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FROM STRONG TO VERY WEAK SOLUTIONS TO STOKES
SYSTEM WITH NAVIER BOUNDARY CONDITIONS IN THE
HALF-SPACE

CHERIF AMROUCHE", SARKA NECASOVA!, AND YVES RAUDINT

Abstract. We consider the Stokes problem with slip type boundary conditions in the half-space
R7%, with n > 2. The weighted Sobolev spaces yield the functional framework. We study generalized
and strong solutions and then the case with very low regularity of data on the boundary. We apply
the method of decomposition introduced in our previous work (see |7]), where it is necessary to solve
particular problems for harmonic and biharmonic operators with very weak data. We also envisage
a wide class of behaviour at infinity for data and solutions.

Key words. Stokes problem, Half-space, Weighted Sobolev spaces

AMS subject classifications. 35J50, 35J55, 35Q30, 76D07, 7T6N10

1. Introduction and preliminaries. The motion of a viscous incompressible
fluid is described by the Navier-Stokes equations, which are non-linear. The Stokes
system is a linear approximation of this model, available for slow motions. For the
stationary Stokes problem

—Au+Vr=f and divu=h in Q,

where 2 is a domain of R", there are several possibilities of boundary conditions.
Under the hypothesis of impermeability of the boundary, the velocity field w satisfies

u-n=0 on 0, (1.1)

where n stands for the outer normal vector. According to the idea that the fluid
cannot slip on the wall due to its viscosity, we get the no-slip condition

u, =0 on 09, (1.2)

where u; = u — (u - n)n denotes as usual the tangential component of w. The
Dirichlet boundary value problem, which was suggested by Stokes, is the combination
of (1.1) and (1.2). Concerning this problem, the bibliography is well known and
extensive. Especially in the case of the half-space, we would like to mention the works
of Cattabriga [12], Tanaka [25], Farwig and Sohr [15] and Galdi [16] where the solution
of problem is investigated in homogeneous Sobolev spaces. Whereas in the works of
Maz’ya et al. [21] and Boulmezaoud [11], we can found results in weighted Sobolev
spaces. This is also the functional framework of our previous work (see [7]).

The correctness of the no-slip hypothesis has been subjected to discussion for over
two centuries by many distinguished scientists. Instead of (1.2), Navier had already
proposed a condition saying that the velocity on the boundary is proportional to the
tangential component of the stress:

(T-n).+Bu, =0 on 09, (1.3)
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where T denotes the viscous stress tensor and 3 is a friction coefficient. For the
incompressible isotropic fluids the viscous stress tensor is given by

T=—nl+v(Vu+ Vu®).

The case 8 = 0 is termed complete slip, while (1.3) reduces to (1.2) in the asymptotic
limit 8 — oo.

Recent developments in micro and nanofluidic technologies have renewed interest
in the influence of surface roughness on the slip behaviour of viscous fluids (see Priezjev
and Troian [23]). Intuitively much closer to the observed reality, the Navier slip
conditions have been often replaced by (1.2) as the slip length is likely to be too small
to influence the motion on the macroscopic scale. However, numerous experiments
and simulations as well as theoretical studies have shown that the classical no-slip
assumption can fail when the walls are sufficiently smooth (see Einzel et al. [13],
Lauga et al. [20], Priezjev et al. [22], Qian et al. [24], Zhu and Granick [27]).
Strictly speaking, the slip length characterizing the contact between a fluid and a
solid wall in relative motion is influenced by many different factors, among which
the intrinsic affinity and commensurability between the liquid and solid molecular
size as well as the macroscopic surface roughness caused by imperfections and tiny
asperities play a significant role. Navier’s boundary conditions have been considered
by many authors. Let us quote Jiger and Mikeli¢ [18] and Zajaczkowski [26]. In
the three dimensional case, we can find other boundary conditions in the work of
Ladyzhenskaya and Solonnikov [19] and then intensively studied by Babin, Mahalov
and Nicolaenko [8, 9, 10]. These conditions can be expressed by (1.1) combined with
the equations

curlu x n =0, (1.4)

In the half space R}, where n = (0, ..., 0, —1), Navier’s conditions (1.1) and (1.3)
with 8 = 0 can be written in

u, =0, Opu'=0 onl =0R}.

Let us remark that in the case of Ri, we would get the same boundary conditions
from (1.1) and (1.4).

The aim of this paper is to investigate the Stokes problem in the half-space with
this type of slip boundary conditions:

(5% —Au+Vrn=f and divu=h inRY},
U, =g, and O,u'=g  onT.

