
HAL Id: hal-00428967
https://hal.science/hal-00428967v1

Submitted on 30 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Constraint on the Number of Distinct Vectors with
Application to Localization

Gilles Chabert, Luc Jaulin, Xavier Lorca

To cite this version:
Gilles Chabert, Luc Jaulin, Xavier Lorca. A Constraint on the Number of Distinct Vectors with
Application to Localization. CP’09 (15th International Conference on Principles and Practice of
Constraint Programming), Sep 2009, Lisbon, Portugal. p. 196-210. �hal-00428967�

https://hal.science/hal-00428967v1
https://hal.archives-ouvertes.fr

A Constraint on the Number of Distinct Vectors

with Application to Localization

Gilles Chabert1, Luc Jaulin2, and Xavier Lorca1

1 Ecole des Mines de Nantes LINA CNRS UMR 6241,
4, rue Alfred Kastler 44300 Nantes, France

gilles.chabert@emn.fr xavier.lorca@emn.fr
2 ENSIETA, 2, rue François Verny 29806 Brest Cedex 9, France

luc.jaulin@ensieta.fr

Abstract. This paper introduces a generalization of the nvalue con-
straint that bounds the number of distinct values taken by a set of vari-
ables.The generalized constraint (called nvector) bounds the number of
distinct (multi-dimensional) vectors. The first contribution of this paper
is to show that this global constraint has a significant role to play with
continuous domains, by taking the example of simultaneous localization
and map building (SLAM). This type of problem arises in the context
of mobile robotics. The second contribution is to prove that enforcing
bound consistency on this constraint is NP-complete. A simple contrac-
tor (or propagator) is proposed and applied on a real application.

1 Introduction

This paper can be viewed as a follow-up of [7] on the application side and [1] on
the theoretical side. It proposes a generalization of the nvalue global constraint
in the context of a relevant application. The nvalue constraint is satisfied for
a set of variables x(1),. . ., x(k) and an extra variable n if the cardinality of
{x(1), . . . , x(k)} (i.e., the number of distinct values) equals to n. This constraint
appears in problems where the number of resources have to be restricted. The
generalization is called nvector and matches exactly the same definition, except
that the x(i) are vectors of variables instead of single variables. Of course, all the
x(i) must have the same dimension (i.e., the same number of components) and
the constraint is that the cardinality of {x(1), . . . , x(k)} must be equal to n.

We first show that this new global constraint allows a much better modeling
of the SLAM (simultaneous localization and map building) problem in mobile
robotics. In fact, it allows to make automatic and thus robust a process part
of which was performed by hand. Second, we classify the underlying theoretical
complexity of the constraint. Finally, a simple algorithm is given and illustrated
on a real example.

Since the application context involves continuous domains, we shall soon focus
on the continuous case although the definition of nvector does not depend on

the underlying type of domains.

The application is described in Section 2. We first give an informal description
of what SLAM is all about. The model is then built step-by-step and its main
limitation is discussed. Next, the constraint itself is studied from Section 3 to Sec-
tion 5. After providing its semantic (Section 3), the complexity issue is analyzed
(Section 4), and a simple contractor is introduced (Section 5). Finally, Section 6
shows how the nvector constraint is used in the SLAM problem modeling, and
the improvements obtained are illustrated graphically.

In the rest of the paper, the reader is assumed to have basic knowledge on
constraint programming over real domains and interval arithmetics [9]. Domains
of real variables are represented by intervals. A Cartesian product of intervals is
called a box. Intervals and boxes are surrounded by brackets, e.g., [x]. Vectors
are in boldface letters. If x is a set of vectors, x(i) stands for the ith vector and

x
(i)
j for the jth component of the ith vector. The same convention for indices

carries over vector of boxes: [x(i)] and [x
(i)
j] are respectively the domains of x(i)

and x
(i)
j . Given a mapping f , range(f, [x]) denotes the set-theoretical image of

[x] by f and f([x]) denotes the image of [x] by an interval extension of f .

2 Application Context

The nvector constraint can bring substantial improvements to constraint-based
algorithms for solving the simultaneous localization and map building (SLAM)
problem. This section describes the principles of the SLAM and provides a con-
straint model of this application.

