Gilles Chabert
email: gilles.chabert@emn.fr

Luc Jaulin
email: luc.jaulin@ensieta.fr

Hull Consistency Under Monotonicity

We prove that hull consistency for a system of equations or inequalities can be achieved in polynomial time providing that the underlying functions are monotone with respect to each variable. This result holds including when variables have multiple occurrences in the expressions of the functions, which is usually a pitfall for interval-based contractors. For a given constraint, an optimal contractor can thus be enforced quickly under monotonicity and the practical significance of this theoretical result is illustrated on a simple example.

Introduction

Solving constraint problems with real variables has been the subject of significant developments since the early 90's (see [START_REF] Benhamou | Continuous and interval constraints[END_REF] for a comprehensive survey). One of the key contribution is the concept of hull consistency, which is the counterpart of bound consistency in discrete constraint programming, as Definition 1 shows below. Let us briefly trace the history. The underlying concepts of interval propagation appeared first in several pioneering papers [START_REF] Cleary | Logical Arithmetic[END_REF][START_REF] Hyvönen | Constraint Reasoning Based on Interval Arithmetic[END_REF][START_REF] Older | Extending Prolog with Constraint Arithmetic on Real Intervals[END_REF][START_REF] Hyvönen | Constraint Reasoning Based on Interval Arithmetic-The Tolerance Propagation Approach[END_REF] while consistency techniques for numerical CSP were formalized a few years later in [START_REF] Lhomme | Consistency Techniques for Numeric CSPs[END_REF][START_REF] Benhamou | Applying Interval Arithmetic to Real, Integer and Boolean Constraints[END_REF]. A theoretical comparative study of consistencies was then conducted in [START_REF] Collavizza | A Note on Partial Consistencies over Continuous Domains Solving Techniques[END_REF][START_REF] Delobel | Comparing Partial Consistencies[END_REF]. Finally, hull consistency was made operational in [START_REF] Benhamou | Revising Hull and Box Consistency[END_REF][START_REF] Granvilliers | Progress in the Solving of a Circuit Design Problem[END_REF] where the famous HC4 algorithm is described. Since hull consistency is based on the bound consistency of every isolated constraint, enforcing hull consistency in the general case (i.e., for arbitrary nonlinear equations) is a NP-hard problem [START_REF] Kreinovich | Computational complexity and feasibility of data processing and interval computations[END_REF]. On the practical side, this results into the inability to give a sharp enclosure when variables occur more than once in the expression of a constraint. This happens, in particular, with HC4. We show that hull consistency can be enforced in polynomial time if the functions involved are all monotone. Monotonicity follows the very intuitive idea that a function varies either in the same direction as a variable or in the opposite one (see Definition 2). It turns out that usual functions, i.e., built with arithmetic operators (+,-,×,/) and elementary functions (sin, exp, etc.) are analytic and therefore most of the time strictly monotone. In rigorous terms, most of the time means that, unless the function is flat (or defined piecewise), the set of points that do not satisfy local strict monotonicity is of measure zero (in the sense of measure theory). As a consequence, if a better contraction (or filtering) can be achieved under monotonicity, branch & prune algorithms should take advantage of it. Monotonicity has been considered from the beginning of interval analysis [START_REF] Moore | Interval Analysis[END_REF], but with a motivation slightly different from ours. One of the most fundamental issues of interval analysis is the design of inclusion functions [START_REF] Jaulin | Applied Interval Analysis[END_REF], i.e., methods for computing an enclosure of the range of a function on any given box. Of course, the sharper the better. Now, an optimal inclusion function (i.e., a method for computing the exact range on any box) can be built straightforwardly for monotone functions (see §2). Hence, the main matter since that time has been to devise efficient way to detect monotonicity of a function f over a box [x]. One simple way to proceed is by checking that the gradient does not get null in [x] which, in turn, requires an inclusion function for the gradient. The latter can then be based either on a direct interval evaluation, Taylor forms or the monotonicity test itself in a reentrant fashion (leading to the calculation of second derivatives, and so on). Surprisingly enough, monotonicity has never been used so far in the design of contractors. Remember that, although related, computing a sharp enclosure for {f (x), x ∈ [x]} and for {x ∈ [x] | f (x) = 0} are quite different goals. As we already said, getting an optimal enclosure with a monotone function f is straightforward in the first case. But it is not so in the second case, especially when x is a vector of variables. Algorithm 1 below will provide an answer. In the following, we first define properly the different concepts. The main result, a monotonicity-based polytime optimal contractor for a constraint, is then presented. Finally, we highlight the practical benefits of this contractor with a simple example.

