ Span(uN ) and more generally, by induction, we obtain

∀(i, j) ∈ BN , qi,j =
Φ

2i
.

In other terms, the flows at the i-th level (i ∈ [[1, N ]]) are the same. Then, we obtain that

∀(i, j) ∈ BN ,
qi,j
ξi,j

=
NΦ

Λ− 1
.

We find again the first order optimality condition for the problem (Q). Let us remind that, by convexity
arguments, the solution of the problem (Q) is determined in a unique way by the first order optimality conditions.
It ensures that the minimum is equal to m and that the problem (P) has a solution in this case.



14

Moreover, notice that ∀(i, j) ∈ BN , with i > 1, xi,j = 1
2 . It corresponds to the case where the ratio of two

consecutive radii of the tree is equal to
(

1
2

) 1
3 in the whole tree. It is the same solution as the optimization

problem of symmetric trees studied in [20].

1.2.4. Proof of the theorem 1.12

Definition 1.17. UN is the matrix of size 2N × 2N whose coefficients are all equal to 1.

Let us consider the optimization problem (P) for a given N .
Let the sequence (ξε)ε>0 (for all ε > 0, ξ

ε ∈ (R∗
+)6×1) be defined by

{
ξε
1,1 = ξε

2,1 = · · · = ξε
N,1 = Λ−1

N −
(

2N+1−2
N − 1

)
ε

ξε
i,j = ε, ∀(i, j) ∈ [[1, N ]]×

[[
2, 2i

]]
.

(40)

We define m by m := min
CΛ

E = r0Φ
2

(
N2

Λ− 1
+ 1

)
. Let us show that lim

ε→0
E(q(ξε), ξε) = m where q(ξε) is the

unique solution of the linear system MN (ξε)q = bN (see Proposition 1.9). Let us denote q(ξε) by qε, AN (ξε)
by AN (ε) and MN(ξε) by MN (ε).

Let us recall that, according to Proposition 1.9, the vector qε is completely characterized by the system

{
〈qε, AN (ε)vi〉 = −〈p,vi〉, ∀i ∈

[[
1, 2N − 1

]]

〈qε,uN 〉 = Φ
(41)

with

∀ε > 0, AN (ε) = r0


UN +

1

ε
ÃN +

1

Λ−1
N −

(
2N+1−2

N − 1
)
ε
B̃N


 (42)

where UN , ÃN and B̃N are three matrices independent of ε with same size as AN (ε).
The first one, UN , comes from the root branch that adds a resistance r0 to the resistance of any pathway

in the tree. The second one, ÃN is more precisely characterized in the lemma 1.19. ÃN , corresponds to the
resistance matrix of the pathways consisting only in branches (i, j) such that ξi,j = ε (i.e. whose diameter will
go to 0 with ε), namely all pathways in the tree except those included in the pathway going from the root to
the outlet (N, 1). These last pathways are finally accounted for in the third part BN and corresponds to those
that stay open when ε goes to 0.

Defining ÃN (ε) := εAN (ε), we have

lim
ε→0

ÃN (ε) = r0ÃN (43)

Therefore, the vector qε is completely characterized by the system

{
〈qε, ÃN (ε)vi〉 = −ε〈p,vi〉, ∀i ∈

[[
1, 2N − 1

]]
,

〈qε,uN 〉 = Φ
(44)

Thus it is necessary to study more closely the matrix ÃN that will give the behavior of qε when ε goes to 0.

Definition 1.18. Let m and n be two nonzero integers. Let A1 ∈ R
n×n and A2 ∈ R

m×m be two matrices. We
define the direct sum of A1 and A2 as the matrix M in R

n+m,n+m defined by blocks:

M = A1 ⊕A2 :=

(
A1 0
0 A2

)
.
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We have the following property:

Lemma 1.19. ÃN = (0) ⊕
⊕N−2

p=0 Bp where Bp is a resistance matrix of a tree of p + 1 generations whose
branches have all the same resistance equal to 1.

0 1

0 1 1 1

0

Ã2 = (0) ⊕ ⊕(1)

(
2 1
1 2

)

Ã2 =




0 0 0 0
0 1 0 0
0 0 2 1
0 0 1 2




Figure 2. Example of the matrix ÃN for N = 2. The numbers next to the branches represent

their resistance. The matrix ÃN is the direct sum of the resistance matrices of the subtrees
built up by branches with non zero resistance.

Proof. From its definition, ÃN corresponds to the resistance matrix of a tree with N + 1 generations where
the resistances of the branches on the path from root to outlet (N, 1) are all 0 and the resistance of the other
branches are all 1. �

Now, system (44) is equivalent to

M̃N (ε)qε = b̃N (ε) (45)

where

M̃N (ε) :=




(ÃN (ε)v1)⊤

...

(ÃN (ε)v2N
−1)⊤

uN
⊤


 and b̃N (ε) :=




−ε〈p,v1〉
...