2.1 Outline of the SLAM problem

The SLAM problem can be described by an autonomous robot moving for a
period of time in an unknown environment where the self-location cannot be
performed accurately with the help of external equipments (typically, the GPS),
and the observation of the environment can only be performed by the robot
itself. Examples of such environments include under the sea and the surface of
other planets (where the GPS is unavailable). Both limitations are also present
indoor where the GPS is often considered unreliable.

In the SLAM problem, we have to compute as precisely as possible a map of the
environment (i.e., the position of the detected objects), as well as the trajectory
of the robot. The input data is the set of all measures recorded by the robot
during the mission from its embedded sensors. These sensors can be divided
into two categories: proprioceptive, those that allow to estimate the position of
the robot itself (e.g.: a gyroscope) and exteroceptive, those that allows to detect
objects of the environment (e.g.: a camera). Note that the positions of the robot
at the beginning and the end of the mission are usually known with a good
precision. Objects are called landmarks (or seamarks under the sea).

2

Since nothing can be observed from outside (should it be a landmark or the robot
itself), uncertainties of measures get accumulated every time step. The more the
mission lasts, the more the robot gets lost. Likewise, detection of landmarks is
achieved with less and less accuracy. However, when the robot detects again a
landmark that was already placed with a good accuracy on the map, its position
can be adjusted from that of the landmark and the whole process of estimation
(trajectory and map building) can be refined (see Figure 1). Hence, localization

(b)

(d)(c)

(a)

Fig. 1: A simple SLAM example. The robot is a mouse and landmarks are trees. Un-
certainties on the robot position (resp. trees) are represented by blank (resp. hatched)
ellipsis. (a) At initial time, the robot knows where it is. (b) The uncertainty on the
robot position increases while it moves. When a second tree is detected, there is a
significant uncertainty on its real position. (c) The first tree is met again and used to
adjust the position of the robot. (d) With a backward computation of the trajectory,
uncertainties on the previous positions and observations are reduced.

and map building are two connected goals. This interdependence is one of the
reason that makes traditional probabilistic approaches inadequate. In contrast,
it makes no difficulty in the constraint programming framework, as shown below.

2.2 Basic Constraint Model

Let us now focus on a basic modeling of the SLAM. Many details on a real
experiment (description of the robot, experimental setup, full constraint model,
etc.) can be found in [7] and [8] that deal with SLAM in a submarine context.

3

The SLAM problem is cast into a CSP as follows. First, the motion of the
autonomous robot obeys a differential equation: p′(t) = f(u(t)), where p(t) is
the position of the robot in space, u(t) a vector of m inputs (speed, rotation
angles, etc.) and f a mapping from R

m to R
3. This equation can be cast into a

CSP using a classical interval variant of the Euler method. Details can be found
in [7] and [8]. The discretization introduces a set of (N + 1) variables p(0),. . .,
p(N) where δt is the time lapse between to measures and Nδt the total duration
of the mission. These variables represent a discretization of the trajectory p, i.e.,

∀i, 0 ≤ i ≤ N, p(i) = p(t0 + iδt) (1)

has to be fulfilled. The discretization also introduces N constraints.

Thus, the CSP provides a rigorous enclosure of the trajectory, i.e., for every
possible input u(t) there exists a feasible tuple (p(0), . . . ,p(N)) such that the
trajectory p corresponding to the inputs satisfies (1).

2.3 Introducing Detections

Now that the motion of the vehicle has been cast into a CSP, let us take into
account detections. In the mission, n landmarks have to be localized. Their
coordinates will be denoted by o(1), . . . ,o(n). Once the mission is over, a human
operator scans the waterfall of images provided by exteroceptive sensors. When
a group of pixels are suspected to correspond to a landmark, a box encompassing
the corresponding area is entered as a potential detection. The position of a pixel
on the image can be directly translated into a distance between the landmark and
the robot. First, the detection time τ(i) (i.e., the number of time steps since t0)
and the distance ri are determined. Then, the landmark number σ(i) is identified
which amount to match detections with each others. Finally, a distance constraint
dist(p(τ(i)),o(σ(i))) = ri between the landmark and the robot is added into the
model. Therefore, in [7], the model was augmented as follows:

(P ′)

additional variables:
o(1) ∈ [o(1)], . . . , o(n) ∈ [o(n)]

domains:
[o(1)] := (−∞,+∞), . . . , [o(n)] := (−∞,+∞)

additional constraints:
dist(p(τ(i)),o(σ(i))) = ri (i = 1..k)

Humans are subject to three types of mistakes: (1) Omission, a landmark on
the waterfall is missed by the operator; (2) Illusion, the operator adds a detec-
tion where there is no landmark; (3) Mismatching, the operator makes a wrong
identification (do not match detections properly). On the one hand, the two first
types of mistakes have been experimentally proven as irrelevant1. On the other

1 The overall accuracy may suffer from a lack of detections but the consistency of the
model is always maintained (at any time, many landmarks are anyway out of the
scope of the sensors and somehow “missed”). Besides, perception is based on very
specific visual patterns that rule out any confusion with elements of the environment.

4

hand, if identifying the type of a landmark is fairly easy, recognizing one partic-

ular landmark is very hard. In other words, the main difficulty in the operator’s
task is matching landmarks with each others. The bad news is that mismatch-
ing makes the model inconsistent. Hence, the third type of mistakes is critical
and requires a lot of energy to be avoided. Up to now, in the experiments made
in [7, 8], matching was simply performed using a priori knowledge of seamark
positions.

2.4 Our contribution

The ambition of our work is simply to skip the operator’s matching phase. The
idea is to use the knowledge on the number of landmarks to make this matching
automatically by propagation. This is a realistic approach. In all the missions
performed with submarine robots, a set of beacons is dropped into the sea to
make the SLAM possible. The positions of the beacons at the bottom is not
known because of currents inside water (consider also that in hostile areas they
may be dropped by plane) but their cardinality is.

3 The Number of Distinct Vectors Constraint

Consider k vectors of variables x(1), . . . ,x(k) of equal dimension (which is 2
or 3 in practice) and an integer-valued variable n. The constraint nvector(n,
{x(1), . . . ,x(k)}) holds if there is n distinct vectors between x(1) and x(k) which
can be written:

nvector(n, {x(1), . . . ,x(k)}) ⇐⇒ |{x(1), . . . ,x(k)}| = n,

where |{x(1), . . . ,x(k)}| stands for the cardinality of the set of “values” taken
by x(1), . . . ,x(k). An equivalent definition that better conform to the intuition
behind is that the number of distinct “values” in {x(1), . . . ,x(k)} equals to n.

A family of constraints can be derived from nvector in the same way as for
nvalue [2]. The constraint more specifically considered in this paper is atmost
nvector that bounds the number of distinct vectors:

atmost nvector(n, {x(1), . . . ,x(k)}) ⇐⇒ |{x(1), . . . ,x(k)}| ≤ n.

It must be pointed out that, with continuous domains, the constraints nvector
and atmost nvector are operationally equivalent. Indeed, excepted in very par-
ticular situations where some domains are degenerated intervals (reduced to sin-
gle points), variables can always take an infinity of possible values. This means
that any set of k non-degenerated boxes always share at least n values. In the
nvector constraint, only the upper bound (“at most n”) can actually filters.
This remark generalizes the fact that all diff is always satisfied with non-
degenerated intervals. Figure 2a shows an example with n = 2 (the variable is
ground) and k = 5 in two dimensions. Figure 2b shows the corresponding result
of a bound consistency filtering.

5

���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

[x(3)]

[x(5)]

[x(4)]

v(1)
v(2)

[x(1)]

[x(2)]

(a) Initial state

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

[x(4)][x(2)]

[x(3)]

[x(5)]

[x(1)]

(b) Final state

Fig. 2: (a) The atmost nvector constraint with n = 2 and k = 5. The domains of x
(i) is

the cross product of two intervals [x(i)] = [x
(i)
1]× [x

(i)
2]. The constraint is satisfiable be-

cause there exists two vectors v
(1) and v

(2) such that ∀i, 1 ≤ i ≤ n, [x(i)]∩{v(1),v(2)} 6=
∅. The set of all such pairs (v(1),v(2)) is represented by the two little dashed boxes. (b)
Result of the bound consistency with respect to the atmost nvector constraint. The
domain of [x(4)] encloses the two little rectangles.

