
HAL Id: hal-00428970
https://hal.science/hal-00428970v1

Submitted on 30 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hull Consistency Under Monotonicity
Gilles Chabert, Luc Jaulin

To cite this version:
Gilles Chabert, Luc Jaulin. Hull Consistency Under Monotonicity. CP’09 (15th International Confer-
ence on Principles and Practice of Constraint Programming), Sep 2009, Lisbon, Portugal. p. 188-195.
�hal-00428970�

https://hal.science/hal-00428970v1
https://hal.archives-ouvertes.fr


Hull Consistency Under Monotonicity

Gilles Chabert1 and Luc Jaulin2

1 Ecole des Mines de Nantes LINA CNRS UMR 6241,
4, rue Alfred Kastler 44300 Nantes, France

gilles.chabert@emn.fr
2 ENSIETA, 2, rue François Verny 29806 Brest Cedex 9, France

luc.jaulin@ensieta.fr

Abstract. We prove that hull consistency for a system of equations
or inequalities can be achieved in polynomial time providing that the
underlying functions are monotone with respect to each variable. This
result holds including when variables have multiple occurrences in the
expressions of the functions, which is usually a pitfall for interval-based
contractors. For a given constraint, an optimal contractor can thus be
enforced quickly under monotonicity and the practical significance of this
theoretical result is illustrated on a simple example.

1 Introduction

Solving constraint problems with real variables has been the subject of significant
developments since the early 90’s (see [3] for a comprehensive survey).

One of the key contribution is the concept of hull consistency, which is the coun-
terpart of bound consistency in discrete constraint programming, as Definition 1
shows below.

Let us briefly trace the history. The underlying concepts of interval propaga-
tion appeared first in several pioneering papers [6, 11, 17, 12] while consistency
techniques for numerical CSP were formalized a few years later in [15, 5]. A the-
oretical comparative study of consistencies was then conducted in [7, 8]. Finally,
hull consistency was made operational in [2, 9] where the famous HC4 algorithm
is described.

Since hull consistency is based on the bound consistency of every isolated con-
straint, enforcing hull consistency in the general case (i.e., for arbitrary nonlinear
equations) is a NP-hard problem [14]. On the practical side, this results into the
inability to give a sharp enclosure when variables occur more than once in the
expression of a constraint. This happens, in particular, with HC4.

We show that hull consistency can be enforced in polynomial time if the functions
involved are all monotone.

Monotonicity follows the very intuitive idea that a function varies either in the
same direction as a variable or in the opposite one (see Definition 2). It turns
out that usual functions, i.e., built with arithmetic operators (+,−,×,/) and
elementary functions (sin, exp, etc.) are analytic and therefore most of the time



strictly monotone. In rigorous terms, most of the time means that, unless the
function is flat (or defined piecewise), the set of points that do not satisfy local
strict monotonicity is of measure zero (in the sense of measure theory).

As a consequence, if a better contraction (or filtering) can be achieved under
monotonicity, branch & prune algorithms should take advantage of it.

Monotonicity has been considered from the beginning of interval analysis [16],
but with a motivation slightly different from ours. One of the most fundamental
issues of interval analysis is the design of inclusion functions [13], i.e., methods
for computing an enclosure of the range of a function on any given box. Of
course, the sharper the better. Now, an optimal inclusion function (i.e., a method
for computing the exact range on any box) can be built straightforwardly for
monotone functions (see §2).

Hence, the main matter since that time has been to devise efficient way to detect
monotonicity of a function f over a box [x]. One simple way to proceed is by
checking that the gradient does not get null in [x] which, in turn, requires an
inclusion function for the gradient. The latter can then be based either on a direct
interval evaluation, Taylor forms or the monotonicity test itself in a reentrant
fashion (leading to the calculation of second derivatives, and so on).

Surprisingly enough, monotonicity has never been used so far in the design of
contractors. Remember that, although related, computing a sharp enclosure for
{f(x), x ∈ [x]} and for {x ∈ [x] | f(x) = 0} are quite different goals. As
we already said, getting an optimal enclosure with a monotone function f is
straightforward in the first case. But it is not so in the second case, especially
when x is a vector of variables. Algorithm 1 below will provide an answer.

In the following, we first define properly the different concepts. The main re-
sult, a monotonicity-based polytime optimal contractor for a constraint, is then
presented. Finally, we highlight the practical benefits of this contractor with a
simple example.

1.1 Notations and definitions

We consider throughout this paper a constraint satisfaction problem (CSP) with
a vector of n real variables x1, . . . , xn.

Domains of variables are represented by real intervals and a Cartesian product
of intervals is called a box. Intervals and boxes will be surrounded by brackets,
e.g., [x]. If [x] is a box, x− and x+ will stand for the two opposite corners formed
by the lower and upper bound respectively of each components (see Figure 2).
Hence, x−

i and x+
i will stand for the lower and upper bound respectively of the

interval [x]i. The width of an interval [x] (width[x]) is x+ − x−.