−ε〈p,v2N
−1〉

Φ


 (46)

(47)

One has
lim
ε→0

M̃N(ε) = M̃N and lim
ε→0

b̃N (ε) = b̃N (48)

where

M̃N :=




r0(ÃNv1)⊤

...

r0(ÃNv2N −1)⊤

uN
⊤


 and b̃N :=




0
...
0
Φ


 (49)

Proposition 1.20. The matrix M̃N is invertible.

Proof. We will show that the family
(
(ÃNvi)i=1...2N−1,uN

)
is independant. Let (λi)i=1...2N−1 and µ be real

numbers such that

µuN +

2N−1∑

i=1

λiÃNvi = 0 (50)
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Let us recall from lemma 1.19 that ÃN = (0)⊕
N−2⊕

p=0

Bp with Bp’s resistance matrix and thus invertible.

Consequently, Rg(ÃN ) = Span (e2, . . . , e2N ). This implies that, in equation (50) the composant along e1 is
reduced to µ = 0.

Now, the restriction of ÃN on its image is a bijection, therefore as soon as the projection of the family

(vi)i=1...2N−1 on Rg(ÃN ) = Span (e2, . . . , e2N ) is a base of Rg(ÃN ), which is true in our case, then the family

(ÃNvi)i=1...2N−1 is independant and all λi’s are 0. �

Using the continuity of the map A 7−→ A−1 where A is an invertible matrix, the unique solution of M̃N(ε)qε =

b̃N converges to the unique solution of the system M̃N

(
lim
ε→0

qε
)

= b̃N . Moreover, we know that M̃Ne1 =

(r0v1
⊤Ã⊤

Ne1, . . . , r0v2N
−1

⊤Ã⊤
Ne1,uN

⊤e1) = e2N because Ã⊤
N = ÃN and Ker(ÃN ) = Span (e1). Finally,

lim
ε→0

qε = M̃−1
N b̃N = ΦM̃−1

N e2N = Φe1. (51)

Remark 1.21. One should notice that all the elements of the sequence (qε, ξε)ε>0 are in UΛ but not its limit.

Then, since we have b̃N = εγ + Φe2N , with γ ∈ Span (e1, . . . , e2N−1), we have qε = M̃N(ε)−1b̃N =

εM̃N(ε)−1γ + Φe1 and

E(qε, ξε) := (qε)⊤AN (ξε)qε

=

(
εγ⊤

(
M̃N (ε)−1

)⊤
+ Φe1

⊤

)
AN (ε)

(
εM̃N(ε)−1γ + Φe1

)

= ε2γ⊤
(
M̃N (ε)−1

)⊤
AN (ε)M̃N (ε)−1γ

+ εΦγ⊤
(
M̃N (ε)−1

)⊤
AN (ε)e1

+ εΦe1
⊤AN (ε)M̃N (ε)−1γ

+ Φ2e1
⊤AN (ε)e1

Since lim
ε→0

(εAN (ε)) = ÃN and lim
ε→0

M̃N(ε) = M̃N , then one successively has

ε2γ⊤
(
M̃N (ε)−1

)⊤
AN (ε)M̃N (ε)−1γ −−−→

ε→0
0

εΦγ⊤
(
M̃N(ε)−1

)⊤
AN (ε)e1 −−−→

ε→0
0

εΦe1
⊤AN (ε)M̃N (ε)−1γ −−−→

ε→0
0

Φ2e1
⊤AN (ε)e1 −−−→

ε→0

(
1 + N2

Λ−1

)
r0Φ

2,

(52)

because ÃNe1 = 0, e1
⊤Ã⊤

N = 0 and e1
⊤AN (ε)e1 = r0 + Nr0

Λ−1
N

−
“

2N+1−2
N

−1
”

ε
. Hence,

lim
ε→0
E(qε, ξε) = r0Φ

2

(
N2

Λ − 1
+ 1

)
= m,

where m is the minimum of E over CΛ (see Problem (Q)). Since (Q) is less constrained than (P), the sequence
(qε, ξε)ε>0 is a minimizing sequence of E over UΛ and m is the lower bound of E over UΛ.
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1.2.5. Case where the flow rates at the outlets are known

This case is much simpler than the one presented in section 1.2.1. Using the same notations as in this section,
we introduce a new optimization problem

(P ′)

{
min E(q, ξ)
ξ ∈ AΛ,

(53)

where the vector of the flow rates at the outlets of the tree, q ∈ R
2N×1
+ , is assumed to be fixed, and AΛ is the

set defined in the formula (21). It can be noticed that, under these assumptions, and since the volumetric flow
rate is conserved along the tree, every value of the intermediate flow rate qi,j is known, from the values of qN,j,
j ∈

[[
1, 2N

]]
.

