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Abstract

In this paper, we study the Stokes system in the half-space Rn
+, with

n > 2. We consider data and give solutions which live in weighted Sobolev
spaces, for a whole scale of weights. We start to study the kernels of the
biharmonic and Stokes operators. After the central case of the generalized
solutions, we are interested in strong solutions and symmetricaly in very
weak solutions by means of a duality argument.
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1 Introduction
The purpose of this paper is the resolution of the Stokes system

(S+)

 −∆u +∇π = f in Rn
+,

div u = h in Rn
+,

u = g on Γ ≡ Rn−1.

Weighted Sobolev spaces provide a natural framework which allow to express
the regularity and the behavior at infinity of data and solutions. This paper is
the continuation of a previous work in which we only dealt with the basic weights
(see [8]). Here, we are interested in a large class of weights. This lead us to deal
with the kernel of the operator associated to this problem and symmetricaly
with the compatibility condition for the data. So, an important part of this
work is devoted to the study of the reflection principles for the biharmonic and
Stokes operators. We give weak formulations of these principles with the aim of
getting the kernels in some distribution spaces (see Section 2). The main results
of [8] will be naturally included in this paper, but we will not discuss again these
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particular cases. We will also base on the previously established results on the
harmonic and biharmonic operators (see [4], [5], [6], [7]).

Among the first works on the Stokes problem in the half-space, we can cite
Cattabriga. In [10], he appeals to the potential theory to explicitly get the
velocity and pressure fields. For the homogeneous problem (f = 0 and h = 0),
for instance, he shows that if g ∈ Lp(Γ) and the semi-norm |g|

W
1−1/p, p
0 (Γ)

<∞,
then ∇u ∈ Lp(Rn

+) and π ∈ Lp(Rn
+).

We can find similar results in Farwig-Sohr (see [15]) and Galdi (see [16]),
who also have chosen the setting of homogeneous Sobolev spaces. On the other
hand, Maz’ya-Plamenevskĭı-Stupyalis (see [18]), work within the suitable setting
of weighted Sobolev spaces and consider different sorts of boundary conditions.
However, their results are limited to the dimension 3, to the weight zero and to
the Hilbertian framework, in which they give generalized and strong solutions.
This is also the case of Boulmezaoud (see [9]), who only gives strong solutions;
however, he suggest an interesting characterization of the kernel that we will
get here in another way. Otherwise, always in dimension 3, by Fourier analysis
techniques, we can found in Tanaka the case of very regular data, corresponding
to velocities which belong to W m+3, 2

2 (R3
+), with m > 0 (see [19]).

For any integer n > 2, writing a typical point ∈ Rn as x = (x′, xn), we denote
by Rn

+ the upper half-space of Rn and Γ its boundary. We shall use the two
basic weights % = (1+ |x|2)1/2 and lg % = ln(2+ |x|2), where |x| is the Euclidean
norm of x. For any integer q, Pq stands for the space of polynomials of degree
smaller than or equal to q; P∆

q (resp. P∆2

q ) is the subspace of harmonic (resp.
biharmonic) polynomials of Pq; A∆

q (resp. N∆
q ) is the subspace of polynomials

of P∆
q , odd (resp. even) with respect to xn, or equivalently, which satisfy the

condition ϕ(x′, 0) = 0 (resp. ∂nϕ(x′, 0) = 0); with the convention that these
spaces are reduced to {0} if q < 0. For any real number s, we denote by [s] the
integer part of s. Given a Banach space B, with dual space B′ and a closed
subspace X of B, we denote by B′ ⊥ X the subspace of B′ orthogonal to X. For
any k ∈ Z, we shall denote by {1, . . . , k} the set of the first k positive integers,
with the convention that this set is empty if k is nonpositive. In the whole text,
bold characters are used for the vector and matrix fields.

Let Ω be an open set of Rn. For any m ∈ N, p ∈ ]1, ∞[, (α, β) ∈ R2, we
define the following space:

Wm, p
α, β (Ω) =

{
u ∈ D′(Ω); 0 6 |λ| 6 k, %α−m+|λ| (lg %)β−1 ∂λu ∈ Lp(Ω);

k + 1 6 |λ| 6 m, %α−m+|λ| (lg %)β ∂λu ∈ Lp(Ω)
}
,

(1.1)

where k = m − n/p − α if n/p + α ∈ {1, . . . ,m}, and k = −1 otherwise. In
the case β = 0, we simply denote the space by Wm, p

α (Ω). Note that Wm, p
α, β (Ω)

is a reflexive Banach space equipped with the graph-norm. Now, we define the
space

◦
W

m, p
α, β (Rn

+) = D(Rn
+)

‖·‖W
m, p
α, β

(Rn
+) , and its dual is denoted by W−m, p′

−α,−β(Rn
+).

In order to define the traces of functions of Wm, p
α (Rn

+) (here we don’t consider
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the case β 6= 0), for any σ ∈ ]0, 1[, we introduce the space:

W σ, p
α (Rn) =

{
u ∈ D′(Rn); wα−σu ∈ Lp(Rn),∫

Rn×Rn

|%α(x)u(x)− %α(y)u(y)|p

|x− y|n+σp
dxdy <∞

}
,

where w = % if n/p + α 6= σ and w = % (lg %)1/(σ−α) if n/p + α = σ. For any
s ∈ R+, we set

W s, p
α (Rn) =

{
u ∈ D′(Rn); 0 6 |λ| 6 k, %α−s+|λ| (lg %)−1 ∂λu ∈ Lp(Rn);

k + 1 6 |λ| 6 [s]− 1, %α−s+|λ| ∂λu ∈ Lp(Rn); ∂[s]u ∈W σ, p
α (Rn)

}
,

where k = s−n/p−α if n/p+α ∈ {σ, . . . , σ+[s]}, with σ = s− [s] and k = −1
otherwise. In the same way, we also define, for any real number β, the space
W s, p

α, β(Rn) =
{
v ∈ D′(Rn); (lg %)β v ∈W s, p

α (Rn)
}
.

Let’s recall, for any integer m > 1 and any real number α, the following
trace lemma:

Lemma 1.1. For any integer m > 1 and real number α, we have the linear
continuous mapping

γ = (γ0, γ1, . . . , γm−1) : Wm, p
α (Rn

+) −→
m−1∏
j=0

Wm−j−1/p, p
α (Rn−1).

Moreover γ is surjective and Kerγ =
◦
Wm, p

α (Rn
+).

On the Stokes problem in Rn

(S) : −∆u +∇π = f and div u = h in Rn,

let’s recall the fundamental results on which we are based in the sequel. First,
for any k ∈ Z, we introduce the space

Sk =
{
(λ, µ) ∈ Pk × P∆

k−1; div λ = 0, −∆λ +∇µ = 0
}
.

Theorem 1.2 (Alliot-Amrouche [2]). Let ` ∈ Z and assume that

n/p′ /∈ {1, . . . , `} and n/p /∈ {1, . . . ,−`}.

For any (f , h) ∈
(
W−1, p

` (Rn)×W 0, p
` (Rn)

)
⊥ S[1+`−n/p′], problem (S) ad-

mits a solution (u, π) ∈ W 1, p
` (Rn) ×W 0, p

` (Rn), unique up to an element of
S[1−`−n/p], with the estimate

inf
(λ, µ)∈S[1−`−n/p]

(
‖u + λ‖W 1, p

` (Rn) + ‖π + µ‖W 0, p
` (Rn)

)
6 C

(
‖f‖W−1, p

` (Rn) + ‖h‖W 0, p
` (Rn)

)
.
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Theorem 1.3 (Alliot-Amrouche [2]). Let ` ∈ Z and m > 1 be two integers and
assume that

n/p′ /∈ {1, . . . , `+ 1} and n/p /∈ {1, . . . ,−`−m}.

For any (f , h) ∈
(
W m−1, p

m+` (Rn)×Wm, p
m+`(Rn)

)
⊥ S[1+`−n/p′], problem (S) ad-

mits a solution (u, π) ∈ W m+1, p
m+` (Rn) ×Wm, p

m+`(Rn), unique up to an element
of S[1−`−n/p], with the estimate

inf
(λ, µ)∈S[1−`−n/p]

(
‖u + λ‖W m+1, p

m+` (Rn) + ‖π + µ‖W m, p
m+`(Rn)

)
6 C

(
‖f‖W m−1, p

m+` (Rn) + ‖h‖W m, p
m+`(Rn)

)
.

2 Reflection principles and kernels in Rn
+

The aim of this section is to characterize the kernel of the Stokes operator with
Dirichlet boundary conditions in the half-space. In this geometry, the natural
way is to use a reflection principle similar to the well-known Schwarz reflexion
principle for harmonic functions. Since in the Stokes system, the velocity field
is biharmonic and the pressure is harmonic, it is reasonable to start with the
reflection principle for the biharmonic functions. Let us notice that R. Farwig
gives these continuation formulae in [14], refering to elliptic regularity theory
(see Agmon, Douglis and Nirenberg, [1]). Let us especially quote R. J. Duffin,
who first established in [13] the continuation formula of biharmonic functions
in the three dimensional case and then analogous formulae for the Stokes flow
equations. Next, A. Huber extended in [17] this principle to polyharmonic
functions. From the classical point of view, the only serious difficulty is the
argument at the boundary.

Starting with the biharmonic operator, we will give a weak formulation of
the continuation formula, which will allow us to characterize the kernel of this
operator, even for very weak solutions.

At first, let us introduce a useful notation. For any function ϕ defined on
an open set Ω of Rn, we will denote by ϕ∗, the composite function ϕ∗ = ϕ ◦ r
defined on Ω∗ = r(Ω), of ϕ with the C∞-diffeomorphism

r : Ω −→ Ω∗

x = (x′, xn) 7−→ x∗ = (x′, −xn).

