Alain Simac-Lejeune 
  
Sophie Marat 
  
Denis Pellerin 
  
Patrick Lambert 
  
Michèle Rombaut 
  
Nathalie Guyader 
  
Relevance of interest points for eye position prediction on videos

Keywords: 

This papers tests the relevance of interest points to predict eye movements of subjects when viewing video sequences freely. Moreover the papers compares the eye positions of subjects with interest maps obtained using two classical interest point detectors: one spatial and one space-time. We fund that in function of the video sequence, and more especially in function of the motion inside the sequence, the spatial or the space-time interest point detector is more or less relevant to predict eye movements.

Introduction

Images contain a very large amount of data, and image analysis often begins by the selection of some "interest points" which are supposed to carry more information than the rest of the pixels. The denition of these interest points is quite subjective, and generally depends on the aim of the analysis.

In the case of still images, many interest point detectors had been proposed. They are based on the detection of points having a signicant local variation of image intensities in dierent directions (corners, line endings, isolated points of maximum -or minimum -local intensity, etc.). The most popular one is probably the Harris detector [START_REF] Harris | A combined corner and edge detector[END_REF], with scale adaptive versions ( [START_REF] Lindeberg | Feature detection with automatic scale selection[END_REF], [START_REF] Mikolajczyk | Scale and ane invariant interest point detectors[END_REF]). Dierent Gaussian based detectors have also been proposed -LoG (Laplacian of Gaussian), DoG (Dierence of Gaussians), DoH (Determinant of the Hessian). It can be noted that DoG are used in the denition of the well known SIFT (Scale Invariant Feature Transform) approach [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF] [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. Successful applications of interest points have been proposed in image indexing [START_REF] Mikolajczyk | Indexing based on scale invariant interest points[END_REF], stereo matching [START_REF] Tuytelaars | Wide baseline stereo matching based on local, anely invariant regions[END_REF], object recognition [START_REF] Lowe | Object recognition from local scale-invariant features[END_REF], etc.

Only a few interest point detectors had been dened in the case of moving images. Laptev [START_REF] Laptev | On space-time interest points[END_REF] proposed a space-time interest point detector which is a temporal extension of the Harris detector. He used this detector for the recognition of human actions (walking, running, drinking, etc.) in movies. In [START_REF] Dollar | Behavior recognition via sparse spatio-temporal features[END_REF], Dollar proposed a space-time detector based on a 2D spatial gaussian lter jointly used with a quadrature pair of 1D temporal Gabor lters. However, this approach is limited to the detection of periodic motions, such as a bird apping its wings. In [START_REF] Scovanner | A 3-dimensional sift descriptor and its application to action recognition[END_REF], Scovanner et al. proposed a temporal extension of SIFT descriptor.

Parallel to the research about interest points, other researches have proposed models to predict where people look at when freely viewing static or dynamic images. Given an image or video sequence, these bottom-up saliency models compute saliency maps, which topographically encodes for conspicuity (or "saliency") at every location in the visual input [START_REF] Itti | A model of salincy-based visual attention for rapid scene analysis[END_REF]. The saliency is computed in two steps: rst, the visual signal is split into dierent basic saliency maps that emphasize basic visual features as intensity, color, orientation, and second, the basic saliency maps are fuzzed together to create the master saliency map. This map emphasizes which elements of a visual scene are likely to attract the attention of human observers, and by consequence their gaze. The model saliency map is then evaluated using dierent metrics. These metrics are used to compare the model saliency maps with human eye movements when looking at the corresponding scenes ( [START_REF] Tatler | Visual correlates of xation selection : eects of scale and time[END_REF], [START_REF] Torralba | Contextual guidance of eye movements and attention in real-world scenes : The role of global features on object search[END_REF]).

In the same way the visual saliency maps are compared with subject eye movements, in this papers, we test whether the interest points are related to human eye movements. The goal of this papers is to measure the similarity between the interest maps obtained with two successful interest point detectors, one static and one dynamic, and the human eye position density maps. More precisely, we focus on the specicity of these two detectors (spatial/space-time). The papers is organized as follows. Section 2 presents the two interest point detectors which are chosen in this work. The eye movement experiment and the evaluation method are detailed in section 3. A relevance analysis is described in section 4. Conclusions are given in section 5.

Selection and description of interest point detectors

In the case of still images, several works have compared the performances of different interest point detectors. In [START_REF] Schmid | Evaluation of interest point detectors[END_REF], Schmid et al. introduced two evaluation criteria: the repeatability rate and the information content. The repeatability rate evaluates the detector stability for a scene under dierent viewing conditions (ve dierent changes were tested: viewpoint changes, scale changes, image blur, JPEG compression and illumination changes). The information content measures the distinctiveness of features. Those two criteria directly measure the quality of the feature for tasks such as image matching, object recognition and 3D reconstruction. Using these two criteria the Harris detector appears to be the best interest point detector. For this reason, this detector will be chosen in the following, either in its spatial and space-time forms.