In this case, the existence of a solution for this problem is obvious. Indeed, letting one of the optimization
variables go to zero implies that the energy tends to a positive infinite value. It is thus possible to come down
to minimize E(q, ·) on a compact set, which gives the existence. Moreover, since AΛ is a convex set and E(q, ·)
is obviously strictly convex, the minimizer is unique for that problem.

Let us now write the first order optimality conditions: we denote by ξ∗ the minimizer of the problem (P ′).
There exists a Lagrange multiplier λ ∈ R such that

∀(i, j) ∈ BN ,
qi,j
ξi,j

= −λ.

Using the volume contraint, we immediately obtain the following expression for the minimizer ξ∗:

∀(i, j) ∈ BN , ξ
∗
i,j = (Λ− 1)

q2i,j∑
(i,j)∈BN

q2i,j
.

Unlike the case where the flow rate at the inlet and the pressures at the outlets are known, every branch of the
tree remains open in this case.

2. Case of a fluid driven by Navier-Stokes equations: some numerical results

As announced in the title and the introduction of this paper, we are interested in this section in an infinite
dimensional optimization problem. Indeed, we present an augmented-Lagrangian like algorithm and implement
it to optimize the shape of dyadic trees crossed by a fluid driven by a Stokes or Navier-Stokes system. We focus
here on the 3D case but the 2D case can be easily adapted from this 3D study.

The partial differential equation describing the behaviour of the fluid and the boundary conditions have
been chosen for a sake of generality. In particular, this model is convenient to be used in the modelling of the
bronchial tree. (see for instance [12, 17–20])

This section is organized as follows: in 2.1, we introduce the Navier-Stokes like fluid model, the notations,
and recall some general results of Fluid Mechanics on the existence, uniqueness and smoothness of the velocity
and pressure. In 2.2, we roughly present the shape optimization problem, give the expression of the derivative
with respect to the domain thanks to the so called Hadamard’s method (see [1, 13, 23, 25]). We also give a
precise description of the augmented-Lagrangian method in shape optimization, present our algorithm and its
implementation. In 2.3 are presented the numerical results obtained thanks to this method with the software
Comsol.

2.1. Optimization of a bifurcation

Let us now precise the frame of our study. We begin by defining a notion of bifurcation for a domain Ω.

Definition 2.1. A domain Ω of R
3 defines a bifurcation if
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(1) Ω is simply connected.
(2) its boundary ∂Ω has a Lipschitz regularity ;
(3) ∂Ω contains three disks: an inlet E and two outlets whose union is denoted by S ;

For a given bifurcation Ω we define the lateral boundary Γ := ∂Ω\(E ∪ S).

In what follows, we assume that E is contained in the hyperplane {x3 = 0}. Let us now precise the law
driving the behaviour of the fluid we will impose.

Definition 2.2. Let u be a smooth vector field of R
3 (for instance C1). As usually in Fluid Mechanics, we

define

(1) the stretching tensor of u (symmetric part of the gradient tensor):

ε(u) :=

(
1

2

(
∂ui

∂xj
+
∂uj

∂xi

))

1≤i,j≤3

.

(2) the doubly contracted product of two stretching tensors ε(u) and ε(v):

ε(u) : ε(v) :=
1

4

3∑

i=1

3∑

j=1

(
∂ui

∂xj
+
∂uj

∂xi

)(
∂vi

∂xj
+
∂vj

∂xi

)
.

(3) the strain tensor of (u, p), where u is a smooth vector field of R
3 representing the velocity of a fluid

whose viscosity is µ > 0 and p a function representing the pressure defined on R
3:

σ(u, p) := −pI3 + 2µε(u),

where I3 is the identity tensor of R
3.

Let Ω be a bifurcation. We assume that Ω is crossed by a fluid driven by the Navier-Stokes laws. In particular,
this model is convenient to represent to upper part of the bronchial tree since the velocity of the air at the
beginning of the trachea is important enough to consider that the flow is turbulent. In this case, the regime of
the fluid is turbulent.
Let us assume that Ω is crossed by a viscous incompressible newtonian fluid. A plausible model is given by a
choice of the velocity u : Ω→ R

3 and the pressure p : Ω→ R as solutions of the Navier-Stokes system





−µ∆u +∇p+∇u · u = 0 x ∈ Ω
∇ · u = 0 x ∈ Ω
u = u0 x ∈ E
u = 0 x ∈ Γ
−pn + 2µε(u) · n = h x ∈ S,

(54)

where

• n denotes the outward-pointing unit normal vector at a given point of the boundary ∂Ω,
• u0 is a parabolic velocity profile (i.e. a Poiseuille’s flow is imposed at the inlet E), that is

u0 = (0, 0, c(r2 −R2))⊤,

where c is a negative constant so that the flow is ingoing, and R the radius of the inlet.