Thus, if ϕ ∈ D(Rn
+), then ϕ∗ ∈ D(Rn

−) and conversely. In the same way, if
u ∈ D′(Ω), we will denote by u∗ the distribution in D′(Ω∗), defined for any
ϕ ∈ D(Ω∗) by 〈u∗, ϕ〉D′(Ω∗)×D(Ω∗) = 〈u, ϕ∗〉D′(Ω)×D(Ω). Thus, if u ∈ D′(Rn

+),
then u∗ ∈ D′(Rn

−) and conversely.
Now, for the convenience of the reader, let us recall the essential tool —

i.e. the Green formula — in the study of singular boundary conditions for the
biharmonic problem (see [7]). For any ` ∈ Z, we introduce the space

Y p
`, 1(R

n
+) =

{
v ∈W 0, p

`−2(R
n
+); ∆2v ∈W 0, p

`+2, 1(R
n
+)

}
,
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which is a reflexive Banach space equipped with its natural norm:

‖v‖Y p
`, 1(R

n
+) = ‖v‖W 0, p

`−2(R
n
+) + ‖∆2v‖W 0, p

`+2, 1(R
n
+).

Then we proved in [7], Lemma 4.1, the following result:

Lemma 2.1. Let ` ∈ Z such that
n

p′
/∈ {1, . . . , `− 2} and

n

p
/∈ {1, . . . ,−`+ 2}, (2.1)

then the space D(Rn
+) is dense in Y p

`, 1(Rn
+).

Thanks to this density lemma, we proved in [7], Lemma 4.2, the following
result of traces with the Green formula:

Lemma 2.2. Let ` ∈ Z. Under hypothesis (2.1), the mapping

(γ0, γ1) : D(Rn
+) −→ D(Rn−1)

2
,

can be extended to a linear continuous mapping

(γ0, γ1) : Y p
`, 1(R

n
+) −→W

−1/p, p
`−2 (Γ)×W

−1−1/p, p
`−2 (Γ),

and we have the following Green formula:

∀v ∈ Y p
`, 1(R

n
+), ∀ϕ ∈W 4, p′

−`+2(R
n
+) such that ϕ = ∂nϕ = 0 on Γ,〈

∆2v, ϕ
〉

W 0, p
`+2, 1(R

n
+)×W 0, p′

−`−2,−1(R
n
+)
−

〈
v,∆2ϕ

〉
W 0, p

`−2(R
n
+)×W 0, p′

−`+2(R
n
+)

= 〈v, ∂N∆ϕ〉
W

−1/p, p
`−2 (Γ)×W

1/p, p′
−`+2 (Γ)

− 〈∂nv,∆ϕ〉W−1−1/p, p
`−2 (Γ)×W

1+1/p, p′
−`+2 (Γ)

.

(2.2)

Now, we can establish the following result:

Lemma 2.3. Let ` ∈ Z with hypothesis (2.1) and u ∈W 0, p
`−2(Rn

+) satisfying

∆2u = 0 in Rn
+, u = ∂nu = 0 on Γ,

then there exists a unique biharmonic extension ũ ∈ D′(Rn) of u, which is given
for all ϕ ∈ D(Rn) by

〈ũ, ϕ〉D′(Rn)×D(Rn) =
∫

Rn
+

u
(
ϕ− 5ϕ∗ − 6xn ∂nϕ

∗ − x2
n ∆ϕ∗

)
dx. (2.3)

Moreover, we have ũ ∈W−2, p
`−4 (Rn) with the estimate

‖ũ‖W−2, p
`−4 (Rn

+) 6 C ‖u‖W 0, p
`−2(R

n
+). (2.4)

Proof. (1) Let us notice an important point to start with. According to Weyl’s
lemma, since u is a biharmonic distribution in Rn

+, we know that u ∈ C∞(Rn
+)

— see e.g. Dautray-Lions [12], vol. 2, p 327, Proposition 1 —. Next, let us
remark that the integral in (2.3) is well-defined. Indeed, u ∈ W 0, p

`−2(Rn
+) and ϕ

— thus ϕ∗ also — has compact support.
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Now, let us show that ũ belongs to D′(Rn) and more precisely the end of
our statement. From (2.3) we get the following estimate

|〈ũ, ϕ〉| 6 C ‖u‖W 0, p
`−2(R

n
+)

(
‖ϕ‖

W 0, p′
−`+2(Rn)

+ ‖ϕ‖
W 1, p′

−`+3(Rn)
+ ‖ϕ‖

W 2, p′
−`+4(Rn)

)
Since n

p′ /∈ {` − 3, ` − 2}, we have W 2, p′

−`+4(Rn) ↪→ W 1, p′

−`+3(Rn) ↪→ W 0, p′

−`+2(Rn)

and then, for any ϕ ∈W 2, p′

−`+4(Rn),

|〈ũ, ϕ〉| 6 C ‖u‖W 0, p
`−2(R

n
+) ‖ϕ‖W 2, p′

−`+4(Rn)
.

So, we can deduce that ũ ∈W−2, p
`−4 (Rn) and the estimate (2.4).

(2) For the uniqueness, let us consider two biharmonic extensions ũ1 and ũ2

of u which belong to D′(Rn) and set U = ũ2 − ũ1. Then we have ∆2U = 0
in Rn and we can deduce that U is analytic in Rn. Since U = 0 in Rn

+, the
continuation analytic principle implies that in fact U = 0 in Rn.

(3) Evidently, ũ is an extension of u. Indeed, let ϕ ∈ D(Rn
+) and ϕ̃ the zero

extension of ϕ to Rn, then 〈ũ, ϕ̃〉D′(Rn)×D(Rn) =
∫

Rn
+
uϕ dx, that is ũ|Rn

+
= u.

On the other hand, let ϕ ∈ D(Rn
−) and ϕ̃ the zero extension of ϕ to Rn, then

we get

〈ũ, ϕ̃〉D′(Rn)×D(Rn) =
∫

Rn
+

u
(
−5ϕ∗ − 6xn ∂nϕ

∗ − x2
n ∆ϕ∗

)
dx.

Moreover, we can express 〈ũ, ϕ̃〉 by means of an integral in Rn
−:

I1 =
∫

Rn
+

uϕ∗ dx =
∫

Rn
−

u∗ ϕ dx,

I2 =
∫

Rn
+

uxn ∂nϕ
∗ dx =

∫
Rn
−

xn u
∗ ∂nϕ dx

= −
∫

Rn
−

∂n(xn u
∗)ϕ dx

= −
∫

Rn
−

(u∗ + xn ∂nu
∗)ϕ dx,

I3 =
∫

Rn
+

ux2
n ∆ϕ∗ dx =

∫
Rn
−

x2
n u

∗ ∆ϕ dx

=
∫

Rn
−

∆(x2
n u

∗)ϕ dx

=
∫

Rn
−

(2u∗ + 4xn ∂nu
∗ + x2

n ∆u∗)ϕ dx.

Hence,

〈ũ, ϕ̃〉D′(Rn)×D(Rn) =
∫

Rn
−

(
−u∗ + 2xn ∂nu

∗ − x2
n ∆u∗

)
ϕ dx,
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that is ũ|Rn
−

= −u∗ − 2xn (∂nu)∗ − x2
n (∆u)∗. So, ũ|Rn

−
∈ C∞(Rn

−) and we
find the classical formulation obtained by R. J. Duffin (see [13]) in the three
dimensional case: for any x ∈ Rn

−,

ũ(x) =
(
−u− 2xn ∂nu− x2

n ∆u
)
(x∗), (2.5)

(4) It remains to show that this extension is actually biharmonic in Rn.
From the definition (2.3), we obtain the expression: for all ϕ ∈ D(Rn),〈

∆2ũ, ϕ
〉
D′(Rn)×D(Rn)

=
〈
ũ, ∆2ϕ

〉
D′(Rn)×D(Rn)

=
∫

Rn
+

u
[
∆2(ϕ− 5ϕ∗)− 6xn ∂n∆2ϕ∗ − x2

n ∆3ϕ∗
]

dx,

that we can rewrite as follows:〈
∆2ũ, ϕ

〉
=

∫
Rn

+

u∆2Φ dx,

where Φ = ϕ− ϕ∗ − x2
n ∆ϕ∗ + 2xn ∂nϕ

∗. Besides, we have{
Φ = ϕ− ϕ∗ = 0 on Γ,
∂nΦ = ∂nϕ+ ∂nϕ

∗ = ∂nϕ− (∂nϕ)∗ = 0 on Γ.

Then, according to Lemma 2.2, we get
〈
∆2ũ, ϕ

〉
= 0 for all ϕ ∈ D(Rn), that is

∆2ũ = 0 in Rn.

As main consequence of Lemma 2.3, we are going to characterize the kernel
K of the biharmonic operator (∆2, γ0, γ1) in W 0, p

`−2(Rn
+) as a polynomial space.

For any q ∈ Z, let us introduce Bq as a subspace of P∆2

q :

Bq =
{
u ∈ P∆2

q ; u = ∂nu = 0 on Γ
}
.

Corollary 2.4. Let ` ∈ Z with hypothesis (2.1), then K = B[2−`−n/p].

Proof. Given u ∈ K. Thanks to Lemma 2.3, we know that ũ ∈ W−2, p
`−4 (Rn) ⊂

S ′(Rn) and ∆2ũ = 0 in Rn. We can deduce that ũ, and consequently u, is
a polynomial. In addition, u ∈ W 0, p

`−2(Rn
+) implies that u ∈ P[2−`−n/p] (see

[3]).

Remark 2.5. Coming back to Lemma 2.3, since ũ ∈ P[2−`−n/p], we get in fact
ũ ∈ Wm+2, p

m+` (Rn) for any integer m > −4. Indeed, under hypothesis (2.1),
we have the imbbeding chain Wm+2, p

m+` (Rn) ↪→ · · · ↪→ W−2, p
`−4 (Rn) and besides

P[2−`−n/p] ⊂Wm+2, p
m+` (Rn).