Furthermore, given a mapping f on R
n, we shall denote by {f = 0} the constraint

f(x) = 0 viewed as the set of all solution tuples, i.e.,

{f = 0} := {x ∈ R
n | f(x) = 0}.

We can now give a definition of hull consistency.

2



Definition 1 (Hull consistency). Let P be a constraint satisfaction problem
involving a vector x of n variables and let [x] be the domain of x.

P is said to be hull consistent if for every constraint c and for all i (1 ≤ i ≤ n),
there exists two points in [x] which satisfy c and whose ith coordinates are x−

i

and x+
i respectively.

The key property of hull consistency lies in the combination of local reasoning
and interval representation of domains. This concept brought a decisive improve-
ment to the traditional Newton-based numerical solvers that were basically only
able to contract domains globally.

Definition 2 (Monotonicity). A mapping f : R → R is increasing over an
interval [x] if ∀a ∈ [x],∀b ∈ [x] a ≤ b=⇒ f(a) ≤ f(b).

A mapping f : R → R is decreasing if −f is increasing, and monotone if it
is either decreasing or increasing.

A mapping f : R
n → R is increasing (resp. decreasing, monotone) over a

box [x] if ∀x̃ ∈ [x] and ∀i, 1 ≤ i ≤ n, xi 7→ f(x̃1, . . . , x̃i−1, xi, x̃i+1, . . . , x̃n) is
increasing (resp. decreasing, monotone) over [x]i.

Strict monotonicity is satisfied when formulas hold with strict inequalities.

Let f : [y] ⊆ R → R be an increasing function. For any interval [x] ⊆ [y],
the infimum and the supremum of f on [x] are f(x−) and f(x+). Hence, the
following interval function:

[x]→ [f(x−), f(x+)]

is an optimal inclusion function for f . This result easily generalizes to monotone
multivariate functions, by a componentwise repetition of the same argument.

2 Main result

Enforcing hull consistency on a CSP boils down to enforcing bound consistency
on every isolated constraint (cf. Definition 1). Giving an optimal contractor for
a single constraint is thus the main issue, which we shall address below. We shall
even focus on an equation f(x) = 0 (inequalities will be discussed further).

Consider first the univariate case (f has a single variable) and assume that f is
differentiable. The set {f = 0} can easily be bracketed by an interval Newton
iteration (see, e.g., [16] for details on the operations involved):

[y]←
(
ỹ − f(ỹ)/[f ′]([y])

)
∩ [y]

where [f ′] is a (convergent) inclusion function for f ′ and ỹ any point in [y] such
that f(ỹ) 6= 0. Henceforth, we assume that a procedure univ newton(f, [x], ε)
is available. This procedure returns an interval [y] such that both [y−, y−+ε]

3



and [y+−ε, y+] intersect {f = 0}. It can refer to any implementation of the
univariate interval Newton iteration, such as the one given in [10].

Let us state the complexity. As noticed in the introduction, an analytic function
is locally either strictly monotone or flat. Thus, it makes sense to assume strict
monotonicity when dealing with complexity. The interval Newton iteration has
a quadratic rate of convergence [1], i.e., the width of [y] at every step is up to a
constant factor less than the square of the width at the previous step. However,
the quadratic rate is only achieved when the iteration is contracting, i.e., when
ỹ − f(ỹ)/[f ′]([y]) ⊆ [y]. While this condition is not fulfilled, the progression can
be slow, as the following figure illustrates:

min slope

m
ax slope

[x]

l(0)l(1)l(2)l
(3)

· · ·

Fig. 1: Slow progression of the Newton iteration (with the left bound as point of ex-
pansion). The maximum slope on the interval [x] (on the right side) is repeatedly
encompassed in the interval computation of the derivative, which explains the slow
progression. The successive lower bounds of the interval [x] are l(0), l(1), . . ..

When the point of expansion ỹ is the midpoint of [y], the width of the interval is
at least divided by two (this is somehow a way to interleave a dichotomy within
the Newton iteration). Thus, the worst-case complexity of univ newton with the
midpoint heuristic is O(log(w/ε)), where w is the width of the initial domain.
Finally, note that if f is not differentiable (or if no convergent inclusion function
is available for f ′), one can still resort to a simple dichotomy and achieve the
same complexity.

The general algorithm (called OCTUM: optimal contractor under monotonicity)
that works with a multivariate mapping f : R

n → R is given below. Note that
univ newton is called on the restriction of f to (axis-aligned) edges of the input
box [x]. Since (n− 1) coordinates are fixed on an edge, the restriction is indeed
a function from R to R.