Remark 2.3. Let us focus on the choice of the boundary conditions for this model.
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• The condition u = 0 on Γ is the so-called no-slip boundary condition and consists in assuming that the
fluid does not slip on a solid surface.
• Practically speaking, we will impose h = −p0n at the outlet S. This condition comes down more or less

in assuming that the pressure is known on S and equal to p0. Drawing a comparison with the modelling
of the bronchial tree, these conditions mimick muscles using the same energy to pump the air into the
lung (see [12]). Similar boundary conditions are much studied in [5, chapter 5] and in [6, 7].

Notice that classical theory on Navier-Stokes equations (see [11, 26]) gives an existence and uniqueness result
for system (54):

Theorem 2.4. Let Ω be a bounded Lipschitz domain of R
3. Let us assume that u0 belongs to the Sobolev space

(H3/2(E))3 and h belongs to (H1/2(S))3. If the viscosity µ is large enough, then the problem (54) has a unique
solution (u, p) ∈ (H1(Ω))3 × L2(Ω).

Remark 2.5. Let us introduce the functional spaces

W0(Ω) :=
{
(v, q) ∈ (H1(Ω))3 × L2(Ω) : v = 0 on E ∪ Γ

}
.

Zu0
(Ω) :=

{
(v, q) ∈ (H1(Ω))3 × L2(Ω) : v = u0 on E and v = 0 on Γ

}
.

The variational formulation of the Navier-Stokes system (54) writes





Find (u, p) ∈ Zu0
(Ω) s.t. ∀(w, ψ) ∈W0(Ω),∫

Ω

(2µε(u) : ε(w) +∇u · u ·w − p∇ ·w) dx =

∫

S

h ·wds
∫

Ω

ψ∇ · udx = 0.

(55)

Let us now introduce the shape optimization problem we want to solve numerically. The objective functional
J(Ω) is the energy dissipated by the fluid, i.e.

J(Ω) := 2µ

∫

Ω

|ε(u)|2dx (56)

To make the statement of the optimization problem precise, we need to define the class of admissible shapes.
As classically in shape optimization, we fix the measure V0 > 0 of Ω:

OV0
:=
{
Ω bounded and simply connected domain in R

3 | meas(Ω) = V0, ΠE ∩Ω = E, (Π1
S ∪Π2

S) ∩ Ω = S
}
,

(57)
where ΠE is the affine hyperplane spanned by E, Π1

S and Π2
S the two affine hyperplanes spanned by S. Thus

the shape optimization problem writes {
min J(Ω)
Ω ∈ OV0 ,

(58)

where V0 is a positve given real number.
The question of knowing if the problem (58) has or not a solution is still an open problem. Nevertheless, it

is possible to show that a problem, very close to the problem (58) but a little bit constrained, has a solution.
Restricting the set of admissible shapes is a very common approach in shape optimization, since these

problems are often ill-posed (see for instance [1,13]). We present now an existence result by considering instead
of the set OV0 , a set of domains verifying an ε-cone property, which yields some kind of uniform regularity.
(see [8,9,13] for some reminders on the ε-cone property and its consequences on the existence of optimal shapes)
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In that purpose, let us define for ε > 0 the class

Oε
V0

:= {Ω ∈ OV0 | Ω has the ε-cone property} . (59)

Thus, the following existence result holds:

Theorem 2.6. Let ε > 0 fixed. The problem

{
min J(Ω)
Ω ∈ Oε

V0

(60)

where Oε
V0

is defined in (59), has a solution.

A very close existence theorem is proved in [15] but is stated in an other frame, since is investigated the
optimal shape of a pipe. We refer to this paper for a proof of Theorem 2.6. An essential ingredient of this proof
is the fact that Oε

V0
is closed for the Hausdorff topology (see [15, Lemma 2.2]).

2.2. An augmented Lagrangian algorithm

2.2.1. Mathematical tools

We present in this section an augmented Lagrangian algorithm to optimize the energy dissiptated by a fluid
in a dyadic tree with respect to the shape. The descent direction in the main step of this algorithm will
be computed thanks to a gradient method, which implies to calculate at each iteration the derivative of our
criterion with respect to the domain. We will firstly recall the expression of such a derivative. The details of
its calculation are given in [15].

It is possible to define an adjoint state for the system (54), usefull to write the shape derivative in a very
usual form (see [13, Theorem 5.9.2]). Let (v, q) be solution (provided always that it exists) of the linearized
Navier-Stokes system





−µ∆v +⊤(∇u) · v −∇v · u +∇q = −2µ∆u x ∈ Ω
∇ · v = 0 x ∈ Ω
v = 0 x ∈ E ∪ Γ
−qn + 2µε(v) · n + (u · n)v − 4µε(u) · n = 0 x ∈ S.

(61)

The following existence and uniqueness result is established in [15, Proposition 3.1]:

Proposition 2.7. Let Ω be a bounded Lipschitz domain of R
3. If the viscosity µ is large enough, then the

problem (61) has a unique solution (v, q). Moreover, this solution belongs to (H1(Ω))3 × L2(Ω).