This paper is organized as follows. The second part of this section is devoted
to the notations, functional setting and useful results. In Section 2, we establish the
existence of generalized solutions in the central case of weight zero. In Section 3, we
extend this result to a wide class of weights and we also deal with strong solutions.
Last, in Section 4, we are interested in the case of very low regularity at the boundary
which yields very weak solutions.

For any real number p > 1, we always take p’ to be the Holder conjugate of p,
that is L + -; = 1.

For any integer n > 2, writing a typical point € R™ as x = (2/, x,,), we denote
by R" the upper half-space of R™ and I' = R”~! its boundary. We will use the two
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basic weights o = (1+ |z|?)'/? and lg o = In(2+ |z|?), where |z| is the Euclidean norm
of z.

For any integer ¢, P, stands for the space of polynomials of degree smaller than
or equal to g; PqA (resp. PqAQ) is the subspace of harmonic (resp. biharmonic) poly-
nomials of Pg; AqA (resp. ./\qu) is the subspace of polynomials of PA, odd (resp. even)
with respect to z,, or equivalently, which satisfy the condition cp(x 0) = 0 (resp.
On(x’,0) = 0); with the convention that these spaces are reduced to {0} if ¢ < 0.
For any real number s, we denote by [s] the integer part of s.

Given a Banach space B, with dual space B’ and a closed subspace X of B, we
denote by B’ L X the subspace of B’ orthogonal to X. For any k € Z, we will denote
by {1,...,k} the set of the first k positive integers, with the convention that this set
is empty if k is nonpositive.

In the whole text, bold characters are used for the vector fields — depending on
the context, f € X stands for f = (f1, ..., fn) € X = X" and g’ € X stands for
g/: (gla "'7gn71) 6X:X”71 -

About weighted Sobolev spaces, we refer the reader to Hanouzet’s classical article
[17] and more especially to [2] for logarithmic weights. Let € be an open set of R™.
For any m € N, p € ]1, oc[, (o, 8) € R?, we define the following space:

Wo (@) = {UGD( ); 0 < A < &, 0 ™M (1g 0)P 71 02w € LP(Q);

(1.5)
k1< <m, 0" (g 0)f 9 e ()},

where k =m —n/p—aif n/p+a € {1,...,m}, and k = —1 otherwise. In the case
B = 0, we simply denote the space by W[;"?(Q2). Note that W, /(Q?) is a reflexive
Banach space equipped with its natural norm:

a—m — p
lllr ey = (32 102+ (g o)L Pl g
’ 0<IA<E

a—m p 1/p
> e ago) Ml )
k+1<|A|<m
We also define the semi-norm:
1/p
[ulyymp iy = (Z lo* (g 0)" D ullfney)
(A=

The weights in the definition (1.5) are chosen so that D(R’) is dense in W, (R’})
and so that the following Poincaré-type inequality holds in W7"”(R’}) (see [3]): Let
q* = inf(g,m — 1), where ¢ is the highest degree of the polynomials contained in
Wod(RY). fn/p+a¢{l,...,m}or (B—1)p# —1, then

Vu € stp(Ri)a ||U||W;’f’51’(]1§1)/73q* <C |U|W$bp(Ri)’
and

S -l p e
Yu € W p(]R ) = D(R+) Wa,s (R+)7 ||UHW:Z’(]R") < C|U‘W;n,,P(Rn).

We denote by W_ m v (R”) the dual space of W ’p(R”) and we notice that it is a

—a,—03

space of distributions. If n/p+« & {1,...,m}, we have the imbeddings:

Wy (RY) — Wi fg’oR”) o Wk 5(RY).
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Ifn/p+a=j€{l,...,m}, then we have:

m,p m—j+1,p m—j,p 0,p
Wa,ﬁ PN Wa—j+1,ﬁ [N [/Vaij’@i1 FEEOURIEN Wafm,ﬂfl'

In order to define the traces of functions of W7 P(R" ) (here we don’t consider
the case 8 # 0), for any o € ]0, 1], we introduce the space:

wzﬂmR”>=={“‘ED%R”ﬁ w*ou € IP(R"),

lo%(z) u(z) — 0*(y) u(y) P
/R"X]R" |x — y|ntor drdy < 00}7

where w = g if n/p+ a # o and w = o (Ig)"/(“=* if n/p+ o = 0. For any s € R,
we set