Spatial Interest Points: Harris detector

In an image, Spatial Interest Points (denoted SIP in the following) can be dened as points with signicant gradients in more than one direction. In [START_REF] Harris | A combined corner and edge detector[END_REF], Harris et al. proposed to nd such points using a second moment matrix H dened, for a pixel (x, y) having intensity I(x, y), by:

H(x, y) = ∂ 2 I ∂x 2 ∂ 2 I ∂x∂y ∂ 2 I ∂x∂y ∂ 2 I ∂y 2 (1)
In practice, the image I is rst smoothed using a Gaussian kernel g(x, y, σ) where σ controls the spatial scale at which corners are detected.

To obtain SIP, Harris et al. proposed to use a feature extraction function entitled "salience function", dened by:

R(x, y) = det(H(x, y)) -k × trace(H(x, y)) 2 (2)
The parameter k is empirically adjusted between 0.04 and 0.15 (0.04 is chosen in the following). SIP correspond to high values of the salience function extracted using a thresholding step (the salience function being normalized between 0 and 255, typical threshold value is 150).

Space-Time Interest Points: Laptev detector

Laptev et al. [START_REF] Laptev | Space-time interest points[END_REF] proposed a spatio-temporal extension of the Harris detector to detect what they call "Space-Time Interest Points", denoted STIP in the following. STIP are points which are both relevant in space and time. These points are specially interesting because they focus information initially contained in thousands of pixels on a few specic points which can be related to spatiotemporal events in an image. STIP detection is performed by using the Hessian-Laplace matrix H dened, for a pixel (x, y) at time t having intensity I(x, y, t), by:

H(x, y, t) =    ∂ 2 I ∂x 2 ∂ 2 I ∂x∂y ∂ 2 I ∂x∂t ∂ 2 I ∂x∂y ∂ 2 I ∂y 2 ∂ 2 I ∂y∂t ∂ 2 I ∂x∂t ∂ 2 I ∂y∂t ∂ 2 I ∂t 2    (3)
As with the Harris detector, a gaussian smoothing is applied both in spatial and temporal domain. Two parameters σ s and σ t , one for each domain, control the spatial and temporal scale at which corners are detected. Typical values of σ s and σ t are respectively 1.5 and 1.2. In order to highlight STIP, dierent criteria have been proposed. As in [START_REF] Laptev | On space-time interest points[END_REF], we have chose the spatio-temporal extension of the Harris corner function, entitled "salience function", dened by:

R(x, y, t) = det(H(x, y, t)) -k × trace(H(x, y, t)) 3 (4)
where k is a parameter empirically adjusted at 0.04 as for SIP detection. STIP also correspond to high values of the salience function R and are obtained using a thresholding step.

Eye position experiment and comparison metric

Eye positions are usually used to evaluate saliency models. Most of these models are inspired by the biology of the human visual system especially the processing of the retina and the primary visual cortex, ( [START_REF] Itti | A model of salincy-based visual attention for rapid scene analysis[END_REF], [START_REF] Le Meur | Predicting visual xations on video based on low-level visual features[END_REF], [START_REF] Marat | Modelling spatio-temporal saliency to predict gaze direction for short videos[END_REF]). As the interest point models, these saliency models are based on low level properties of the stimuli. As the aim of this papers is to test whether the interest points are related to human eye movements, an experiment had been carried out in order to get the eye positions of subjects on particular video databases.

Experiment

We the eye positions of fteen subjects when they were viewing a video freely. This experiment was inspired by an experiment of Carmi and Itti [START_REF] Carmi | Visual causes versus correlates of attentional selection in dynamic scenes[END_REF] and is explained in more detail in [START_REF] Marat | Modelling spatio-temporal saliency to predict gaze direction for short videos[END_REF]. Fifty three videos (25 fps, 720x576 pixels per frame) are selected from heterogeneous sources. The 53 videos are cut in small snippets of 1-3 seconds (1.86 ± 0.61), that are strung together to make up 20 clips of 30 seconds. Each clip contains at most one clip snippet from each continuous source. The total amount of snippets over the 20 clips is 305. The eye data are recorded using an Eyelink II eye tracker (SR Research), recording eye positions at 500Hz. As the frame rate is 25Hz, for each frame we compute the median of the 20 values related to this frame in order to get an eye position for each subject and for each frame. To relax the constraint on the exact positions, a 2-dimensional gaussian ltering is applied on each eye position point to obtain the human eye position density map M h .