Better, we can see that this kernel does not really depend on the regular-
ity according to the Sobolev imbeddings. More precisely, if we denote by Km

the kernel of (∆2, γ0, γ1) in Wm+2, p
m+` (Rn

+), identical arguments lead us to the
following result:

Corollary 2.6. Let ` ∈ Z and m > −2 be two integers and assume that
n

p′
/∈ {1, . . . , `+ min{m, 2}} and

n

p
/∈ {1, . . . ,−`−m}, (2.6)

then Km = B[2−`−n/p].
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Finally, we showed in [6] that we can link this kernel to those of the Dirichlet
and Neumann problems for the Laplacian. With this intention, we defined the
two operators ΠD and ΠN by:

∀r ∈ A∆
k , ΠDr =

1
2

∫ xn

0

t r(x′, t) dt,

∀s ∈ N∆
k , ΠNs =

1
2
xn

∫ xn

0

s(x′, t) dt,

satisfying the following properties:

∀r ∈ A∆
k , ∆ΠDr = r in Rn

+, ΠDr = ∂nΠDr = 0 on Γ,

∀s ∈ N∆
k , ∆ΠNs = s in Rn

+, ΠNs = ∂nΠNs = 0 on Γ.
(2.7)

So we got a second characterization of this kernel:

B[2−`−n/p] = ΠDA∆
[−`−n/p] ⊕ΠNN∆

[−`−n/p]. (2.8)

Now, we can use these results in the study of the Stokes operator. But to
begin with we must establish an equivalent to Lemma 2.2. Let us denote by

T : (u, π) 7−→ (−∆u +∇π, −div u)

the Stokes operator. For any ` ∈ Z, we introduce the space

T p
`, 1(R

n
+) =

{
(u, π) ∈ W 0, p

`−1(R
n
+)×W−1, p

`−1 (Rn
+);

T (u, π) ∈ W 0, p
`+1, 1(R

n
+)×W 0, p

`, 1 (Rn
+)

}
,

which is a reflexive Banach space equipped with the graph-norm. Then we have
the following density result:

Lemma 2.7. Let ` ∈ Z such that

n/p′ /∈ {1, . . . , `− 1} and n/p /∈ {1, . . . ,−`+ 1}, (2.9)

then the space D(Rn
+)×D(Rn

+) is dense in T p
`, 1(Rn

+).

Proof. For every continuous linear form Λ ∈
(
T p

`, 1(Rn
+)

)′
, there exists a unique

(f , ϕ, g, ψ) ∈ W 0, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+)×W 0, p′

−`−1,−1(Rn
+)×W 0, p′

−`,−1(Rn
+) such

that for all (u, π) ∈ T p
`, 1(Rn

+),

〈Λ, (u, π)〉 = 〈(f , ϕ), (u, π)〉+ 〈(g, ψ), T (u, π)〉 . (2.10)

Thanks to the Hahn-Banach theorem, it suffices to show that any Λ which
vanishes on D(Rn

+)×D(Rn
+) is actually zero on T p

`, 1(Rn
+). Let us suppose that

Λ = 0 on D(Rn
+)×D(Rn

+), thus on D(Rn
+)×D(Rn

+). Then we can deduce from
(2.10) that

(f , ϕ) + T (g, ψ) = 0 in Rn
+,

hence T (g, ψ) ∈ W 0, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+). Let f̃ , ϕ̃, g̃, ψ̃ be respectively the

zero extensions of f , ϕ, g, ψ to Rn. By (2.10), it is clear that we have (f̃ , ϕ̃) +
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T (g̃, ψ̃) = 0 in Rn, and thus T (g̃, ψ̃) ∈ W 0, p′

−`+1(Rn)×W 1, p′

−`+1(Rn). According to
the results in the whole space (see Theorem 1.3), we can deduce that (g̃, ψ̃) ∈
W 2, p′

−`+1(Rn) ×W 1, p′

−`+1(Rn). Since g̃ and ψ̃ are the zero extensions, it follows

that (g, ψ) ∈
◦

W2, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+). Then, by density of D(Rn

+)×D(Rn
+)

in
◦

W 2, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+), we can construct a sequence (gk, ψk)k∈N ⊂

D(Rn
+) × D(Rn

+) such that (gk, ψk) → (g, ψ) in
◦

W 2, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+).

Thus, for any (u, π) ∈ T p
`, 1(Rn

+), we have

〈Λ, (u, π)〉 = −〈T (g, ψ), (u, π)〉+ 〈(g, ψ), T (u, π)〉
= lim

k→∞
{− 〈T (gk, ψk), (u, π)〉+ 〈(gk, ψk), T (u, π)〉}

= 0,

i.e. Λ is identically zero.

Thanks to this density lemma, we can prove the following result:

Lemma 2.8. Let ` ∈ Z. Under hypothesis (2.9), we can define the linear
continuous mapping (the trace of the velocity field)

τ 0 : T p
`, 1(R

n
+) −→ W

−1/p, p
`−1 (Γ),

(u, π) 7−→ u|Γ = (γ0u1, . . . , γ0un).

Moreover, we have the following Green formula:

∀(u, π) ∈ T p
`, 1(R

n
+), ∀(ϕ, ψ) ∈ W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)

such that ϕ = 0 and div ϕ = 0 on Γ,
〈T (u, π), (ϕ, ψ)〉

W 0, p
`+1, 1(R

n
+)×W 0, p

`, 1 (Rn
+), W 0, p′

−`−1,−1(R
n
+)×W 0, p′

−`,−1(R
n
+)

= 〈(u, π), T (ϕ, ψ)〉
W 0, p

`−1(R
n
+)×W−1, p

`−1 (Rn
+), W 0, p′

−`+1(R
n
+)×

◦
W

1, p′
−`+1(R

n
+)

−〈u, (∂nϕ′, −ψ)〉
W

−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

.

(2.11)

Proof. Let us make three remarks to start. Firstly, the left-hand term in (2.11)
is nothing but the integral

∫
Rn

+
T (u, π) · (ϕ, ψ)dx. Secondly, the reason for

the logarithmic factor in the definition of T p
`, 1(Rn

+) is that the imbeddings

W 2, p′

−`+1(Rn
+) ↪→ W 0, p′

−`−1,−1(Rn
+) and W 1, p′

−`+1(Rn
+) ↪→ W 0, p′

−`,−1(Rn
+) hold with-

out supplementary critical value with respect to (2.9) — whereas the imbed-
ding W 2, p′

−`+1(Rn
+) ↪→ W 0, p′

−`−1(Rn
+) fails if n/p′ ∈ {`, ` + 1} —. Thirdly, for

any ϕ ∈ W 2, p′

−`+1(Rn
+), the boundary conditions ϕ = 0 and div ϕ = 0 on Γ are

equivalent to ϕ = 0 and ∂nϕn = 0 on Γ.
So we can write the following Green formula:

∀(u, π) ∈ D(Rn
+)×D(Rn

+), ∀(ϕ, ψ) ∈ W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)

such that ϕ = 0 and div ϕ = 0 on Γ,∫
Rn

+

T (u, π) · (ϕ, ψ) dx =
∫

Rn
+

(u, π) · T (ϕ, ψ) dx

−
∫

Γ

u · (∂nϕ′, −ψ) dx′.

(2.12)
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We can deduce the following estimate:∣∣∣∣〈u, (∂nϕ′, −ψ)〉
W

−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

∣∣∣∣
6 ‖(u, π)‖T p

`, 1(R
n
+)‖(ϕ, ψ)‖

W 2, p′
−`+1(R

n
+)×W 1, p′

−`+1(R
n
+)
.

By Lemma 1.1, for any g ∈ W
1−1/p′, p′

−`+1 (Γ), there exists a lifting function
(ϕ, ψ) ∈ W 2, p′

−`+1(Rn
+) ×W 1, p′

−`+1(Rn
+) such that ϕ = 0, ∂nϕ′ = g′, ∂nϕn = 0

and −ψ = gn on Γ, satisfying

‖(ϕ, ψ)‖
W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)

6 C ‖g‖
W

1−1/p′, p′
−`+1 (Γ)

,

where C is a constant not depending on (ϕ, ψ) and g. Then we can deduce that

‖u‖
W

−1/p, p
`−1 (Γ)

6 C ‖(u, π)‖T p
`, 1(R

n
+).

Thus the linear mapping τ 0 : (u, π) 7−→ u|Γ defined on D(Rn
+) × D(Rn

+)
is continuous for the norm of T p

`, 1(Rn
+). Since D(Rn

+) × D(Rn
+) is dense in

T p
`, 1(Rn

+), τ 0 can be extended by continuity to a mapping still called τ 0 ∈
L

(
T p

`, 1(Rn
+); W

−1/p, p
`−1 (Γ)

)
. Moreover, we also can deduce the formula (2.11)

from (2.12) by density of D(Rn
+)×D(Rn

+) in T p
`, 1(Rn

+).

We now can give the continuation result for the Stokes operator.

Lemma 2.9. Let ` ∈ Z with hypothesis (2.9) and (u, π) ∈ W 0, p
`−1(Rn

+) ×
W−1, p

`−1 (Rn
+) satisfying

−∆u +∇π = 0 and div u = 0 in Rn
+, u = 0 on Γ,

then there exists a unique extension (ũ, π̃) ∈ D′(Rn)×D′(Rn) of (u, π) satis-
fying

−∆ũ +∇π̃ = 0 and div ũ = 0 in Rn, (2.13)

which is given for all (ϕ, ψ) ∈ D(Rn)×D(Rn) by

〈ũ, ϕ〉 =
∫

Rn
+

[u · (ϕ−ϕ∗)− 2un ϕ
∗
n + 2un xn (div ϕ)∗] dx

+
〈
π, 2xn ϕ

∗
n − x2

n (div ϕ)∗
〉

W−1, p
`−1 (Rn

+)×
◦

W
1, p′
−`+1(R

n
+)

(2.14)

and

〈π̃, ψ〉 = 〈π, ψ − ψ∗ − 2xn ∂nψ
∗〉

W−1, p
`−1 (Rn

+)×
◦

W
1, p′
−`+1(R

n
+)

+ 4
∫

Rn
+

un ∂nψ
∗ dx.