Remark 2.8. The variational formulation of problem (61) writes





Find (v, q) ∈W0(Ω) s.t. ∀(w, ψ) ∈W0(Ω),∫

Ω

(2µε(v) : ε(w) +∇w · u · v +∇u ·w · v − q∇ ·w) dx = 4µ

∫

Ω

ε(u) : ε(w)dx
∫

Ω

ψ∇ · vdx = 0.

(62)

We are now in position to define the derivative of J with respect to the domain. Let us consider a regular
vector field V : R

3 → R
3 with compact support which does not meet neither E nor S. For small t, we define

Ωt = (I + tV )Ω, the image of Ω by a perturbation of identity and f(t) := J(Ωt). We recall that the shape
derivative of J at Ω with respect to V is f ′(0). We will denote it by dJ(Ω; V ). To compute it, we first
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need to compute the derivative of the state equation. We use here the classical results of shape derivatives as
in [13], [23], [25]. The derivative of (u, p) is the solution of the linear system





−µ∆u′ +∇u · u′ +∇u′ · u +∇p′ = 0 x ∈ Ω
∇ · u′ = 0 x ∈ Ω
u′ = 0 x ∈ E

u′ = −
∂u

∂n
(V · n) x ∈ Γ

−p′n + 2µε(u′) · n = 0 x ∈ S,

(63)

where u is, under assumptation that µ is large enough, the unique solution of (54).
Now, we have (see [13], [25])

dJ(Ω; V ) = 4µ

∫

Ω

ε(u) : ε(u′)dx+ 2µ

∫

Γ

|ε(u)|2(V · n)ds. (64)

Using the adjoint state (61), it is possible to rewrite dJ(Ω,V ) in a more workable form (see [15, Proposition
3.2]),

dJ(Ω; V ) = 2µ

∫

Γ

(
ε(u) : ε(v)− |ε(u)|2

)
(V · n)ds. (65)

Let us now introduce the shape gradient of the criterion J as a functional defined on the boundary and such
that dJ(Ω; V ) =

∫
Γ
∇J(Ω) · V ds, in other words

∇J(Ω) := 2µ
(
ε(u) : ε(v)− |ε(u)|2

)
n. (66)

2.2.2. Some basic principles on the augmented Lagrangian methods in shape optimization

We firstly recall the general definition of the augmented Lagrangian and its expected properties in an op-
timization process. Then, we will give its expression in the case of the problem (58). For a more complete
description of such a method in optimal design, one can refer to [2].

Let D be a subdomain of R
3 and E be a set of subdomains contained in D. Let J : E → R a functional to

be optimized under constraints. We write the shape optimization problem under the form

{
min J(Ω)
Ω ∈ Ead := {Ω ∈ E | G(Ω) ∈ −K},

(67)

where G : E → Y is a functional, Y a Banach space and K a closed convex cone of Y . Y ′ denotes as usually
the topological dual of Y and 〈., .〉Y ′,Y the duality pairing in Y ′. We denote by K+ the positive dual cone of
K, i.e.

K+ := {µ ∈ Y ′ | 〈µ, y〉Y ′,Y ≥ 0, ∀y ∈ K} .

Let us assume from now that Y is a Hilbert space, which allows to identify Y and Y ′ on the one hand, and the
duality pairing with the inner product 〈., .〉 on Y on the other side. Let b > 0 be a parameter. The augmented
Lagrangian of the problem (67) associated to parameter b is the functional Lb defined by

Lb : E × Y ′ −→ R

(Ω, µ) 7−→ Lb(Ω, µ) = J(Ω) + ζb(G(Ω), µ),
(68)

where ζb is the so-called Moreau-Yosida regularization of 〈., y〉, defined for all y ∈ Y and µ ∈ Y ′ by

ζb(y, µ) = sup
µ′∈K+

(
〈µ′, y〉Y ′,Y −

1

2b

wwµ− µ′
ww2

Y ′

)
. (69)
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One of the main interest of the augmented Lagrangian in comparison with the classical Lagrangian, comes from
the fact that the regularization operation improves in general the condition number of the dual function. A
faster convergence of the Lagrange multipliers maximizing sequence is then expected. One of the numerical
problems arising with the augmented Lagrangian methods is the choice of a correct parameter b, which appears
sometimes very difficult to find. We will say a word on this difficulty in 2.2.3.

2.2.3. The algorithm

Let us denote by ̟K+ the projection operator on the convex cone K+, then the augmented Lagrangian
algorithm writes

The augmented Lagrangian algorithm

(1) Initialization. Choose Ω0 ∈ E and µ0 ∈ K+.
Let us also fix τ > 0 and εstop.

(2) Iteration k. We look for a domain Ωk+1 such that

{
Lb(Ωk+1, µk) < Lb(Ωk, µk)
Ωk+1 ∈ E.

Let µk+1 = µk + τ
b [̟K+(µk + bG(Ωk+1))− µk].