4 Operational Complexity

Enforcing generalized arc consistency (GAC) for the atmost-nvalue constraint
is NP-hard [3]. Worse, simply computing the minimum number of distinct val-
ues in a set of domains is NP-hard [2]. However, when domains are intervals,
these problems are polynomial [1, 6]. The question under interest is to know if
atmost-nvector is still a tractable problem when domains are boxes (vector of
intervals), i.e., when the dimension is greater than 1. We will show that it is not.

Focusing on this type of domains is justified because continuous constraints are
always handled with intervals. This also implies that bound consistency is the
only acceptable form of filtering that can be applied with continuous domains.2

We shall restrict ourselves to the calculation of the minimum number of distinct
values (also called the minimum cardinality) and to boxes of dimension 2, i.e.,
rectangles. As noticed in [2], the minimum number of distinct values shared by
a set of rectangles is also the cardinality of the minimum hitting set. A hitting
set is a collection of points that intersects each rectangle. In the two following
subsections, we consider the equivalent problem of finding the cardinality of the
minimum clique partition of a rectangle graph.

4.1 Rectangle Graphs and Clique Partitions

A rectangle graph is a n-vertices graph Gr = (Vr, Er) that can be extracted
from n axis-aligned rectangles in the plane by (1) creating a vertex for each

2 Allowing gaps inside intervals and applying GAC filtering leads to unacceptable
space complexity [4].

6

a rectangle, and (2) adding an edge when there is a non-empty intersection
between two rectangles. Figure 3 depicts the two views of a rectangle graph.

A clique partition of a graph is a collection of complete subgraphs that parti-
tion all the vertices. A minimal clique partition is a clique partition with the
smallest cardinality (i.e., with the smallest number of subgraphs). Since any set
of pairwise intersecting rectangles intersect all mutually (by Helly’s theorem), a
k-clique in a rectangle graph represents the intersection of k rectangles in the
geometrical view. For instance, the 3-clique S1 of Gr in Figure 3a represents
the intersection of three rectangles (R4, R5, R6) in Figure 3b, depicted by the
black rectangle S1. As a consequence, looking for the minimum hitting set or the

S1

R1

R2

R4

R3

R7 R5
R6

(a) Rectangle graph

R1

R7

R5

R4

R2
R3

R6

S1

(b) Geometrical view

Fig. 3: A rectangle graph and its geometrical representation (axis-aligned rectangles).

minimum clique partition are indeed equivalent problems for rectangle graphs.
The final problem under consideration can then be formulated as follows:

Rectangle Clique Partition (RCP)

– Instance: A rectangle graph Gr = (Vr, Er) given in the form of |Vr| axis-
aligned rectangles in the plane and k ≤ |Vr|.

– Question: Can Vr be partition into k disjoint sets V1, . . . , Vk such that
∀i, 1 ≤ i ≤ k the subgraph induced by Vi is a complete graph?

Proposition 1. RCP is NP-complete.

The fact that RCP belongs to NP is easy to prove: the given of a k–partition
is a certificate that can be checked in polynomial time. The rest of the proof,
i.e., the reduction of a NP-complete problem to RCP is given below. Note that
the transformation below is inspired from that in [10] but contains fundamental
differences.

4.2 Building a Rectangle Graph from a Cubic Planar Graph

The problem we will reduce to RCP involves planar graphs which require the
introduction of extra vocabulary. An embedding of a graph G on the plane is a

7

representation of G (see Figure 4) in which points are associated to vertices and
arcs are associated to edges in such a way:

– the endpoints of the arc associated to an edge e are the points associated to
the end vertices of e,

– no arcs include points associated to other vertices,
– two arcs never intersect at a point which is interior to either of the arcs.