(2.15)

Moreover, we have (ũ, π̃) ∈ W−2, p
`−3 (Rn)×W−2, p

`−2 (Rn) with the estimate

‖(ũ, π̃)‖W−2, p
`−3 (Rn)×W−2, p

`−2 (Rn) 6 C ‖(u, π)‖W 0, p
`−1(R

n
+)×W−1, p

`−1 (Rn
+). (2.16)
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Remark 2.10. Knowing that un satisfies the biharmonic problem (see (2.20)),
naturally we must find (2.3) from (2.14). Indeed, if we take ϕ′ = 0 in (2.14),
we get: for all ϕn ∈ D(Rn),

〈ũn, ϕn〉 =
∫

Rn
+

[un (ϕn − ϕ∗n)− 2un ϕ
∗
n − 2un xn ∂nϕ

∗
n] dx

+
〈
π, 2xn ϕ

∗
n + x2

n ∂nϕ
∗
n

〉
W−1, p

`−1 (Rn
+)×

◦
W

1, p′
−`+1(R

n
+)
.

Since ∆un = ∂nπ in Rn
+, we can write〈

π, 2xn ϕ
∗
n + x2

n ∂nϕ
∗
n

〉
W−1, p

`−1 (Rn
+)×

◦
W

1, p′
−`+1(R

n
+)

=
〈
π, ∂n(x2

n ϕ
∗
n)

〉
W−1, p

`−1 (Rn
+)×

◦
W

1, p′
−`+1(R

n
+)

= −
〈
∂nπ, x

2
n ϕ

∗
n

〉
W−2, p

`−1 (Rn
+)×

◦
W

2, p′
−`+1(R

n
+)

= −
〈
∆un, x

2
n ϕ

∗
n

〉
W−2, p

`−1 (Rn
+)×

◦
W

2, p′
−`+1(R

n
+)

= −
〈
un, ∆(x2

n ϕ
∗
n)

〉
W 0, p

`−1(R
n
+)×W 0, p′

−`+1(R
n
+)

= −
〈
un, 2ϕ∗n + 4xn ∂nϕ

∗
n − x2

n ∆ϕ∗n
〉

W 0, p
`−1(R

n
+)×W 0, p′

−`+1(R
n
+)

Hence,

〈ũn, ϕn〉 =
∫

Rn
+

un

(
ϕn − 5ϕ∗n − 6xn ∂nϕ

∗
n − x2

n ∆ϕ∗n
)

dx,

that is exactly the formula (2.3) for un.

Proof of Lemma 2.9. (1) As for the biharmonic operator, according to (2.14)
and (2.15), we can readily check that (ũ, π̃) ∈ W−2, p

`−3 (Rn) ×W−2, p
`−2 (Rn) with

the estimate (2.16). Besides, the argument for the uniqueness of the extension
also holds for the Stokes operator and it is clear that (2.14) and (2.15) define an
extension of (u, π) to Rn. Indeed, we have both for all ϕ ∈ D(Rn

+), 〈ũ, ϕ̃〉 =∫
Rn

+
u·ϕ dx and for all ψ ∈ D(Rn

+),
〈
π̃, ψ̃

〉
= 〈π, ψ〉

W−1, p
`−1 (Rn

+)×
◦

W
1, p′
−`+1(R

n
+)

, where

ϕ̃ and ψ̃ are respectively the zero extensions of ϕ and ψ to Rn.
(2) Now, we also can give the functional writing of this extension in Rn

−. For
all ϕ ∈ D(Rn

−), we have

〈ũ, ϕ̃〉 =
∫

Rn
+

[−u′ ·ϕ′∗ − 3un ϕ
∗
n + 2un xn (div ϕ)∗] dx

+
〈
π, 2xn ϕ

∗
n − x2

n (div ϕ)∗
〉
D′(Rn

+)×D(Rn
+)
.

Breaking down this expression, we get∫
Rn

+

(−u′ ·ϕ′∗ − 3un ϕ
∗
n) dx =

∫
Rn
−

(−u′∗ ·ϕ′ − 3u∗n ϕn) dx,
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∫
Rn

+

2un xn (div ϕ)∗ dx =
∫

Rn
−

−2u∗n xn div ϕ dx

=
∫

Rn
−

2∇(u∗n xn) ·ϕ dx

=
∫

Rn
−

2 (u∗n ϕn + xn∇u∗n ·ϕ) dx,

〈π, 2xn ϕ
∗
n〉D′(Rn

+)×D(Rn
+) = −2 〈π∗, xn ϕn〉D′(Rn

−)×D(Rn
−)

= −2 〈xn π
∗, ϕn〉D′(Rn

−)×D(Rn
−) ,〈

π, −x2
n (div ϕ)∗

〉
D′(Rn

+)×D(Rn
+)

= −
〈
x2

n π, (div ϕ)∗
〉
D′(Rn

+)×D(Rn
+)

= −
〈
x2

n π
∗, div ϕ

〉
D′(Rn

−)×D(Rn
−)

=
〈
∇(x2

n π
∗), ϕ

〉
D′(Rn

−)×D(Rn
−)

= 〈2xn π
∗, ϕn〉D′(Rn

−)×D(Rn
−) +

〈
x2

n∇π∗, ϕ
〉

D′(Rn
−)×D(Rn

−)
.

Hence,

〈ũ, ϕ̃〉 =
∫

Rn
−

(−u′∗ ·ϕ′ − u∗n ϕn + 2xn∇u∗n ·ϕ) dx

+
〈
x2

n∇π∗, ϕ
〉

D′(Rn
−)×D(Rn

−)
.

Let us notice that here we always can replace the duality brackets by integrals.
Indeed, ϕ has a compact support in Rn

−, besides u∗ and π∗ belong to C∞(Rn
−),

thus to L1
loc(Rn

−). So, we get〈
ũ′, ϕ̃′〉 =

∫
Rn
−

(
−u′∗ + 2xn∇′u∗n + x2

n∇′π∗
)
·ϕ′ dx,

i.e.
∀x ∈ Rn

−, ũ′(x) =
(
−u′ + 2xn∇′un + x2

n∇′π
)
(x∗);

and
〈ũn, ϕ̃n〉 =

∫
Rn
−

(
−u∗n + 2xn ∂nu

∗
n + x2

n ∂nπ
∗) ϕn dx,

i.e.
∀x ∈ Rn

−, ũn(x) =
(
−un − 2xn ∂nun − x2

n ∂nπ
)
(x∗).

Likewise, for all ψ ∈ D(Rn
−), we have〈

π̃, ψ̃
〉

= 〈π, −ψ∗ − 2xn ∂nψ
∗〉D′(Rn

+)×D(Rn
+) + 4

∫
Rn

+

un ∂nψ
∗ dx.

Separately, we get

〈π, −ψ∗〉D′(Rn
+)×D(Rn

+) = 〈−π∗, ψ〉D′(Rn
−)×D(Rn

−) ,

〈π, −2xn ∂nψ
∗〉 = −2 〈xn π, ∂nψ

∗〉D′(Rn
+)×D(Rn

+)

= −2 〈xn π
∗, ∂nψ〉D′(Rn

−)×D(Rn
−)

= 2 〈∂n(xn π
∗), ψ〉D′(Rn

−)×D(Rn
−)

= 2 〈π∗ + xn ∂nπ
∗, ψ〉D′(Rn

−)×D(Rn
−) ,
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∫
Rn

+

un ∂nψ
∗ dx = −

∫
Rn
−

u∗n ∂nψ dx =
∫

Rn
−

∂nu
∗
n ψ dx.

Hence,〈
π̃, ψ̃

〉
D′(Rn)×D(Rn)

= 〈π∗ + 2xn ∂nπ
∗ + 4 ∂nu

∗
n, ψ〉D′(Rn

−)×D(Rn
−) ,

i.e.
∀x ∈ Rn

−, π̃(x) = (π − 2xn ∂nπ − 4 ∂nun) (x∗).

So, we find the classical continuation formulae: for all x ∈ Rn
−, ũ′(x) =

(
−u′ + 2xn∇′un + x2

n∇′π
)
(x∗),

ũn(x) =
(
−un − 2xn ∂nun − x2

n ∂nπ
)
(x∗),

π̃(x) = (π − 2xn ∂nπ − 4 ∂nun) (x∗).

(3) Finally, it remains to show that this extension satisfies (2.13) — that is the
Stokes system in the whole space —. For all (ϕ, ψ) ∈ D(Rn)×D(Rn), we have∫

Rn

T (ũ, π̃) · (ϕ, ψ) dx = 〈(ũ, π̃), T (ϕ, ψ)〉D′(Rn)×D′(Rn), D(Rn)×D(Rn)

= 〈ũ, −∆ϕ +∇ψ〉D′(Rn)×D(Rn) − 〈π̃, div ϕ〉D′(Rn)×D(Rn) .