To ease the description of the algorithm, we will assume that the multivariate
function f is increasing (according to Definition 2). Once the algorithm is un-
derstood, considering the other possible configurations makes no difficulty and
just require a case-by-case adaptation. Lines 1 to 5 initializes the two vectors
x⊖ and x⊕ that correspond to the vertices where f is minimized and maximized
respectively. When f is increasing, x⊖ and x⊕ are just aliases for x− and x+.

4



Line 6 checks that the box [x] contains a solution (and otherwise, the algorithm
returns the empty set). The main loop relies on the following fact (see Figure
2) that will be proven below. Remember that f is assumed to be increasing and
that [x] contains at least one solution. The minimum of xi when x describes the
solutions inside [x] is then either reached
(1) on the edge where all the other variables are instantiated to their upper
bound x+

j or

(2) on the face where xi = x−
i (which means that no contraction can be made).

face

edge

edge

x−

x+

x1
x
3 x2

{f = 0}

x
e
1

(x−

1 , ·, ·)

(·, x
+
2 , x

+
3 )

Fig. 2: The first component of the solutions inside the box either reaches its minimum
on the face (x−

1 , ·, ·) or on the edge (·, x+
2 , x+

3 ).

Furthermore, as soon as the minimum for a component xi is met on an edge,
the solution on this edge makes all x+

j (j 6= i) consistent in the domain of the

jth variable. To skip useless filtering operations for the upper bounds of the
remaining variables, we use a flag named sup in the algorithm (see lines 17 and
18). Finally, when univ newton is called, either the lower or upper bound of the
resulting interval is considered, depending on which bound of [x]i is contracted
(see lines 15 and 16 or 21 and 22). This ensures that no solution is lost.

Filtering the upper bound of xi is entirely symmetrical. The complexity of OCTUM

is O(n× log(width[x]
ε

)), where width[x] stands for max1≤i≤n width[x]i. It can be
qualified as a pseudo-linear complexity.

The OCTUM algorithm can be very easily extended to an inequality f(x) ≤ 0 or
f(x) ≥ 0 by simply skipping narrowing operations on y−

i or y+
i respectively.

The completeness and optimality of OCTUM relies on the following proposition.

Proposition 1. Let f : R
n → R be a continuous increasing mapping and [x] a

box such that {f = 0} ∩ [x] 6= ∅. Given i, 1 ≤ i ≤ n put:

x
˜i := inf{xi, x ∈ {f = 0} ∩ [x]}.

Then, one of the two options holds:

5



Algorithm 1: OCTUM(f, [x], ε)

Input: a monotone function f , a n-dimensional box [x], ε > 0
Output: the smallest box [y] enclosing [x] ∩ {f = 0}, up to the precision ε

for i = 1 to n do1

if (f ր xi) then x⊕

i ← x+
i ; // x⊕ is the vertex where f is maximized2

else x⊕

i ← x−

i // (f ր xi) means “f is increasing w.r.t. xi”3

if (f ր xi) then x⊖

i ← x−

i ; // x⊖ is the vertex where f is minimized4

else x⊖

i ← x+
i5

if f(x⊖) > 0 or f(x⊕) < 0 then return ∅ // check if a solution exists6

[y]← [x]7

sup ← false // true when x⊕

i is consistent for all remaining i8

inf ← false // true when x⊖

i is consistent for all remaining i9

for i = 1 to n do10

curr sup ← sup ; // save the current value for the second block11

if inf is false then12

[s] ← univ newton(t 7→ f(x⊕

1 , . . . , x⊕

i−1, t, x
⊕

i+1, x
⊕
n ), [y]i, ε)13

if [s] 6= ∅ then14

if (f ր xi) then y−

i ← s− // update lower bound of xi15

else y+
i ← s+ ; // update upper bound of xi16

sup ← true // the edge x⊕

j , j 6= i, contains a solution17

if curr sup is false then18

[s] ← univ newton(t 7→ f(x⊖

1 , . . . , x⊖

i−1, t, x
⊖

i+1, x
⊖
n ), [y]i, ε)19

if [s] 6= ∅ then20

if (f ր xi) then y+
i ← s+

21

else y−

i ← s−22

inf ← true23

return [y]24

1. x
˜i = x−

i ,

2. there exists x ∈ [x] such that xi = x
˜i and for every j 6= i, xj = x+

j .

Proof. Let x∗ be a solution point in [x] minimizing xi, i.e., f(x∗) = 0 and
x∗

i = x
˜i. If x∗

i = x−
i , the first option holds and we are done. Assume x∗

i > x−
i . If

n = 1, the second option holds trivially. If n > 1, consider the following vector:

x := (x+
1 , . . . , x+

i−1, x
∗
i , x

+
i+1, . . . , x

+
n ).