A planar graph (Figure 4a) is a graph which admits an embedding on the plane
(Figure 4b), and a cubic graph is a 3-regular graph, i.e., a graph in which every
vertex has 3 incident edges. A rectilinear embedding is an embedding where every
arc is a broken line formed by horizontal and vertical segments (Figure 4c).

v1

v3

v2

v4

(a) Cubic Pla-
nar graph.

p1
p4

p2

p3

(b) A possible embedding on
the plane.

p3

p2

p1
p4

(c) A rectilinear embedding
on the plane.

Fig. 4: A (cubic) planar graph, one of its embedding on the plane, and one of its
rectilinear embedding.

We are now in position to discuss about the transformation itself. Consider a pla-
nar cubic graph GP . First, Tammassia and al. gave a polytime algorithm in [11]
for computing a 5-rectilinear embedding of a planar graph, i.e., a rectilinear
embedding where each broken line is formed by 5 segments. This is illustrated
by Figure 5. Second, this embedding can be transformed into a rectangle graph

p3 p1p4

p2

Fig. 5: A 5-rectilinear embedding of the cubic planar graph given in Figure 4 (segments
are delineated by arrows).

8

using the patterns depicted on Figures 6a and 6b:

– Every segment of the 5-rectilinear embedding of Gp is replaced by a rectangle
such that if two segments do not intersect in the 5-rectilinear embedding,
the corresponding rectangles do not intersect (should they be flat).

– For segments having a vertex at a common endpoint, the corresponding
rectangles intersect all mutually in the neighborhood of this vertex (Figure
6a). Remember that the case of a leaf node is irrelevant because Gp is cubic.

– For segments having a bend in common, the rectangles are disjoint.
– An extra rectangle is added in the neighborhood of each bend. This rectangle

intersects the two rectangles associated to the segments (Figure 6b). The
three rectangles cannot intersect all mutually due to the previous point.

p S

R3

R2

R1 R1

R2

R3

(a) Transformation of segments at
a common endpoint.

R1 R2

R3

R3 R1 R2

(b) Transformation of segments
having a bend in common.

Fig. 6: Atomic operations to transform the 5-rectilinear embedding of a cubic planar
graph (left) into the geometrical view (middle) of a rectangle graph (right).

4.3 Reduction From Cubic Planar Vertex Cover

Consider the well-known vertex cover problem. This problem remains NP-Complete
even for cubic planar graphs [12]. It is formally stated as follows:

Cubic Planar Vertex Cover (CPVC)

– Instance: A cubic planar graph Gp = (Vp, Ep) and k ≤ |Vp|.
– Question: Is there a subset V ′ ⊆ Vp with |V ′| ≤ k such each edge of Ep has

at least one of its extremity in V ′?

Lemma 1. Let Gp be a n-vertex m-edges cubic planar graph and an integer

value k ≤ n. Let Gr be the rectangle graph obtained by the transformation of §4.2.
The answer to CPVC with (Gp, k) is yes iff the answer to RCP with (Gr, k +
4 × m) is yes.

Proof. This proof is illustrated in Figure 7.

Forward implication: Assume a n-vertex m-edges cubic planar graph Gp has
a vertex cover V ′ of cardinality k. We shall build a partition P of Gr, initially

9

empty. To each edge e = (vi, vj) of Ep corresponds a 2-degree chain ce in Gr,
with exactly nine vertices, from a vertex of the 3-clique pi(associated to vi) to a
vertex of the 3-clique pj (associated to vj).

First, for every vi ∈ V ′, add the 3-clique pi in P. Since V ′ is a covering set,
every chain has now one of its extreme vertex inside a clique of P. The 8 other
remaining vertices of the chain can then easily be partitioned into 4 additional
cliques. Add these cliques to P.

Once all these additional cliques are added to P, the latter is a partition of Gr

whose size is k + 4 × m.

vi vj
e

(a) Edge of Gp.

pjpi

e

(b) Rectilinear em-
bedding view.

R1 R2

R3 R4

R5 R6

R7 R8

R9

pi

pj

ce

(c) Corresponding chain

(subgraph of Gr).

Fig. 7: Transforming an edge of the cubic planar graph GP into, first, its rectilinear
view, second, a rectangle graph Gr.

Backward implication: Assume Gr can be partition into k+4×m cliques and
let P be such a partition. We shall call a free clique a clique that only contain
vertices of the same given chain. Similarly, a shared clique is a clique involving
(extreme) vertices of at least two different chains.