Then, according to (2.14) and (2.15), we get∫
Rn

T (ũ, π̃) · (ϕ, ψ) dx =

−
∫

Rn
+

[u ·∆(ϕ−ϕ∗)− 2un ∆ϕ∗n + 2un xn (div ∆ϕ)∗] dx

−
〈
π, 2xn ∆ϕ∗n − x2

n (div ∆ϕ)∗
〉

W−1, p
`−1 (Rn

+)×
◦

W
1, p′
−`+1(R

n
+)

+
∫

Rn
+

[u · ∇(ψ − ψ∗) + 4un ∂nψ
∗ + 2un xn ∆ψ∗] dx

+
〈
π, −2xn ∂nψ

∗ − x2
n ∆ψ∗

〉
W−1, p

`−1 (Rn
+)×

◦
W

1, p′
−`+1(R

n
+)

− 〈π, div(ϕ−ϕ∗) + 2 ∂nϕ
∗
n − 2xn ∂n(div ϕ)∗〉

W−1, p
`−1 (Rn

+)×
◦

W
1, p′
−`+1(R

n
+)

− 4
∫

Rn
+

un ∂n(div ϕ)∗ dx.

With intent to show that
∫

Rn T (ũ, π̃) · (ϕ, ψ)dx = 0, we are going to rewrite
this expression as follows:∫

Rn
+

u · (−∆Φ +∇Ψ) dx + 〈π, −div Φ〉
W−1, p

`−1 (Rn
+)×

◦
W

1, p′
−`+1(R

n
+)

= 〈(u, π), T (Φ, Ψ)〉
W 0, p

`−1(R
n
+)×W−1, p

`−1 (Rn
+), W 0, p′

−`+1(R
n
+)×

◦
W

1, p′
−`+1(R

n
+)
,

where (Φ, Ψ) ∈ W 2, p′

−`+1(Rn
+) ×W 1, p′

−`+1(Rn
+), with Φ = 0 and ∂nΦn = 0 on Γ.

Then, the zero of 〈(u, π), T (Φ, Ψ)〉 will be a straightforward consequence of
the Green formula (2.11).
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Let us construct the functions Φ and Ψ. We will start with the terms 〈π, ·〉.
Noticing that (div ∆ϕ)∗ = ∆(div ϕ)∗, we find:〈

π, −2xn ∆ϕ∗n + x2
n ∆(div ϕ)∗ − 2xn ∂nψ

∗ − x2
n ∆ψ∗

− div(ϕ−ϕ∗)− 2 ∂nϕ
∗
n + 2xn ∂n(div ϕ)∗

〉
=

〈
π, −div

[
ϕ−ϕ∗ + 2xn∇ϕ∗n + x2

n∇(ψ∗ − (div ϕ)∗)
] 〉
,

hence we put Φ = ϕ−ϕ∗ + 2xn∇ϕ∗n + x2
n∇(ψ∗ − (div ϕ)∗).

Next, we can group together the remaining terms in
∫

Rn
+
(A+B) dx, where

A = u · [−∆(ϕ−ϕ∗) +∇(ψ − ψ∗)]
B = un [2∆ϕ∗n − 2xn ∆(div ϕ)∗ + 4 ∂nψ

∗ + 2xn ∆ψ∗ − 4 ∂n(div ϕ)∗] .

We can rewrite B by means of en = (0, . . . , 0, 1) as follows:

B = u · 2 en ∆ [ϕ∗n + xn (ψ∗ − (div ϕ)∗)] .

Using the identity en ∆ξ = ∇(xn ∆ξ)−∆(xn∇ξ) + 2∇∂nξ, we get

B = u ·
[
2∇(xn ∆(ϕ∗n + xn (ψ∗ − (div ϕ)∗)))
− 2 ∆(xn∇(ϕ∗n + xn (ψ∗ − (div ϕ)∗)))

+ 4∇∂n(ϕ∗n + xn (ψ∗ − (div ϕ)∗))
]
,

= u ·
[
−∆(2xn∇ϕ∗n + x2

n∇(ψ∗ − (div ϕ)∗))

−∆(∇(x2
n (ψ∗ − (div ϕ)∗)))

+∇(2xn ∆(ϕ∗n + xn (ψ∗ − (div ϕ)∗)))

+∇(4 ∂n(ϕ∗n + xn (ψ∗ − (div ϕ)∗)))
]
,

= u ·
[
−∆(2xn∇ϕ∗n + x2

n∇(ψ∗ − (div ϕ)∗))
]

+ u · ∇
[
−∆(x2

n (ψ∗ − (div ϕ)∗))
+ 2xn ∆(ϕ∗n + xn (ψ∗ − (div ϕ)∗))

+ 4 ∂n(ϕ∗n + xn (ψ∗ − (div ϕ)∗))
]
,

= u ·
[
−∆(2xn∇ϕ∗n + x2

n∇(ψ∗ − (div ϕ)∗))
]

+ u · ∇
[
∆(2xn ϕ

∗
n + x2

n (ψ∗ − (div ϕ)∗))
]
.

So, we find
A+B = u · (−∆Φ +∇Ψ) ,

where {
Φ = ϕ−ϕ∗ + 2xn∇ϕ∗n + x2

n∇(ψ∗ − (div ϕ)∗),
Ψ = ψ − ψ∗ + ∆(2xn ϕ

∗
n + x2

n (ψ∗ − (div ϕ)∗)).

We can consider (ϕ, ψ) ∈ W 4, p′

−`+3(Rn)×W 3, p′

−`+3(Rn), then we can easily check
that (Φ, Ψ) ∈ W 2, p′

−`+1(Rn
+)×W 1, p′

−`+1(Rn
+) under hypothesis (2.9). Besides{

Φ = ϕ−ϕ∗ = 0 on Γ,
∂nΦn = ∂nϕn + ∂nϕ

∗
n = ∂nϕn − (∂nϕn)∗ = 0 on Γ.

Then,
∫

Rn T (ũ, π̃) · (ϕ, ψ) dx = 0 for all (ϕ, ψ) ∈ D(Rn) × D(Rn), that is
T (ũ, π̃) = (0, 0).
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Now, we can characterize the Stokes kernel. Let ` ∈ Z, let us denote by KS

the kernel of the Stokes operator (T, τ 0) in W 0, p
`−1(Rn

+) ×W−1, p
`−1 (Rn

+) and for
any k ∈ Z, introduce the following polynomial space

S+
k =

{
(λ, µ) ∈ P∆2

k × P∆
k−1;

−∆λ +∇µ = 0 and div λ = 0 in Rn
+, λ = 0 on Γ

}
.

Let (u, π) ∈ KS . By Lemma 2.9, we can see that π̃ and ũ are respectively har-
monic and biharmonic tempered distributions in Rn, thus polynomials. Hence
the following result:

Corollary 2.11. Let ` ∈ Z with hypothesis (2.9), then KS = S+
[1−`−n/p].

Again, this kernel does not depend on the regularity. That is, if we denote
by Km

S the kernel of the Stokes operator (T, τ 0) in W m+1, p
m+` (Rn

+)×Wm, p
m+`(Rn

+),
we have the following result:

Corollary 2.12. Let ` ∈ Z and m > −1 be two integers and assume that

n

p′
/∈ {1, . . . , `+ min{m, 1}} and

n

p
/∈ {1, . . . ,−`−m}, (2.17)

then Km
S = S+

[1−`−n/p].

We can be more specific about polynomials which build up this kernel. The
idea of this characterization is due to T. Z. Boulmezaoud (see [9]). We give
it with a completely different proof, based on the kernels of the Dirichlet and
Neumann problems for the Laplacian and the one of the biharmonic problem
with Dirichlet boundary conditions in the half-space.

Lemma 2.13. Let ` ∈ Z. Then (u, π) ∈ S+
[1−`−n/p] if and only if there exists

ϕ ∈ A∆
[1−`−n/p] such that

u = ϕ−∇
(
ΠD div′ ϕ′ + ΠN∂nϕn

)
, (2.18)

π = −div ϕ. (2.19)

Proof. Given (u, π) ∈ S+
[1−`−n/p], then we also have div u = 0 on Γ and thus

∂nun = 0 on Γ. Moreover ∆π = 0 in Rn
+ and thus ∆2un = 0 in Rn

+. So we get
the following biharmonic problem

∆2un = 0 in Rn
+ and un = ∂nun = 0 on Γ. (2.20)

Hence un ∈ B[1−`−n/p] and there exists (r, s) ∈ A∆
[−1−`−n/p]×N

∆
[−1−`−n/p] such

that un = ΠDr + ΠNs.
We can deduce from (2.7) that ∂nπ = ∆un = r+s in Rn

+ and thus π satisfies

∆π = 0 in Rn
+ and ∂nπ = s on Γ.

Then, there exists ψ ∈ N∆
[−`−n/p] (see [6]), such that

π = ψ +Ks in Rn
+, (2.21)

where Ks(x′, xn) =
∫ xn

0
s(x′, t)dt.
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So, we have ∆un = r + s = ∂nπ = ∂nψ + s in Rn
+, thus r = ∂nψ. Hence,

un = ΠD∂nψ + ΠNs in Rn
+. (2.22)

From (2.21), we get for every i ∈ {1, . . . , n− 1},

∆ui = ∂iπ = ∂iψ + ∂iKs ∈ N∆
[−1−`−n/p] ⊕A

∆
[−1−`−n/p]

= ∆ΠN∂iψ + ∆ΠD∂iKs.

Then, wi = ui −ΠN∂iψ −ΠD∂iKs satisfies

∆wi = 0 in Rn
+ and wi = 0 on Γ.

Hence the existence of ϕi ∈ A∆
[1−`−n/p] (see [4]), such that wi = ϕi, i.e.

ui = ΠN∂iψ + ΠD∂iKs+ ϕi.

Thereby, writing ϕ′ = (ϕ1, . . . , ϕn−1), we get

div′ u′ = ΠN∆′ψ + ΠD∆′Ks+ div′ ϕ′

= −ΠN∂
2
nψ −ΠD∂

2
nKs+ div′ ϕ′

= −1
2
xn ∂nψ −

1
2

(xn ∂nKs−Ks) + div′ ϕ′

= −1
2
xn ∂nψ −

1
2

(xn s−Ks) + div′ ϕ′.