(3) Stopping criterion. If
wwµk+1 − µk

ww ≤ εstop, the algorithm stops. Else, we come back to the previous
step.

Furthermore, in the special case of the problem (58), one has K = {0}, Y = K+ = R, ̟K+ = I, G(Ω) =
meas(Ω)− V0 and the expression of the augmented Lagrangian is

Lb(Ω, µ) = J(Ω) + µG(Ω) +
b

2
(G(Ω))

2
. (70)

It is then easy to determine the shape derivative of Lb. One has

dLb(Ω; V ) =

∫

Γ

[
2µ
(
ε(u) : ε(v)− |ε(u)|2

)
+ µ+ b(meas(Ω)− V0)

]
(V .n)ds. (71)

We give now some precisions on the second step of the augmented Lagrangian algorithm, in particular on the
choice of the descent method. Let Ωk be the domain obtained at iteration k− 1, Γk its lateral boundary and µk

the associated Lagrange multiplier. Ωk+1 is searched as a perturbation of the identity. That is why we write
Ωk+1 = (I + εkdk)(Ωk), where dk is a vector field representing the perturbation of the mesh and εk a variable
step.

Since we want to implement a gradient method, a first idea would consist in finding dk verifying

dk|Γk
= −∇Lb(Ωk, µk), ∀k ∈ N. (72)

This question has been much studied (see foor instance [1,22]). In particular, in [10], the authors study similar
methods applied to image segmentation, and exhibit some situations in which the choice of dk as in (72) is
numerically the worst solution.

To be more precise, we would like to choose dk as the solution (if it exists) of the following equation, written
under variational form

bk(dk,w) = −

∫

Γk

∇Lb(Ωk, µk) ·wds, ∀w ∈ B(Ωk), (73)
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where bk(·, ·) is a inner product and B(Ωk) the Hilbert space induced by bk(·, ·). Then we would obviously have

0 ≤ bk(dk,dk) = −

∫

Γk

∇Lb(Ωk, µk) · dkds = −〈dLb(Ωk, µk),dk).

That is easy to see that choosing dk as in (72) is the case where bk(·, ·) coincides with the inner product of
L2(Ωk). In this paper, we make the choice of considering bk(·, ·) coinciding with the H1(Ωk) inner product (see
for instance [10] for a mathematical justification). Then, dk is the solution of the equation

〈dk,w〉H1(Ωk) = −

∫

Γk

∇Lb(Ωk, µk) ·wds, ∀w ∈ B(Ωk), (74)

where B(Ωk) := {w ∈ H1(Ωk) | w|E∪S=0}. Indeed, since E and S are the fixed parts of the geometry, the
displacement on them has to be null. It is then very classical, using Lax-Milgram’s lemma, to see that the
problem (74) has a unique solution, which is in (H2(Ωk))3.

Let us now find the explicit partial differential equation governing dk. Using the Green’s formulae, one has
for (w,y) ∈ [(H1(Ωk))3]2,

〈y,w〉(H1(Ωk))3 =

∫

Ωk

∇y : ∇wdx+

∫

Ωk

y ·wdx

=

∫

Ωk

(−∆y + y) ·wdx+

∫

Γk

∂y

∂n
·wds.

As a consequence, dk is solution of the equation





−∆dk + dk = 0 x ∈ Ωk

dk = 0 x ∈ E ∪ S
∂dk

∂n
= −∇Lb(Ωk, µk) x ∈ Γk.

(75)

We are now in position to give the complete resolution algorithm of the problem (58).

Resolution algorithm of the problem (58)

(1) Initialization. Choose Ω0 ∈ E and µ0 ∈ R.
Let also fix τ > 0 and εstop.

(2) Iteration k. µk is known.
(a) Resolution of the Navier-Stokes problem (and storage of its solution uk)





−µ∆uk +∇pk +∇uk · uk = 0 x ∈ Ωk

∇ · uk = 0 x ∈ Ωk

uk = u0 x ∈ E
uk = 0 x ∈ Γk

−pkn + µε(uk) · n = −p0.n x ∈ S.

(b) Resolution of the adjoint state (and storage of its solution vk)





−µ∆vk +⊤(∇uk) · vk −∇vk · uk +∇qk = −2µ∆uk x ∈ Ωk

∇ · vk = 0 x ∈ Ωk

vk = 0 x ∈ E ∪ Γk

−qkn + µε(vk) · n + (uk · n)vk − 4µε(uk) · n = 0 x ∈ S.
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(c) Calculation of the scalar

βk := ∇Lb(Ωk, µk) · n

= 2µ
(
ε(uk) : ε(vk)− |ε(uk)|2

)
+ µk + b (meas (Ωk)− V0) .

(d) Determination of the displacement direction of the mesh dk, as the solution of the elliptic equation





−∆dk + dk = 0 x ∈ Ωk

dk = 0 x ∈ E ∪ S
∂dk

∂n
= −βkn x ∈ Γk.