Every chain contains 9 vertices. One can easily see that it requires at least 5
cliques to be partitioned, 4 of which are free. For every chain c, remove 4 free
cliques of c from P. Then there is still (at least) one clique left in P that involves
a vertex of c. When this process is done, the number of remaining cliques in P
is k + 4 × m − 4 × m = k.

Now, for every clique C of P: if C is shared, put the corresponding vertex of
GP in V ′. If C is free, consider the edge e of GP associated to the chain and
put anyone of the two endpoint vertices of e into V ′. We have |V ′| = k and
since every chain has a vertex in the remaining cliques of P, every edge of GP

is covered by V ′. ⊓⊔

5 A Very First Polytime Contractor

We shall now propose a simple algorithm for computing bound consistency with
respect to atmost nvector. Let us denote by dim the dimension of the vectors.

10

The contractor is derived from the following implication:

atmost nvector(n, {x(1), . . . ,x(k)})=⇒

atmost nvalue(n, {x
(1)
1 , . . . , x

(k)
1 }) ∧ . . . ∧ atmost nvalue(n, {x

(1)
dim, . . . , x

(k)
dim}).

Therefore, applying a contractor for atmost nvalue with the projections of the
boxes onto each dimension in turn gives a contractor for atmost nvector. Since
a contractor for atmost nvalue enforcing GAC (hence, bound consistency) when
domains are intervals already exists [1], we are done. This is achieved in O(dim×
k log(k)). Although the purpose of this paper is not to describe an efficient
contractor, we shall introduce right away a first (but significant) improvement
of our naive algorithm.

���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

pr
oj

ec
tio

n
on

to

kernels

[x(5)]
[x(6)]

[x(7)]
[x(2)]

[x(1)] [x(3)]

[x
(1)
1]

[x
(5)
1]

[x
(4)
1]

[x
(3)
1]

[x
(7)
1]

[G1] [G2]

x
1

[G3]

[x(4)]

[x
(2)
1]

[x
(6)
1]

Fig. 8: Illustration of what the at most nvalue algorithm yields. Here, k = 7, dim = 2,
n = 3 and the algorithm is run for the first projection (i.e., onto the horizontal axis).

Three groups, represented by gray ellipsis, are identified, namely G1 = {x(1)
1 , x

(2)
1 },

G2 = {x(4)
1 , x

(5)
1 } and G3 = {x(7)

1 }. The variables of the same group are proven to be all

equal (otherwise, the constraint is violated). E.g., x
(1)
1 and x

(2)
1 must satisfy x

(1)
1 = x

(2)
1 .

Domains for the variables of a given group can be replaced by the corresponding kernel
(e.g., [x

(1)
1] and [x

(2)
1] can be set to [G1]). Notice that the kernels are all disjoint.

In our suggested improvement, the whole boxes are intersected instead of the first
components only. Hence the domains of [x(1)] and [x(2)] are intersected, which gives
one of the hatched rectangles. The other hatched rectangle is [x(4)] ∩ [x(5)].

The reader must simply admit that the contractor of atmost nvalue(n, {x
(1)
i ,

. . ., x
(k)
i }) works in two steps (see Figure 8). First, it builds groups of variables.

If the number of groups turns to be n, it is then proven that for all x
(j)
i and

x
(l)
i that belong to the same group, x

(j)
i and x

(l)
i must satisfy x

(j)
i = x

(l)
i . Hence,

the domains of all the variables of the same group G can be shrunk to their

11

common intersection denoted by [G]. Furthermore, this process results in a set
of n disjoint intervals [G1], . . . , [Gn] that we will call kernels.

In the favorable case of n groups, the last step can be improved. If two variables

x
(j)
i and x

(l)
i belong to the same group G, the whole vector variables x(j) and x(l)

are actually constrained to be equal. Indeed, assume that x(j) and x(l) could take
two different vectors. The k − 2 other variables necessarily share n − 1 different
vectors because their ith components must “hit” the n− 1 (disjoint) kernels [G′]
with G′ 6= G. This means that the overall number of distinct vectors is at least
(n − 1) + 2 > n.