In addition, by (2.22), we have

∂nun = ∂nΠD∂nψ + ∂nΠNs

=
1
2
xn ∂nψ +

1
2

(
xn s+

∫ xn

0

s(x′, t) dt
)

=
1
2
xn ∂nψ +

1
2

(xn s+Ks) .

Since div u = 0, we can deduce that div′ ϕ′ = −Ks and thus (2.21) can be
rewritten as π = ψ − div′ ϕ′. Now, if we set ϕn = −

∫ xn

0
ψ(x′, t) dt, then we

have ψ = −∂nϕn and ϕn ∈ A∆
[1−`−n/p]. So, we obtain π = −div ϕ, i.e. (2.19),

with ϕ = (ϕ′, ϕn) ∈ A∆
[1−`−n/p].

Coming back to the velocity field, we get for every i ∈ {1, . . . , n− 1},

ui = ϕi − ∂iΠN∂nϕn − ∂iΠD div′ ϕ′. (2.23)

Likewise, for the normal component, (2.22) yields

un = −ΠD∂
2
nϕn + ΠN∂nKs

=
1
2

(ϕn − xn ∂nϕn) +
1
2
xnKs

= ϕn −
1
2
xn ∂nϕn −

1
2
ϕn −

1
2
xn div′ ϕ′

= ϕn − ∂nΠN∂nϕn − ∂nΠD div′ ϕ′.

So, combining this with (2.23), we get u = ϕ−∇
(
ΠN∂nϕn + ΠD div′ ϕ′), i.e.

the statement (2.18).
Conversely, we can verify that such a pair (u, π) belongs to S+

[1−`−n/p].
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3 Generalized solutions to the Stokes system
In this section, we will establish the central result on the generalized solutions
to the Stokes system in the half-space, with Theorem 3.3. We will be interested
in the existence of a solution (u, π) ∈ W 1, p

` (Rn
+)×W 0, p

` (Rn
+) to (S+), for data

f ∈ W−1, p
` (Rn

+), h ∈ W 0, p
` (Rn

+) and g ∈ W
1−1/p, p
` (Γ). To avoid troubles

with the compatibility conditions, we will start with the study of the negative
weights. For this, as for the weight ` = 0 in [8], we will adapt a method used
by Farwig-Sohr in [15]. Then, we get back the positive weights by a duality
argument, and the compatibility condition naturally comes from the kernel of
the dual case.

First, we will establish the result for the homogeneous problem in the case
of negative weights:

Lemma 3.1. Let ` be a negative integer and assume that n/p /∈ {1, . . . ,−`}.
For any g ∈ W

1−1/p, p
` (Γ), the homogeneous Stokes problem

−∆u +∇π = 0 in Rn
+, (3.1)

div u = 0 in Rn
+, (3.2)

u = g on Γ, (3.3)

has a solution (u, π) ∈ W 1, p
` (Rn

+) × W 0, p
` (Rn

+), unique up to an element of
S+

[1−`−n/p], with the estimate

inf
(λ, µ)∈S+

[1−`−n/p]

(
‖u + λ‖W 1, p

` (Rn
+) + ‖π + µ‖W 0, p

` (Rn
+)

)
6 C ‖g‖

W
1−1/p, p
` (Γ)

.

Proof. The operator associated to this problem is clearly continuous, moreover
its kernel is known. The last point concerns its surjectivity, then the final
estimate will be a straightforward consequence of the Banach Theorem. So, we
only must prove the existence of a solution (u, π).

(1) Firstly, we will show that system (3.1)–(3.3) can be reduced to a set of
three problems on the fundamental operators ∆2 and ∆.

Applying the operator div to the first equation (3.1), we obtain

∆π = 0 in Rn
+. (3.4)

Now, applying the operator ∆ to the same equation (3.1), we deduce

∆2u = 0 in Rn
+. (3.5)

From the boundary condition (3.3), we take out

un = gn on Γ, (3.6)

and moreover div′ u′ = div′ g′ on Γ, where div′ u′ =
∑n−1

i=1 ∂iui.
Since div u = 0 in Rn

+, we also have div u = 0 on Γ, then we can write ∂nun +
div′ u′ = 0 on Γ, hence

∂nun = −div′ g′ on Γ. (3.7)
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Combining (3.5), (3.6) and (3.7), we obtain the following biharmonic problem

(P ) : ∆2un = 0 in Rn
+, un = gn and ∂Nun = −div′ g′ on Γ.

Then, combining (3.4) with the trace on Γ of the nth component in the equations
(3.1), we obtain the following Neumann problem

(Q) : ∆π = 0 in Rn
+ and ∂nπ = ∆un on Γ.

Lastly, if we consider the n−1 first components of the equations (3.1) and (3.3),
we can write the following Dirichlet problem

(R) : ∆u′ = ∇′π in Rn
+ and u′ = g′ on Γ.

(2) Next, we will solve these three problems.
Step 1: Problem (P ). Since g ∈ W

1−1/p, p
` (Γ), we have gn ∈ W 1−1/p, p

` (Γ)
and div′ g′ ∈ W−1/p, p

` (Γ), so (P ) is an homogeneous biharmonic problem with
singular boundary conditions. Since ` < 0, we know that problem (P ) has
a solution un ∈ W 1, p

` (Rn
+), unique up to an element of B[1−`−n/p] (see [7],

Theorem 4.5).
Step 2: Problem (Q). Since ∆2un = 0 in Rn

+, according to an appropriate
trace result (see [8], Lemma 3.7), we can deduce that ∆un|Γ ∈ W

−1−1/p, p
` (Γ).

As ` < 0, we know that problem (Q) has a solution π ∈ W 0, p
` (Rn

+), unique up
to an element of N∆

[−`−n/p] (see [5], Theorem 3.4).
Step 3: Problem (R). Thanks to the previous result, we can deduce that

∇′π ∈ W−1, p
` (Rn

+) and moreover g′ ∈ W
1−1/p, p
` (Γ). Since ` < 0, we know

that problem (R) has a solution u′ ∈ W 1, p
` (Rn

+), unique up to an element of
A∆

[1−`−n/p] (see [4], Theorem 3.2).
(3) In order, we have found un, π and u′, non-unique, which satisfy (3.3)

and partially satisfy (3.1), more precisely such that

−∆u′ +∇′π = 0 in Rn
+.

It remains to show we can choose them satisfying (3.2) and the nth component
of (3.1), i.e.

−∆un + ∂nπ = 0 in Rn
+.

Consider such a pair (u, π) satisfying problems (P ), (Q) and (R). Thanks to
the first equations of (P ) and (Q), we obtain

∆(∆un − ∂nπ) = ∆2un = 0 in Rn
+.

Thus, with the boundary condition of (Q), we can deduce that the distribution
∆un − ∂nπ ∈W−1, p

` (Rn
+) satisfies the Dirichlet problem

∆(∆un − ∂nπ) = 0 in Rn
+, ∆un − ∂nπ = 0 on Γ.

Then, we have ∆un−∂nπ = µ ∈ A∆
[−1−`−n/p] (see [8], Theorem 3.5). Moreover,

we can write µ = ∆ΠDµ, with ΠDµ = q ∈ B[1−`−n/p]. Setting u†n = un − q, we
now get ∆u†n − ∂nπ = 0 in Rn

+, and u†n is still solution to problem (P ).
Note that π is unchanged with u†n, because ∆q = µ = 0 on Γ.
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Thus, if we set u† = (u′, u†n), the pair (u†, π) completely satisfies (3.1).
Next, as ∆π = 0 in Rn

+, we also have ∆ div u† = 0 in Rn
+. Moreover, from

the boundary condition in (R), we obtain div′u′ = div′g′ on Γ. Then, with the
boundary condition in (P ), we can write

div u† = div′u′ + ∂nu
†
n = div′g′ − div′g′ = 0 on Γ.

So, we have div u† ∈W 0, p
` (Rn

+), which satisfies the Dirichlet problem

∆ div u† = 0 in Rn
+, div u† = 0 on Γ.

Then, we have div u† = ν ∈ A∆
[−`−n/p] (see [8], Theorem 3.8). If we take for

instance r(x) =
∫ x1

0
ν(t, x2, . . . , xn) dt, we have ν = ∂1r and thus ν = div r,

with r = (r, 0, . . . , 0). Setting u� = u† − r, we get div u� = 0 in Rn
+ and, as

r ∈ A∆
[1−`−n/p], we still have u�1 = u1 − r solution to the first component of

the equations (3.1) and (3.3). Consequently, the pair (u�, π) now completely
satisfies the problem (3.1)–(3.3).

Remark 3.2. If g is sufficiently smooth — i.e. g ∈ D(Γ) —, using a potential-
theoretic method, it has been shown (see [10], [11]) that there exists a unique
solution of (3.1)–(3.3) with a finite Dirichlet integral. In that case, we can see
that this solution is naturally coming in the functional setting of Lemma 3.1.

Now, we can give the general result:

Theorem 3.3. Let ` ∈ Z and assume that

n/p′ /∈ {1, . . . , `} and n/p /∈ {1, . . . ,−`}. (3.8)

For any f ∈ W−1, p
` (Rn

+), h ∈ W 0, p
` (Rn

+) and g ∈ W
1−1/p, p
` (Γ), satisfying the

compatibility condition

∀ϕ ∈ A∆
[1+`−n/p′], 〈f −∇h, ϕ〉

W−1, p
` (Rn

+)×
◦

W 1, p′
−` (Rn

+)

+
〈
div f , ΠD div′ ϕ′ + ΠN∂nϕn

〉
W−2, p

` (Rn
+)×

◦
W 2, p′

−` (Rn
+)

+ 〈g, ∂nϕ〉
W

1−1/p, p
` (Γ)×W

−1/p′, p′
−` (Γ)

= 0,

(3.9)

problem (S+) admits a solution (u, π) ∈ W 1, p
` (Rn

+)×W 0, p
` (Rn

+), unique up to
an element of S+

[1−`−n/p], and there exists a constant C such that

inf
(λ, µ)∈S+

[1−`−n/p]

(
‖u + λ‖W 1, p

` (Rn
+) + ‖π + µ‖W 0, p

` (Rn
+)

)
6

C
(
‖f‖W−1, p

` (Rn
+) + ‖h‖W 0, p

` (Rn
+) + ‖g‖

W
1−1/p, p
` (Γ)

)
.