(e) Determination of εk, a step making the augmented Lagrangian decreasing (see Remark 2.9).
(f) Determination of the domain Ωk+1: Ωk+1 = (I + εkdk)(Ωk).
(g) Reinitializing of the Lagrange multiplier: µk+1 = µk + τ (meas (Ωk+1)− V0).

(3) Stopping criterion. If |µk+1 − µk| ≤ εstop, the algorithm stops. Else, we come back to step (2).

Remark 2.9. Let us say one word on the determination of the variable step εk. We use a basic rule in order
to avoid too many solving of Navier-Stokes problems at each step.

We start by chosing εk = εk−1, then

(1) while Lb((I + ǫkdk)(Ωk), µk) ≥ Lb(Ωk, µk) we diminish the step by the operation εk ← εk/2.
(2) when a satisfying value for εk is found, we go on to the next iteration k + 1.

Of course, the cost of such a method is quite high since a Navier-Stokes like problem can be solved many times
at each iteration. Nevertheless, it is necessary to use such a method in order to be sure that the Largangian
function is decreasing. Practically, a good choice of the initial step ǫ0 permits to avoid too much steps for the
choice of ǫk. Note that if ǫk becomes too small, the algorithm stops.

Let us also say a word on the choice of the parameter b for the augmented Lagrangian algorithm. Practically
speaking, b has to be chosen neither too big nor too small. Indeed, the biggest is the parameter b, the best is the
conditioning of the dual functional giving the constraints and then the convergence of the sequence of Lagrange
multipliers. Nevertheless, if b is chosen too big, the conditioning of the primal problem min{Lb(Ω, µk),Ω ∈ E}
deteriorates and its resolution difficulty increases. That is why before running the algorithm, a compromise has
to be done and a lot of preliminary tests are needed to find b.

2.3. Some numerical results

In this section, we present 2D and 3D numerical implementations of the algorithm presented upwards. The
simulations have been obtained thanks to the augmented Lagrangian method described in 2.2.3 and implemented
in the software Comsol Multiphysics. The 2D algorithm is an easy adaptation of the 3D algorithm presented
upwards.

The Navier-Stokes systems and the adjoint state are solved with a direct finite elements method using
Lagrange elements which are P1 for pressures and P2 for velocities. The displacements of the mesh are P1.
The multifrontal package (UMFPACK) is used to solve the resultant linear system and a modified Newton like
method is used to treat the non linear term. At each iteration k, each node of the geometry is perturbated by
the discretized operator (I + εkdk)(Ωk) (ALE) and it is sometimes necessary to remesh the geometry when the
displacement becomes important.

The Reynolds number in the following computations is around 100 and inertial effects are present. We
normalize the applications J(·) and V (·) in such a way that J(Ω0) = 1 and V (Ω0) = 1. The value of τ was
fixed to 0.5 in all the computations.
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2.4. Case where Neumann conditions are imposed at the inlet and Dirichlet conditions

are imposed at the outlets

In this section, the initial geometry Ω0 is a bifurcation whose branches are all identical except for the length
of the mother branch which is 1.5 the length of the daughter branches, see figure 3 (2D, left image) and figure 5
(3D, left image). The length of the mother branch has been chosen longer to avoid that the flow at bifurcation
level interacts too much with the inlet flow. Indeed the algorithm tends to shorten the mother branch and this
phenomenon along with inertial effects in the fluid makes the convergence more difficult to reach if the mother
branch is too short initially. The angle between two nearby branches is π/3.

The boundary conditions correspond to that of the case 1.2.5 adapted to the non-linear regime. Thus a
parabolic velocity profile is imposed at each outlets (Dirichlet condition) and pressure constraints are imposed
at the inlet (Neumann conditions). The pressure imposed at the inlet is 0.

2.4.1. 2D case

The Lagrange multiplier has been initialized to µ0 = 0.1 and the step ε0 to 10−5.

Figure 3. 2D Case. Left: initial geometry Ω0, the inlet is the blue branch while the outlets
are the red branches. Right: final shape reached by the algorithm, the colors represent the
norm of the velocity u (increasing with the warmth of colors).

The algorithm converges in about 1000 iterations. The final shape of the bifurcation is shown on the right
part of the figure 3. The length of the mother branch has shorten and the angle of the bifurcation has become
more accute. The diameter of the mother branch has increased while those of the daughter branches have
decreased. The convergence of the Lagrange multiplier, of the Lagrangian, of the viscous energy dissipated by
the fluid and of the volume of the bifurcation are shown on the figure 4. The viscous energy that the fluid
dissipates in the final geometry represents about 80 % of the viscous energy that the fluid dissipates in the
initial geometry.