Comparison metric

The human eye position density map has to be compared to the interest maps provided by the interest point detectors. By looking what is done for saliency model evaluation, we can used several metrics ( [START_REF] Tatler | Visual correlates of xation selection : eects of scale and time[END_REF], [START_REF] Torralba | Contextual guidance of eye movements and attention in real-world scenes : The role of global features on object search[END_REF]). In this papers we use the Normalized Scanpath Saliency (NSS) [START_REF] Peters | Components of bottom up gaze allocation in natural images[END_REF], [START_REF] Peters | Applying computational tools to predict gaze direction in interactive visual environments[END_REF] that was especially designed to compare eye positions and the salient locations emphasized by a saliency map M m , and so it can be easily interpreted. The NSS is dened as follows:

N SS(t) = M h (x, y, t) × M m (x, y, t) -M m (x, y, t) σ Mm(x,y,t) (5) 
where M h (x, y, t) is the human eye position density map normalized to unit mean and M m (x, y, t) a saliency map for a frame t. M m (x, y, t) and σ Mm(x,y,t) are respectively the average and the standard deviation of the model map M m (x, y, t).

In this papers the NSS is chosen to compare subjects' eye position and an interest map obtained with the interest-points detector as described below. The NSS is null if there is no link between eye positions and interest regions, negative if eye positions tend to be on non-interest regions and positive if eye positions tend to be on interest regions. To sum up, a interest point model would be a good predictor of human eye xations if the corresponding NSS value would be positive and high. For this map, we directly use a normalized version of the salience function R(x, y, t) on which a 2D Gaussian lter is applied. Figure 1 gives an example of these dierent maps. Human eye position density map ((M h ), g. 1.b) does not look like the two dierent interest maps ((M SIP ),(M ST IP ), g. 1.c/d). There are very few highlighted regions on (M h ) compared to the interest maps. The more the highlighted regions of (M h ) will be also highlighted on the dierent interest maps, the more the NSS will be high. In order to determine the relevance of M SIP and M ST IP maps according to the human eye position density map M h , the NSS is calculated for each interest map. In the following, N SS SIP (resp. N SS ST IP ), denotes the NSS values obtained with M SIP (resp. M ST IP ).

Analysis on the global database

A temporal analysis of the NSS criteria is realized. Figure 2 shows the evolution of average NSS over time (or frames) of each snippet (see section 3.1). First of all, both for SIP and STIP, we can note that the NSS values are positive which means that the interest points are relevant for eye position prediction. The second observation is related to the beginning of the evolution. The two curves present similar aspects after the rst ten frames but are quite dierent at the beginning. That can be explained by the fact that after a shot cut between two snippets, humans' gaze stay at the same position, corresponding to the previous shot, for a short period before going to an interesting region of the new shot. As SIP interest map highlights interest points in a static way, after a shot cut the interest points change immediately and consequently are dierent from the regions gazed at. Thus the NSS is low. After a small delay, the subjects gazed at regions highlighted on the SIP map, and then the NSS increases. On the contrary, as the STIP interest map is built using a sliding window considering several frames before and after the current frame, during the rst frames of a new snippet, STIP saliency map highlights interest points of the previous shot which are still gazed at by subjects.

It is particularly interesting to note that the N SS SIP values are higher than the N SS ST IP values for approximately 65% of snippets. However, the N SS ST IP average (0.54) is higher than N SS SIP average (0.50). Thus, when N SS ST IP is higher than N SS SIP , it is signicantly higher.

Analysis per semantical categories

We want to see if the interest points are more relevant for dierent semantical categories of snippets. An analysis shows that performances are dierent ac-cording to the snippet content. Among the 305 snippets, we extract a number of classes of similar content. We have chosen to present four examples of interesting behavior: Trac (18 snippets, 6% of the snippets), Team Sports (44 snippets, 14% of the snippets), Faces and/or Hands (47 snippets, 15% of the snippets) and Demonstration (30 snippets, 10% of the snippets). Figure 3 gives some images of snippets corresponding to these four classes. Table 1 summarizes the NSS values obtained for these dierent classes. This table shows the Trac and Team Sports classes have got average and maximum values of NSS greater with STIP than with SIP. Furthermore, for Trac class, the maximum value is very high. On the contrary, for the Faces/Hands class, SIP gives better average and maximum than STIP. Finally, NSS values for the demonstration class are close to 0, which means that there is a weak link between the eye positions and the interest points. To better understand these results, we give (Fig. 4) the NSS evolution for an example of snippet of each class. On this gure, the N SS ST IP evolution exhibits a local maximum (value 4) near the thirtieth image. This peak corresponds to the abrupt change in direction of one of the vehicles.