Proof. (1) First, we still assume that ` < 0.
We write f = div F, where F = (F i)16i6n ∈ W 0, p

` (Rn
+), with the estimate

‖F‖W 0, p
` (Rn

+) 6 C ‖f‖W−1, p
` (Rn

+).
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Let us respectively denote by F̃ = (F̃ i)16i6n ∈ W 0, p
` (Rn) and h̃ ∈ W 0, p

` (Rn)
the zero extensions of F and h to Rn. By Theorem 1.2, we know that there
exists (ũ, π̃) ∈ W 1, p

` (Rn)×W 0, p
` (Rn) solution to the problem

(S̃) : −∆ũ +∇π̃ = div F̃ and div ũ = h̃ in Rn.

Consequently, we can reduce the system (S+) to the homogeneous problem

(S]) : −∆v +∇ϑ = 0 and div v = 0 in Rn
+, v = g] on Γ,

where we have set g] = g − ũ|Γ ∈ W
1−1/p, p
` (Γ). Next, thanks to Lemma 3.1,

we know that (S]) admits a solution (v, ϑ) ∈ W 1, p
` (Rn

+) ×W 0, p
` (Rn

+). Then,
(u, π) = (v + ũ|Rn

+
, ϑ+ π̃|Rn

+
) ∈ W 1, p

` (Rn
+)×W 0, p

` (Rn
+) is solution to (S+).

(2) We now assume that ` > 0.
We will reason by duality from the case ` < 0. So, we have established that,

under hypothesis (3.8), the Stokes operator

T :
(

◦
W1, p

` (Rn
+)×W 0, p

` (Rn
+)

)
/S+

[1−`−n/p] −→ W−1, p
` (Rn

+)×W 0, p
` (Rn

+)

(u, π) 7−→ (−∆u +∇π, −div u)

is an isomorphism for any integer ` < 0 and real number p > 1. Thus, replacing
p by p′ and −` by `, we deduce that its adjoint operator

T ∗ :
◦

W1, p
` (Rn

+)×W 0, p
` (Rn

+) −→
(
W−1, p

` (Rn
+)×W 0, p

` (Rn
+)

)
⊥ S+

[1+`−n/p′]

is an isomorphism for any integer ` > 0 and real number p > 1, always under
hypothesis (3.8). Moreover, by a density argument, we can readily show that

T ∗(v, ϑ) = (−∆v +∇ϑ, −div v).

So, we have proved that for any ` > 0, problem (S+) with g = 0 admits a
unique solution provided (f , h) ⊥ S+

[1+`−n/p′].
Now, it remains to show that the general problem (S+) can be reduced to

the particular case with g = 0, by means of a lifting function; and then that the
orthogonality condition on the lifted problem is equivalent to the compatibility
condition (3.9).

First, by Lemma 1.1, there exists a lifting function ug ∈ W 1, p
` (Rn

+) of g,
i.e. ug = g on Γ, such that

‖ug‖W 1, p
` (Rn

+) 6 C ‖g‖
W

1−1/p, p
` (Γ)

.

Set v = u − ug, then problem (S+) is equivalent to the following, with homo-
geneous boundary conditions:

(S?)

 −∆v +∇π = f + ∆ug in Rn
+,

div v = h− div ug in Rn
+,

v = 0 on Γ.

So, provided (f + ∆ug, −h+ div ug) ⊥ S+
[1+`−n/p′], we know that (S?) admits

a unique solution. This condition is written in the following way:

∀(λ, µ) ∈ S+
[1+`−n/p′], 〈f , λ〉+ 〈∆ug, λ〉 − 〈h, µ〉+ 〈div ug, µ〉 = 0.
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Moreover, we have the Green formula

〈∆ug, λ〉
W−1, p

` (Rn
+)×

◦
W 1, p′

−` (Rn
+)

=
∫

Rn
+

ug ·∆λdx+ 〈g, ∂nλ〉Γ ,

=
∫

Rn
+

ug ·∆λdx+
〈
g′, ∂nλ′

〉
Γ
,

because ∂nλn = 0 on Γ, according to the definition of the kernel. Next, we have
another Green formula

〈div ug, µ〉W 0, p
` (Rn

+)×W 0, p′
−` (Rn

+)
= −

∫
Rn

+

ug · ∇µdx− 〈gn, µ〉Γ .

Finally, since −∆λ +∇µ = 0, we have∫
Rn

+

ug ·∆λdx−
∫

Rn
+

ug · ∇µdx = 0,

then we get a first formulation for this compatibility condition:

∀(λ, µ) ∈ S+
[1+`−n/p′], 〈f , λ〉 − 〈h, µ〉+

〈
g′, ∂nλ′

〉
Γ
− 〈gn, µ〉Γ = 0.

Now, according to the characterization (2.18)–(2.19), we can replace each pair
(λ, µ) ∈ S+

[1+`−n/p′] by
(
ϕ−∇(ΠD div′ ϕ′ + ΠN∂nϕn), −div ϕ

)
, where ϕ be-

longs to A∆
[1+`−n/p′]. Then we have

〈f , λ〉
W−1, p

` (Rn
+)×

◦
W 1, p′

−` (Rn
+)

= 〈f , ϕ〉 −
〈
f , ∇(ΠD div′ ϕ′ + ΠN∂nϕn)

〉
,

= 〈f , ϕ〉+
〈
div f , ΠD div′ ϕ′ + ΠN∂nϕn

〉
,

because (ΠD div′ ϕ′ + ΠN∂nϕn)|Γ = 0. Likewise,

〈h, µ〉
W 0, p

` (Rn
+)×W 0, p′

−` (Rn
+)

= 〈h, −div ϕ〉
W 0, p

` (Rn
+)×W 0, p′

−` (Rn
+)

= 〈∇h, ϕ〉
W−1, p

` (Rn
+)×

◦
W 1, p′

−` (Rn
+)
.

Moreover, we can remark that on the one hand µ = −∂nϕn on Γ and on the
other hand, according to (2.7), we have ∂nλ′ = ∂nϕ′ on Γ, hence the equivalent
formulation:

∀ϕ ∈ A∆
[1+`−n/p′],

〈f −∇h, ϕ〉+
〈
div f , ΠD div′ ϕ′ + ΠN∂nϕn

〉
+ 〈g, ∂nϕ〉Γ = 0,

i.e. the compatibility condition (3.9).

4 Strong solutions and regularity
In this section, we are interested in the existence of strong solutions, i.e. of
solutions (u, π) ∈ W 2, p

`+1(Rn
+)×W 1, p

`+1(Rn
+); and more generaly, in the regularity

of solutions to the Stokes system (S+) according to the data.
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Theorem 4.1. Let ` ∈ Z and m > 1 be two integers and assume that

n/p′ /∈ {1, . . . , `+ 1} and n/p /∈ {1, . . . ,−`−m}. (4.1)

For any f ∈ W m−1, p
m+` (Rn

+), h ∈ Wm, p
m+`(Rn

+) and g ∈ W
m+1−1/p, p
m+` (Γ), satisfy-

ing the compatibility condition (3.9), problem (S+) admits a solution (u, π) ∈
W m+1, p

m+` (Rn
+) ×Wm, p

m+`(Rn
+), unique up to an element of S+

[1−`−n/p], and there
exists a constant C such that

inf
(λ, µ)∈S+

[1−`−n/p]

(
‖u + λ‖W m+1, p

m+` (Rn
+) + ‖π + µ‖W m, p

m+`(R
n
+)

)
6

C
(
‖f‖W m−1, p

m+` (Rn
+) + ‖h‖W m, p

m+`(R
n
+) + ‖g‖

W
m+1−1/p, p
m+` (Γ)

)
.

We have already proved this result for ` = 0 and ` = −1 in our previous
work (see [8], Corollaries 5.5 and 5.7). We will use similar arguments for the
other negative weights, with the aim of minimizing the set of critical values,
thanks to the known results on the harmonic and biharmonic operators in the
half-space. Then, for the positive weights, we will use a regularity argument to
avoid the compatibility conditions which would naturally appear in the auxiliary
problems with the previous method.

At first, we adapt Lemma 3.1 and its proof for more regular data.

Lemma 4.2. Let ` 6 −2 and m > 1 be two integers and assume that

n/p /∈ {1, . . . ,−`−m}. (4.2)

For any g ∈ W
m+1−1/p, p
m+` (Γ), the Stokes problem (3.1)–(3.3) has a solution

(u, π) ∈ W m+1, p
m+` (Rn

+) × Wm, p
m+`(Rn

+), unique up to an element of S+
[1−`−n/p],

with the corresponding estimate.

Proof. Point (1) of Lemma 3.1 is clearly unchanged. Since g ∈ W
m+1−1/p, p
m+` (Γ),

under hypothesis (4.2), problem (P ) has a solution un ∈ Wm+1, p
m+` (Rn

+), unique
up to an element of B[1−`−n/p] (see [6], Lemma 4.10). Hence we have ∆un|Γ ∈
W

m−1−1/p, p
m+` (Γ), and then problem (Q) has a solution π ∈Wm, p

m+`(Rn
+), unique up

to an element of N∆
[−`−n/p] (see [8], Theorem 3.4, for m = 1; and [6], Theorem

2.8, for m > 2). Hence ∇′π ∈ W m−1, p
m+` (Rn

+), and then problem (R) has a
solution u′ ∈ W m+1, p

m+` (Rn
+), unique up to an element of A∆

[1−`−n/p] (see [4],
Corollary 3.4). Likewise, point (3) is unchanged with respect to the proof of
Lemma 3.1.