2.4.2. 3D case

The Lagrange multiplier has been initialized to µ0 = 1 and the step ε0 to 10−7.
The algorithm converged in about 1700 iterations. The final shape of the bifurcation is shown on the right

part of the figure 5. The results are similar to those in 2D, however the bifurcation in the final shape is closer to
the inlet: the length of the mother branch has much more shorten than in 2D and the angle of the bifurcation
has thus become more accute than in 2D. The diameter of the mother branch has increased while those of
the daughter branches have decreased. The convergence of the Lagrange multiplier, of the Lagrangian, of the
viscous energy dissipated by the fluid and of the volume of the bifurcation are shown on the figure 6. The
viscous energy that the fluid dissipates in the final geometry represents about 77 % of the viscous energy that
the fluid dissipates in the initial geometry.
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Figure 4. 2D case. Convergence curves of the Lagrange multiplier µk, the Lagrangian
Lb(Ωk, µk), the viscous energy J(Ωk) and the volume V (Ωk).

Figure 5. 3D case. Left: initial geometry Ω0, the inlet is the blue branch while the outlets
are the red branches. Right: final shape reached by the algorithm.

2.5. Case where Dirichlet conditions are imposed at the inlet and Neumann conditions

are imposed at the outlets

In this section, the initial geometry Ω0 is a bifurcation whose branches are all identical, see figure 7 (2D, left
image) and 9 (3D, left image). The angle between two nearby branches is π/3.

The boundary conditions correspond to that of the case 1.2.1 adapted to the non-linear regime. Thus a
parabolic velocity profile is imposed at the inlet (Dirichlet condition) and pressure constraints are imposed at
the outlets (Neumann conditions). The pressures imposed at the two outlets are slightly different.

These simulations tend to show that the result found theoretically at low regime in section 1.2.1 should also
be true for non linear regime.
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Figure 6. 3D case. Convergence curves of the Lagrange multiplier µk, the Lagrangian
Lb(Ωk, µk), the viscous energy J(Ωk) and the volume V (Ωk).

2.5.1. 2D case

The Lagrange multiplier is initialized to µ0 = 0.1 and the step ε0 to 10−5.

Figure 7. 2D case. Left: initial geometry Ω0, the inlet is the blue branch while the outlets are
the red branches. Right: final shape reached by the algorithm, the color represents the norm
of the velocity u (increasing with the warmth of colors).

The shape of the bifurcation given by our algorithm is drawn on the right part of figure 7. The final shape
is reduced to a simple tube with constant radius. Note that it is slightly rounded because of the different
orientations of the inlet and of the outlet that remains open. The algorithm converged in about 2800 iterations.
The convergence of the Lagrange multiplier, of the Lagrangian, of the viscous energy dissipated by the fluid
and of the volume of the bifurcation are shown on the figure 8. The viscous energy that the fluid dissipates in
the final geometry represents about 45 % of the viscous energy that the fluid dissipates in the initial geometry.
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Figure 8. 2D case. Convergence curves of the Lagrange multiplier µk, the Lagrangian
Lb(Ωk, µk), the viscous energy J(Ωk) and the volume V (Ωk).

2.5.2. 3D case

The Lagrange multiplier is initialized to µ0 = 0.1 and the step ε0 to 5.10−8.

Figure 9. Left: initial geometry Ω0, the inlet is the blue branch while the outlets are the red
branches. Right: final shape reached by the algorithm.

The shape of the bifurcation given by our algorithm is drawn on the right part of figure 9. As in 2D, the
final shape is also reduced to a simple tube with constant radius. Similarly, it is slightly rounded because of the
different orientations of the inlet and of the outlet that remains open. The algorithm converged in about 7000
iterations. The convergence of the Lagrange multiplier, of the Lagrangian, of the viscous energy dissipated by
the fluid and of the volume of the bifurcation are shown on the figure 10. One remeshing was needed at the
4500-th iteration to avoid highly deformed elements. This remeshing has induced a slight perturbation in the
convergence, see figure 10 where the dashed line marks the step 4500 at which the remeshing was done. The
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Figure 10. Convergence curves of the Lagrange multiplier µk, the Lagrangian Lb(Ωk, µk), the
viscous energy J(Ωk) and the volume V (Ωk). The dashed line represents the step 4500 at which
a remeshing was done.

viscous energy that the fluid dissipates in the final geometry represents about 46 % of the viscous energy that
the fluid dissipates in the initial geometry.
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Nancy, 2008.
[25] J. Sokolowski et J. P. Zolesio, Introduction to Shape Optimization Shape Sensitivity Analysis, Springer Series in Compu-

tational Mathematics, Vol. 16, Springer, Berlin 1992.
[26] R. Temam Navier-Stokes Equations, North-Holland Pub. Company (1979), 500 pages.
[27] D. Tondeur, L. Luo, Design and scaling laws of ramified fluid distributors by the constructal approach, Chem.Eng.Sci. , 59,

1799-1813 (2004).
[28] E.R. Weibel, The Pathway for Oxygen, Harvard University Press, Cambridge M A, 1984.