Notations and definitions

We consider throughout this paper a constraint satisfaction problem (CSP) with a vector of n real variables x 1 , . . . , x n . Domains of variables are represented by real intervals and a Cartesian product of intervals is called a box. Intervals and boxes will be surrounded by brackets, e.g., [x]. If [x] is a box, x -and x + will stand for the two opposite corners formed by the lower and upper bound respectively of each components (see Figure 2). Hence, x - i and x + i will stand for the lower and upper bound respectively of the interval

[x] i . The width of an interval [x] (width[x]) is x + -x -.
Furthermore, given a mapping f on R n , we shall denote by {f = 0} the constraint f (x) = 0 viewed as the set of all solution tuples, i.e.,

{f = 0} := {x ∈ R n | f (x) = 0}.
We can now give a definition of hull consistency.

Definition 1 (Hull consistency). Let P be a constraint satisfaction problem involving a vector x of n variables and let [x] be the domain of x. P is said to be hull consistent if for every constraint c and for all i (1 ≤ i ≤ n), there exists two points in [x] which satisfy c and whose i th coordinates are x - i and x + i respectively.

The key property of hull consistency lies in the combination of local reasoning and interval representation of domains. This concept brought a decisive improvement to the traditional Newton-based numerical solvers that were basically only able to contract domains globally.

Definition 2 (Monotonicity). A mapping f : R → R is increasing over an interval [x] if ∀a ∈ [x], ∀b ∈ [x] a ≤ b =⇒ f (a) ≤ f (b). A mapping f : R → R is decreasing if -f is increasing, and monotone if it is either decreasing or increasing. A mapping f : R n → R is increasing (resp. decreasing, monotone) over a box [x] if ∀x ∈ [x] and ∀i, 1 ≤ i ≤ n, x i → f (x 1 , . . . , xi-1 , x i , xi+1 , . . . , xn) is increasing (resp. decreasing, monotone) over [x] i .
Strict monotonicity is satisfied when formulas hold with strict inequalities.

Let f : [y] ⊆ R → R be an increasing function. For any interval [x] ⊆ [y],
the infimum and the supremum of f on [x] are f (x -) and f (x +). Hence, the following interval function:

[x] → [f (x -), f (x +)]
is an optimal inclusion function for f . This result easily generalizes to monotone multivariate functions, by a componentwise repetition of the same argument.

Main result

Enforcing hull consistency on a CSP boils down to enforcing bound consistency on every isolated constraint (cf. Definition 1). Giving an optimal contractor for a single constraint is thus the main issue, which we shall address below. We shall even focus on an equation f (x) = 0 (inequalities will be discussed further). Consider first the univariate case (f has a single variable) and assume that f is differentiable. The set {f = 0} can easily be bracketed by an interval Newton iteration (see, e.g., [START_REF] Moore | Interval Analysis[END_REF] for details on the operations involved):

[y] ← ỹ -f (ỹ)/[f ′]([y]) ∩ [y]
where [f ′] is a (convergent) inclusion function for f ′ and ỹ any point in [y] such that f (ỹ) = 0. Henceforth, we assume that a procedure univ newton(f, [x], ε) is available. This procedure returns an interval [y] such that both [y -, y -+ ε]

and [y +ε, y +] intersect {f = 0}. It can refer to any implementation of the univariate interval Newton iteration, such as the one given in [START_REF] Hansen | Global Optimization using Interval Analysis[END_REF].