Proof of Theorem 4.1. (1) Assume that ` 6 −2. The proof is quite similar to
the one of Theorem 3.3. Here again, the only question is the surjectivity of the
Stokes operator for such data. For that, we must simply replace Theorem 1.2
by Theorem 1.3 and Lemma 3.1 by Lemma 4.2 in the proof of the existence of
a solution for negative weights in Theorem 3.3.

(2) Assume that ` > 0. We simply extend the regularity argument used in
[8] for the cases ` = 0 and ` = −1. Now, hypothesis (4.1) is reduced to

n/p′ /∈ {1, . . . , `+ 1}. (4.3)
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Since n/p′ 6= `+ 1, we have the imbedding Wm−1, p
m+` (Rn

+) ↪→W−1, p
` (Rn

+), more-
over, Wm, p

m+`(Rn
+) ↪→ W 0, p

` (Rn
+) and W

m+1−1/p, p
m+` (Γ) ↪→ W

1−1/p, p
` (Γ) hold. So,

thanks to Theorem 3.3, we know that problem (S+) admits a unique solution
(u, π) ∈ W 1, p

` (Rn
+)×W 0, p

` (Rn
+). We will show by induction that

(f , h, g) ∈ W m−1, p
m+` (Rn

+)×Wm, p
m+`(R

n
+)×W

m+1−1/p, p
m+` (Γ)

⇒ (u, π) ∈ W m+1, p
m+` (Rn

+)×Wm, p
m+`(R

n
+).

(4.4)

For m = 0, (4.4) is true. Now assume that (4.4) is true for 0, 1, . . . ,m and
suppose that (f , h, g) ∈ W m, p

m+`+1(Rn
+)×Wm+1, p

m+`+1(Rn
+)×W

m+2−1/p, p
m+`+1 (Γ). Let

us prove that (u, π) ∈ W m+2, p
m+`+1(Rn

+) ×Wm+1, p
m+`+1(Rn

+). Since we also have the
imbeddings Wm, p

m+`+1(Rn
+) ↪→ Wm−1, p

m+` (Rn
+), Wm+1, p

m+`+1(Rn
+) ↪→ Wm, p

m+`(Rn
+) and

W
m+2−1/p, p
m+`+1 (Γ) ↪→ W

m+1−1/p, p
m+` (Γ), according to the induction hypothesis, we

can deduce that the solution (u, π) ∈ W m+1, p
m+` (Rn

+)×Wm, p
m+`(Rn

+). Now, for any
i ∈ {1, . . . , n− 1}, we have

−∆(% ∂iu) +∇(% ∂iπ)

= % ∂if +
2
%
x.∇∂iu +

(
n− 1
%

+
1
%3

)
∂iu +

1
%
x ∂iπ.

Thus, −∆(% ∂iu) +∇(% ∂iπ) ∈ W m−1, p
m+` (Rn

+). Moreover,

div(% ∂iu) =
1
%
x ∂iu + % ∂ih.

Thus, div(% ∂iu) ∈ Wm, p
m+`(Rn

+). We also have γ0(% ∂iu) = %′ ∂iγ0u = %′ ∂ig ∈
W

m+1−1/p, p
m+` (Γ). So, by induction hypothesis, we can deduce that

∀i ∈ {1, . . . , n− 1}, (∂iu, ∂iπ) ∈ W m+1, p
m+`+1(R

n
+)×Wm, p

m+`+1(R
n
+).

It remains to prove that (∂nu, ∂nπ) ∈ W m+1, p
m+`+1(Rn

+)×Wm, p
m+`+1(Rn

+). For that,
let us observe that for any i ∈ {1, . . . , n− 1}, we have

∂i∂nu = ∂n∂iu ∈ W m, p
m+`+1(Rn

+),
∂2

nui = −∆′ui + ∂iπ − fi ∈Wm, p
m+`+1(Rn

+),
∂2

nun = ∂nh− ∂n div′ u′ ∈Wm, p
m+`+1(Rn

+),
∂nπ = fn + ∆un ∈Wm, p

m+`+1(Rn
+).

Hence, ∇(∂nu) ∈ W m, p
m+`+1(Rn

+) and knowing that ∂nu ∈ W m, p
m+`(Rn

+), we can
deduce that ∂nu ∈ W m+1, p

m+`+1(Rn
+), according to definition (1.1). Consequently,

we have ∇u ∈ W m+1, p
m+`+1(Rn

+). Likewise, ∇π ∈ W m, p
m+`+1(Rn

+) and finally, we
can conclude that (u, π) ∈ W m+2, p

m+`+1(Rn
+)×Wm+1, p

m+`+1(Rn
+).

5 Very weak solutions
The aim of this section is to come back to the homogeneous Stokes system
(3.1)–(3.3), but with singular data on the boundary. In [8], we solved it in the
cases g ∈ W

−1/p, p
−1 (Γ) and g ∈ W

−1/p, p
0 (Γ). Here, we will extend these results

to the other weights, introducing the question of the kernel and, by duality, the
compatibility condition. Thanks to Lemma 2.8, the proof will be more direct.
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Theorem 5.1. Let ` ∈ Z with hypothesis (2.9). For any g ∈ W
−1/p, p
`−1 (Γ),

satisfying the compatibility condition

∀ϕ ∈ A∆
[1+`−n/p′], 〈g, ∂nϕ〉

W
−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

= 0, (5.1)

problem (3.1)–(3.3) admits a solution (u, π) ∈ W 0, p
`−1(Rn

+)×W−1, p
`−1 (Rn

+), unique
up to an element of S+

[1−`−n/p], and there exists a constant C such that

inf
(λ, µ)∈S+

[1−`−n/p]

(
‖u + λ‖W 0, p

`−1(R
n
+) + ‖π + µ‖W−1, p

`−1 (Rn
+)

)
6 C ‖g‖

W
−1/p, p
`−1 (Γ)

.

Proof. To start with, let us observe that Lemma 2.8 gives a meaning to these
boundary conditions. Besides, thanks to the Green formula (2.11), we get the
equivalence between problem (3.1)–(3.3) and the variational formulation:
Find (u, π) ∈ T p

`, 1(Rn
+) satisfying

∀(v, ϑ) ∈ W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)

such that v = 0 and div v = 0 on Γ,
〈(u, π), T (v, ϑ)〉

W 0, p
`−1(R

n
+)×W−1, p

`−1 (Rn
+), W 0, p′

−`+1(R
n
+)×

◦
W

1, p′
−`+1(R

n
+)

= 〈g, (∂nv′, −ϑ)〉
W

−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

.

(5.2)

Now, let us solve problem (5.2). By Theorem 4.1, we know that under hypothesis
(2.9), for all (f , h) ∈ W 0, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+) ⊥ S+

[1−`−n/p], there exists a

unique (v, ϑ) ∈ W 2, p′

−`+1(Rn
+)×W 1, p′

−`+1(Rn
+)/S+

[1+`−n/p′] solution to

−∆v +∇ϑ = f and div v = h in Rn
+, v = 0 on Γ,

with the estimate

‖(v, ϑ)‖
W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)/S+

[1+`−n/p′]
6 C

(
‖f‖

W 0, p′
−`+1(R

n
+)

+ ‖h‖
W 1, p′

−`+1(R
n
+)

)
.

Consider the linear form Λ : (f , h) 7−→ 〈g, (∂nv′, −ϑ)〉
W

−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

defined on W 0, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+) ⊥ S+

[1−`−n/p]. By (5.1), we have for any
ϕ ∈ A∆

[1+`−n/p′] — or equivalently, for any (λ, µ) ∈ S+
[1+`−n/p′] —,

|Λ(f , h)| =
∣∣∣∣〈g, (∂nv′, −ϑ) + ∂nϕ〉

W
−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

∣∣∣∣
=

∣∣∣∣〈g, (∂n[v′ + λ′], −[ϑ+ µ])
〉

W
−1/p, p
`−1 (Γ)×W

1/p, p′
−`+1 (Γ)

∣∣∣∣
6 C ‖g‖

W
−1/p, p
`−1 (Γ)

‖(v, ϑ) + (λ, µ)‖
W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)
.

Thus

|Λ(f , h)| 6 C ‖g‖
W

−1/p, p
`−1 (Γ)

‖(v, ϑ)‖
W 2, p′

−`+1(R
n
+)×W 1, p′

−`+1(R
n
+)/S+

[1+`−n/p′]

6 C ‖g‖
W

−1/p, p
`−1 (Γ)

(
‖f‖

W 0, p′
−`+1(R

n
+)

+ ‖h‖
W 1, p′

−`+1(R
n
+)

)
.
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In other words, Λ is continuous on W 0, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+) ⊥ S+

[1−`−n/p],
and according to the Riesz representation theorem, we can deduce that there
exists a unique (u, π) ∈ W 0, p

`−1(Rn
+)×W−1, p

`−1 (Rn
+)/S+

[1−`−n/p] which is the dual

space of W 0, p′

−`+1(Rn
+)×

◦
W

1, p′

−`+1(Rn
+) ⊥ S+

[1−`−n/p], such that

∀(f , h) ∈ W 0, p′

−`+1(R
n
+)×

◦
W

1, p′

−`+1(R
n
+),

Λ(f , h) = 〈u,f〉
W 0, p

`−1(R
n
+)×W 0, p′

−`+1(R
n
+)

+ 〈π,−h〉
W−1, p

`−1 (Rn
+)×

◦
W

1, p′
−`+1(R

n
+)
,

i.e. the pair (u, π) satisfies (5.2) and the kernel of the associated operator is
S+

[1−`−n/p].
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