Hence, the algorithm of atmost nvalue can be modified to intersect boxes (in-
stead of just one component). This multiplies the complexity by dim (which is
small in practice).

6 Experimental Evaluation: the SLAM Problem

This section shows how the atmost nvector constraint allows to improve the
modeling and resolution of the SLAM problem. We propose an extension of the
original model given in Section 2, and provide a graphical validation.

We introduce k 3-dimensional variables d(1), . . . ,d(k) related to all the detec-
tions. A distance constraint involving each of the latters is added into the model,
as well as a nvector constraint capturing the fact that only n landmarks exist.

(P ′′)

additional variables:
d(1) ∈ [d(1)], . . . , d(k) ∈ [d(k)]

domains:
[d(1)] := (−∞,+∞), . . . , [d(k)] := (−∞,+∞)

additional constraints:
dist(pτ(i),d(i)) = ri (i = 1..k)
atmost− nvector(n, {d(1), . . . ,d(k)})

The introduction of the atmost-nvector constraint has provided the expected
results. Let us first explain how the benefits of this constraint can be quantified.

In the context of differential equations, we are dealing with a very large number
of variables and a sparse system with an identified structure. Moreover, the
system is subject to many uncertainties. Under these conditions, the quality of
the result is more relevant than the computation time, as we justify now.

No choice point. In applications, the number of variables can be huge (more
than 1140000 in [7, 8] in order to represent the three coordinates of the robot, the
Euler angles, the speed, the altitude and the components of the rotation matrix
at each time step). This prevents us for making choice points. Note that the
situation is even worse since the solution set is not a thin trajectory (formed by
isolated points). The numerous uncertainties make the best solution ever a thick

12

beam of trajectories (as depicted in Figure 9). Continuums of solutions usually
dissuade one from making choice points, even for much smaller problems.

Handcrafted propagation. The size of our problem also prevents us for using
a general-purpose AC3-like propagation algorithm, since building an adjacency
matrix for instance would simply require too much memory. Furthermore, we
have a precise knowledge of how the network of constraints is structured. Indeed,
the discretization of the motion yields a single (long) chain of constraints and
cycles in the network only appear with detection constraints. An appropriate
strategy is then to base propagation on the detection constraints, which are much
fewer. Every time a detection reduces significantly the domain of a position p(i),
the motion constraints are propagated forward (from p(i) to p(N)) and backward
(from p(i) downto p(0)). In a nutshell, propagation in this kind of problems is
guided by the physics.

Irrelevance of computation time. When the application is run, it takes a
couple of seconds to load data of the sensors (which amount to initialize the
domains of variables representing input vectors) and to precalculate expressions
(e.g., rotation matrices). With or without the nvector constraint, propagation
takes a negligible time (less than 1%) in comparison to this initialization. There-
fore, focusing on computation time is not very informative.

Quality of the result. Our contribution is to make propagation for the SLAM
problem automatic whereas part of it was performed by a human operator so far.
This is a result in itself. However, one may wonder which between the automatic
matching and the operator’s is most competitive. This, of course, is hard to
evaluate a priori. In the experiment of [7, 8], both have provided the optimal
matching. The question that still remains is to know the extent to which our
matching (the one provided by the algorithm in Section 5) improves the “quality”
of the result, i.e., the accuracy of the trajectory.

The idea was to make the robot looping around the same initial point so that
many detections would intersect.3 For this purpose, we have controlled the robot
with a classical feedback loop which gives the expected cycloidal trajectory.

Four landmarks have been placed in the environment and we have basically
considered that a landmark is detected everytime the distance between the robot
and itself reaches a local minimum (if less than a reasonable threshold). The
estimation of the landmark position is then calculated from this distance (with
an additional noise) and a very rough initial approximation.

Figure 9 illustrates the effect of automatic matching on the estimation of the
trajectory and the positions of the landmarks. All the results have been obtained
in a couple of seconds by the Quimper system [5].

3 The experiment of [7, 8] was not appropriate for this illustration because matching
seamarks was actually too easy (6 seamarks and a rectangle graph of detections with
6 strongly connected components).

13

(a) Basic SLAM: trajectory and de-
tections (1200 iterations).