Let us state the complexity. As noticed in the introduction, an analytic function is locally either strictly monotone or flat. Thus, it makes sense to assume strict monotonicity when dealing with complexity. The interval Newton iteration has a quadratic rate of convergence [START_REF] Alefeld | Interval Analysis: Theory and Applications[END_REF], i.e., the width of [y] at every step is up to a constant factor less than the square of the width at the previous step. However, the quadratic rate is only achieved when the iteration is contracting, i.e., when ỹ -

f (ỹ)/[f ′]([y]) ⊆ [y]
. While this condition is not fulfilled, the progression can be slow, as the following figure illustrates:

mi n slo pe m ax slo pe

[x] l (0) l (1) l (2) l (3) • • •
Fig. 1: Slow progression of the Newton iteration (with the left bound as point of expansion). The maximum slope on the interval [x] (on the right side) is repeatedly encompassed in the interval computation of the derivative, which explains the slow progression. The successive lower bounds of the interval [x] are l (0) , l (1) ,

When the point of expansion ỹ is the midpoint of [y]

, the width of the interval is at least divided by two (this is somehow a way to interleave a dichotomy within the Newton iteration). Thus, the worst-case complexity of univ newton with the midpoint heuristic is O(log(w/ε)), where w is the width of the initial domain.

Finally, note that if f is not differentiable (or if no convergent inclusion function is available for f ′), one can still resort to a simple dichotomy and achieve the same complexity. The general algorithm (called OCTUM: optimal contractor under monotonicity) that works with a multivariate mapping f : R n → R is given below. Note that univ newton is called on the restriction of f to (axis-aligned) edges of the input box [x]. Since (n -1) coordinates are fixed on an edge, the restriction is indeed a function from R to R.

To ease the description of the algorithm, we will assume that the multivariate function f is increasing (according to Definition 2). Once the algorithm is understood, considering the other possible configurations makes no difficulty and just require a case-by-case adaptation. Lines 1 to 5 initializes the two vectors x ⊖ and x ⊕ that correspond to the vertices where f is minimized and maximized respectively. When f is increasing, x ⊖ and x ⊕ are just aliases for x -and x + .

Line 6 checks that the box [x] contains a solution (and otherwise, the algorithm returns the empty set). The main loop relies on the following fact (see Figure 2) that will be proven below. Remember that f is assumed to be increasing and that [x] contains at least one solution. The minimum of x i when x describes the solutions inside [x] is then either reached (1) on the edge where all the other variables are instantiated to their upper bound x + j or (2) on the face where x i = x - i (which means that no contraction can be made).

face e d g e edge

x - x + x 1 x 3 x 2 {f = 0} x e 1 (x - 1 , •, •) (•, x + 2 , x + 3)
Fig. 2: The first component of the solutions inside the box either reaches its minimum on the face (x - 1 , •, •) or on the edge (•, x + 2 , x + 3).

Furthermore, as soon as the minimum for a component x i is met on an edge, the solution on this edge makes all x + j (j = i) consistent in the domain of the j th variable. To skip useless filtering operations for the upper bounds of the remaining variables, we use a flag named sup in the algorithm (see lines 17 and 18). Finally, when univ newton is called, either the lower or upper bound of the resulting interval is considered, depending on which bound of [x] i is contracted (see lines 15 and 16 or 21 and 22). This ensures that no solution is lost. Filtering the upper bound of x i is entirely symmetrical. The complexity of OCTUM is O(n × log(width[x] ε)), where width[x] stands for max 1≤i≤n width[x] i . It can be qualified as a pseudo-linear complexity. The OCTUM algorithm can be very easily extended to an inequality f (x) ≤ 0 or f (x) ≥ 0 by simply skipping narrowing operations on y - i or y + i respectively. The completeness and optimality of OCTUM relies on the following proposition. Proposition 1. Let f : R n → R be a continuous increasing mapping and

[x] a box such that {f = 0} ∩ [x] = ∅. Given i, 1 ≤ i ≤ n put: x i := inf{x i , x ∈ {f = 0} ∩ [x]}.
Then, one of the two options holds:

Algorithm 1: OCTUM(f, [x], ε) Input: a monotone function f , a n-dimensional box [x], ε > 0 Output: the smallest box [y] enclosing [x] ∩ {f = 0}, up to the precision ε for i = 1 to n do 1 if (f ր xi) then x ⊕ i ← x + i ; // x ⊕ is the vertex where f is maximized 2 else x ⊕ i ← x - i // (f ր xi) means "f is increasing w.r.t. xi" 3 if (f ր xi) then x ⊖ i ← x - i ; // x ⊖ is the vertex where f is minimized 4 else x ⊖ i ← x + i 5 if f (x ⊖) > 0 or f (x ⊕) < 0 then return ∅ //
[s] ← univ newton(t → f (x ⊕ 1 , . . . , x ⊕ i-1 , t, x ⊕ i+1 , x ⊕ n), [y]i, ε) 13 if [s] = ∅ then 14 if (f ր xi) then y - i ← s - //
[s] ← univ newton(t → f (x ⊖ 1 , . . . , x ⊖ i-1 , t, x ⊖ i+1 , x ⊖ n), [y]i, ε) 19 if [s] = ∅ then 20 if (f ր xi) then y + i ← s + 21 else y - i ← s - 22 inf ← true 23 return [y] 24
1. x i = x - i , 2. there exists x ∈ [x] such that x i = x i and for every j = i, x j = x + j .

Proof. Let x * be a solution point in [x] minimizing x i , i.e., f (x *) = 0 and x * i = x i . If x * i = x - i , the first option holds and we are done. Assume x * i > x - i . If n = 1, the second option holds trivially. If n > 1, consider the following vector:

x := (x + 1 , . . . , x + i-1 , x * i , x + i+1 , . . . , x + n). We will prove that f (x) = 0. By contradiction, assume f (x) > 0 (f being increasing). Since x i = x * i > x - i , there exists by continuity ε > 0 such that x * i -ε > x - i and f (x-εe i) > 0 (e i being the i th unit vector). Now, x * is the point in [x] where f gets null with the smallest i th coordinate. Hence, f (x *εe i) < 0. Since f is continuous, f gets null somewhere on the segment joining x *εe i and xεe i because the sign of f is opposite at the two extremities. Since [x] is convex, the corresponding point is inside [x] and its i th component is x * iε i , which contradicts the fact that x * i is the infimum among the solutions.

A first experiment

Consider the problem of characterizing the set of points (x, y) in [-3, 0] × [0, 3] satisfying f (x, y) = 0 with f (x, y) = x 2 y 2 -9x 2 y + 6xy 2 -20xy -1.

Let us compare OCTUM with three other standard generic contractors (namely HC4 [START_REF] Benhamou | Revising Hull and Box Consistency[END_REF][START_REF] Granvilliers | Progress in the Solving of a Circuit Design Problem[END_REF], BOX [START_REF] Benhamou | CLP(intervals) revisited[END_REF][START_REF] Van Hentenryck | Solving Polynomial Systems Using a Branch and Prune Approach[END_REF] and 3B [START_REF] Lhomme | Consistency Techniques for Numeric CSPs[END_REF]) as pruning steps of a classical branch & prune system. We have implemented a very naive method for detecting monotonicity, using an interval evaluation of the gradient that is systematically computed for every box (a better method would be to manage flags w.r.t. each variable in a backtrackable structure, each flag being set incrementally as soon as f is proven to be monotone). Even with this naive implementation, OCTUM yields better results, both in terms of quality (see Figure 3) and quantity (see Table below).

Conclusion

We have proven that hull consistency can be achieved in polynomial time in the case of constraints involving monotone functions. Hull consistency amounts to bound consistency for each isolated constraint. We have given an algorithm called OCTUM that enforces bound consistency for an equation under monotonicity (and explained how to adapt it to inequalities). Hull consistency based on OCTUM can then be programed by simply embedding OCTUM in a classical AC3 propagation loop. A first experiment has illustrated the two nice properties of OCTUM: optimality and (pseudo-)linear complexity.

 (a) Using HC4. (b) Using BOX. (c) Using 3B. (d) Using OCTUM.

Fig. 3 :

 3 Fig. 3: Comparing the monotonicity-based contractor OCTUM with other standard operators. Black surfaces encompass the solutions while grey boxes represent the contracted parts. The thinnest black surface is obtained with OCTUM. Note however the two little marks in (d) that correspond to points where one component of the gradient gets null.

 update lower bound of xi

	15		
	16	else y + i ← s + ;	// update upper bound of xi
		sup ← true	// the edge x ⊕ j , j = i, contains a solution

17

if curr sup is false then 18