Team sport class (using a ball): The second example concerns the category of team sports (g3.b) using a ball: basketball, hand ball, rugby. These sports are characterized by rapid movements, rather erratic and with rapid changes. Furthermore, the more a player is close to the ball, or to the action, the more movements are rapid and disorderly. This context is favorable to STIP which tend to detect points with irregular motion. Figure 4.b shows the evolution of NSS over images for SIP and STIP. Clearly, link with eye positions is better for STIP than for SIP. The local maxima of N SS ST IP generally correspond to sudden changes in the action. These changes attract eyes while providing a lot of STIP. So, for this class, the contribution of the temporal component to the interest point detection seems to be relevant. However, this result is not always true for football sequences. This counterexample is probably due to the fact that football images generally gives a wide view, which induces smoother motion.

Face/hand class: The third class is composed of close-up sequences of faces and hands (for instance a music concert -g 3.c). This class represents the typical situations where the N SS SIP is higher than the N SS ST IP (65% of global database). In these sequences, the areas attracting the most attention are faces [START_REF] Cerf | Predicting gaze using low-level saliency combined with face detection[END_REF]. However, motion in these sequences is weak whereas they contain many spatial points of interest, generally located on faces or hands which are areas of visual attention. This explains the good results for SIP while adding the temporal component to interest point detection decreases the performance. Figure 4.c shows the evolution of NSS. The problem is that in these sequences all people move which induces a lot of interest points uniformly distributed within images. But in the same way, visual attention is not captured by a particular area. Thus, the correspondence between eye positions and interest points is rare.

Conclusions and perspectives

The work presented in this papers has shown that interest points provided by specic detectors are globally relevant for eye position prediction. More precisely, we have studied the dierence between spatial and space-time interest points, searching in which conditions interest points could be regarded as predictions of eye positions.

In order to analyse the relevance, the reference was built by recording eye position of subject which were compared to interest maps using the NSS metric. Experiment was run on a set of 305 snippets with various contents.

From the obtained results, we can get three main conclusions: globally, there is relevant link between eye positions and interest points (SIP and STIP). Hence interest points can be used as a prediction of gaze. The computational cost is very low regarding to other more dedicated methods. STIP provide a very good detection of eye positions when the sequence contains specials events, for examples: a car crash, somebody running and suddenly changing the direction of his run, On the contrary, when the semantic content is static (for faces and hands for example), the STIP do not work and SIP provide a very good detection of eye positions A future extension of this work could be a collaborative use of SIP and STIP according to the video content. If information about the class or type of content is a priori known, the type of detector to use (SIP or STIP) can be easily chosen.

If there is no additional information, intrinsic evaluation of STIP could help making this choice for optimum performance.
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 41 Eye position density map and interest mapsWe chose to transform the sets of points (given by the eye position experiment and the interest point detectors) into maps by applying a 2D spatial gaussian lter on each point. This ltering allows to take the imprecision and the density of measures into account. For each frame of the dierent snippets presented in the previous section, three maps are worked out :Human eye position density map (M h ): which is obtained by applying a 2D Gaussian ltering on each eye position point. In this papers, it corresponds to the reference map. SIP interest map (M SIP ): this map corresponds to the SIP detector. As for the previous map, it is obtained by applying the same 2D Gaussian ltering on the SIP points. STIP interest map (M ST IP ): this map corresponds to the STIP detector.

Fig. 1 .

 1 Fig. 1. Example of maps extracted from a snippet

Fig. 2 .

 2 Fig. 2. NSS variations averaged over the 305 snippets over time plotted for the 55 rst frames of each snippets. (NSS Average on the global database: N SSSIP 0.50 -N SSST IP 0.54)

Fig. 3 .

 3 Fig. 3. Image examples of the 4 classes

Fig. 4 .

 4 Fig. 4. NSS over time for a snippet of each class

Table 1 .

 1 Average and maximum NSS values for dierent classes

			Trac Team Sports Faces/Hands Demonstration
	N SSSIP	Average Maximum	0.86 2.10	0.17 0.72	1.85 4.78	0.19 0.78
	N SSST IP	Average Maximum	1.26 4.24	0.77 1.98	0.39 3.06	0.23 0.95
	Number of snippets 18 (6%)	44 (14%)	47 (15%)	30 (10%)
	Note that the minimum values of all the interest map is 0

  N SS SIP has a good level (average level approximately 1.5) and is almost all the time over N SS ST IP .Demonstration/crowd class: The last class contains demonstrations or crowds (g 3.d). The characteristics of this class is that movements are performed by a multitude of people covering almost all of the image. Figure4.d) shows that this class is characterized by a very low NSS relatively constant, around 0.2, as well for SIP as for STIP, even if in some cases STIP seems a little better than SIP. The result indicates that the eye position do not match with the interest point.
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