(b) Basic SLAM: Detections (4000
iterations).

(c) Basic SLAM: trajectory (4000 it-
erations).

(d) Improved SLAM: trajectory and
detections (4000 iterations).

Fig. 9: Comparing SLAM with the atmost-nvector contractor (Improved SLAM) and
without(Basic SLAM). The trajectory is represented by gray filled boxes, detections by
thick-border rectangles and landmarks by the little black squares. Figure 9(d) depicts
the fixpoint of all the contractors: the four landmarks are very well localized and
the trajectory is much thiner (after 4000 iterations, the largest diameter is 10 times
less than in Figure 9(c)). Our algorithm has contracted many detections to optimal
boxes around landmarks. We can also observe the weakness of our algorithm which
has poorly reduced boxes whose projections on both axis encompass two projections
of landmarks. This however exclude a detection which really encloses two landmarks:
in this case, either there is a real ambiguity or it is the propagation to blame.

7 Conclusion

A somewhat natural generalization of the nvalue constraint, called nvector has
been proposed. The nvector constraint can help modeling and solving many

14

localization problems where a bound on the number of landmarks to localized is
known. This has been illustrated on the SLAM problem and applied on a real
experiment. We have also analyzed the complexity of this global constraint and
given a simple contractor.

The benefit of this constraint in terms of modeling has a direct impact on the
way data of the experiments have to be processed. Indeed, the constraint allows
to avoid requiring someone that matches landmarks by hand. Hence, it reduces
considerably the amount of work and the probability of mistake this operation
entails.

The field of application is not restricted to the SLAM problem. Ongoing works
show that the nvector is as crucial for the passive location of vehicles using
TDOA (time difference of arrival) in signal processing. All these problems involve
real variables. Hence, as a side contribution, this paper also offsets the lack of
activity about global continuous constraints.

Future works include the design of more sophisticated contractors with bench-
marking. The nvector constraint also leads up to the study of other global
constraints. As soon as several estimations of the same landmark position are
matched by nvector, this position satisfies indeed a global constraint (namely,
the intersection of several spheres if estimations result from distance equations).

References

1. N. Beldiceanu. Pruning for the minimum Constraint Family and for the number
of distinct values Constraint Family. In CP, pages 211–224. Lecture Notes in
Computer Science, 2001.

2. C. Bessière, E. Hébrard, B. Hnich, Z. Kiziltan, and T. Walsh. Filtering Algorithms
for the NValue Constraint. In CPAIOR’05, pages 79–93. Springer, 2005.

3. C. Bessière, E. Hébrard, B. Hnich, and T. Walsh. The Complexity of Global
Constraints. In AAAI’04, pages 112–117, 2004.

4. G. Chabert. Techniques d’Intervalles pour la Résolution de Systèmes d’Équations.
PhD Thesis, Universit de Nice-Sophia Antipolis, 2007.

5. G. Chabert and L. Jaulin. Contractor Programming. Artificial Intelligence,
173:1079–1100, 2009.

6. U.I. Gupta, D.T. Lee, and Y.T. Leung. Efficient Algorithms for Interval Graphs
and Circular-Arc Graphs. Networks, 12:459–467, 1982.

7. L. Jaulin. Localization of an Underwater Robot using Interval Constraint Propa-
gation. In CP. Springer, 2006.

8. L. Jaulin. A Nonlinear Set-membership Approach for the Localization and Map
Building of an Underwater Robot using Interval Constraint Propagation. IEEE

Transaction on Robotics, 25(1):88–98, 2009.
9. R. Moore. Interval Analysis. Prentice-Hall, 1966.

10. C.S. Rim and K. Nakajima. On Rectangle Intersection and Overlap Graphs. IEEE

Transactions on Circuits and Systems, 42(9):549–553, 1995.
11. R. Tamassia and I.G. Tollis. Planar Grid Embedding in Linear Time. IEEE Trans.

Circuits Systems, 36:1230–1234, 1989.
12. R. Uehara. NP-Complete Problems on a 3-connected Cubic Planar Graph and their

Applications. Technical Report Technical Report TWCU-M-0004, Tokyo Woman’s
Christian University, 1996.

15