We will prove that f(x) = 0. By contradiction, assume f(x) > 0 (f being
increasing). Since xi = x∗

i > x−
i , there exists by continuity ε > 0 such that

x∗
i −ε > x−

i and f(x−εei) > 0 (ei being the ith unit vector). Now, x∗ is the point
in [x] where f gets null with the smallest ith coordinate. Hence, f(x∗− εei) < 0.

Since f is continuous, f gets null somewhere on the segment joining x∗ − εei

and x − εei because the sign of f is opposite at the two extremities. Since [x]
is convex, the corresponding point is inside [x] and its ith component is x∗

i − εi,
which contradicts the fact that x∗

i is the infimum among the solutions. N

6



3 A first experiment

Consider the problem of characterizing the set of points (x, y) in [−3, 0]× [0, 3]
satisfying f(x, y) = 0 with f(x, y) = x2y2 − 9x2y + 6xy2 − 20xy − 1.

Let us compare OCTUM with three other standard generic contractors (namely
HC4 [2, 9], BOX [4, 18] and 3B [15]) as pruning steps of a classical branch & prune
system. We have implemented a very naive method for detecting monotonicity,
using an interval evaluation of the gradient that is systematically computed for
every box (a better method would be to manage flags w.r.t. each variable in a
backtrackable structure, each flag being set incrementally as soon as f is proven to
be monotone). Even with this naive implementation, OCTUM yields better results,
both in terms of quality (see Figure 3) and quantity (see Table below).

(a) Using HC4. (b) Using BOX.

(c) Using 3B. (d) Using OCTUM.

Fig. 3: Comparing the monotonicity-based contractor OCTUM with other standard oper-
ators. Black surfaces encompass the solutions while grey boxes represent the contracted
parts. The thinnest black surface is obtained with OCTUM. Note however the two little
marks in (d) that correspond to points where one component of the gradient gets null.

Running time Number of backtracks Size of solution set

HC4 0.66s 28240 6928
BOX 1.37s 9632 3595
3B 1.89s 9171 2564

OCTUM 0.40s 6047 1143

7



4 Conclusion

We have proven that hull consistency can be achieved in polynomial time in
the case of constraints involving monotone functions. Hull consistency amounts
to bound consistency for each isolated constraint. We have given an algorithm
called OCTUM that enforces bound consistency for an equation under monotonic-
ity (and explained how to adapt it to inequalities). Hull consistency based on
OCTUM can then be programed by simply embedding OCTUM in a classical AC3
propagation loop. A first experiment has illustrated the two nice properties of
OCTUM: optimality and (pseudo-)linear complexity.

References

1. G. Alefeld and G. Mayer. Interval Analysis: Theory and Applications. J. Comput.
Appl. Math., 121(1-2):421–464, 2000.

2. F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising Hull and
Box Consistency. In ICLP, pages 230–244, 1999.

3. F. Benhamou and L. Granvilliers. Continuous and interval constraints. In Hand-
book of Constraint Programming, chapter 16, pages 571–604. Elsevier, 2006.

4. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(intervals) revisited. In
International Symposium on Logic programming, pages 124–138. MIT Press, 1994.

5. F. Benhamou and W.J. Older. Applying Interval Arithmetic to Real, Integer and
Boolean Constraints. Journal of Logic Programming, 32:1–24, 1997.

6. J.G. Cleary. Logical Arithmetic. Future Computing Systems, 2(2):125–149, 1987.
7. H. Collavizza. A Note on Partial Consistencies over Continuous Domains Solving

Techniques. In CP, pages 147–161, 1998.
8. F. Delobel, H. Collavizza, and M. Rueher. Comparing Partial Consistencies. Re-

liable Computing, 5(3):213–228, 1999.
9. L. Granvilliers and F. Benhamou. Progress in the Solving of a Circuit Design

Problem. Journal of Global Optimization, 20(2):155–168, 2001.
10. E.R. Hansen. Global Optimization using Interval Analysis. Marcel Dekker, 1992.
11. E. Hyvönen. Constraint Reasoning Based on Interval Arithmetic. In IJCAI, pages

1193–1198, 1989.
12. E. Hyvönen. Constraint Reasoning Based on Interval Arithmetic—The Tolerance

Propagation Approach. Artificial Intelligence, 58:71–112, 1992.
13. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,

2001.
14. V. Kreinovich, A. Lakeyev, J. Rohn, and P. Kahl. Computational complexity and

feasibility of data processing and interval computations. Kluwer, 1997.
15. O. Lhomme. Consistency Techniques for Numeric CSPs. In IJCAI, pages 232–238,

1993.
16. R. Moore. Interval Analysis. Prentice-Hall, 1966.
17. W.J. Older and A. Vellino. Extending Prolog with Constraint Arithmetic on Real

Intervals. In IEEE Canadian Conf. on Elec. and Comp. Engineering, 1990.
18. P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems

Using a Branch and Prune Approach. SIAM J. Numer. Anal., 34(2):797–827,
1997.

8