WerR") ={ue D'R"); 0< A <k, 02 P (1g0) " 9u e L(R");
k1< A <[s] =1, 0@t 9ry e LP(R™); 9lly e ngp(R")}

where k = s—n/p—aifn/p+a € {o,...,0+[s]}, with 0 = s — [s] and k = -1
otherwise. In the same way, we define, for any real number f3, the space Wig(R") =
{veD'(R"); (Igo)’v e WS;P(R")}. They also are reflexive Banach spaces equipped
with their naturall norms. If n/p+« ¢ {o,...,0 + [s] — 1}, we have the imbeddings:

Warh(RY) = WaTl G(R") = oo o WIH S (RT),
Wb = WElh | SR = o WD S (R).

Itn/p+a=j€{o,...,0+][s] — 1}, then we have:

WP s ooy WETIHLE  s=iP o, L, WP

o 3 a—jt1.8 a—j, f—1 o8], B—17
s, p [s],p [s]—j+1,p sl—j,p 0,p
Wos = Woll—ss ™ = Walo i1 s = Waoljpar = =W s

If w is a function on R’ , we denote its trace of order j on the hyperplane I' by:
VieN, yu:a € R" v 0lu(2’,0).

Let us recall the following trace lemma due to Hanouzet (see [17]) and extended by
Amrouche and Necasova (see [3]) to the critical values with logarithmic weights:

LeEmMMA 1.1 (The Trace Lemma). For any integer m > 1 and real number «, we
have the linear continuous mapping

m—1

Y= (V0,715 s Ym—1) + WP P(RY) — H Wwm—i=l/pp(RY),
7=0

Moreover v is surjective and Kery = I/ffg"“p(Rﬁ).
On the Stokes problem in R™

(S): —Au+Vrn=f and divu=~h in R",
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let us recall the fundamental results on which we are based in the sequel. First, for
any k € Z, we introduce the space

Sk={(\ p) € Prx Piry; divA =0, ~AX+ Vp =0}.
THEOREM 1.2. (See Alliot and Amrouche [1].) Let ¢ € Z and assume that
n/p' ¢ {1,....4} and n/p¢{1,...,—L}. (1.6)

For any (f, h) € (Wzl’p(R") X Wg’p(R")) L Spse—nyp, problem (S) admits a
solution (u, 7) € W;’p(R") X W?’p(R”), unique up to an element of Sp_g_r,/p), with

the estimate

el (”“ + Al ey + I+ “”WZ”WR"))

< O (IF s ooy + hllwooseny)

THEOREM 1.3. (See Alliot and Amrouche [1].) Let { € Z and m > 1 be two
integers and assume that

n/p" ¢ {1,....4+1} and n/p¢{l,...,—0—m}. (1.7)
For any (f, h) € (WZ;_%’Z’(R”) X W;n"ﬁ(R”)) L Spi4o—nypy, problem (S) admits a
solution (u, ) € WZE”’(R") x WhL(R™), unique up to an element of Sp_i—pn/p),
with the estimate
el (e Nl + 17+ sl e

< C (Iflhwrme + hllwyzen)

2. Generalized solutions for the weight zero. In this section, we will con-
centrate on the central case of weight zero — that is solutions (u, 7) which belong to
W(l)’p (R%) x LP(R") —. This restriction allows us to avoid the questions of kernel
and above all of compatibility conditions for the data. However, in the next section,
we will rest on this construction to envisage a wide class of weights.

First, we will establish the result about the generalized solutions to (S*) in the
homogeneous case. The method is similar to the one employed for the Dirichlet
conditions (see [7]), but the auxiliary problems and the arguments for their resolution
are appreciably different.

2.1. The homogeneous case. Here, we assume that f =0 and h = 0.
PROPOSITION 2.1. For any g, € Wolfl/p’p(l") and g’ € Wal/p’p(l") such that
g LR ! ifn <p', the Stokes problem

—Au+Vr=0 in RY, (2.1a)
divu =0 in RY, (2.1b)

Un = Gn on I, (2.1¢)

Opu' =g’ on I, (2.1d)
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has a solution (u, 7) € Wé’p(R’_}_) x LP(RY), unique if n > p, unique up to an element
of R"~1 x {0}2 if n < p, with the estimate

geRnlflle{o} [+ &l r@n) + I7llLe s
¢ (HQ”HW&*””*%) + ||9/||w5”'“’(r>)
if n < p, and the same without € if n > p.

Remark 2.2. Before giving the proof, let us notice that this problem is not stan-
dard. Indeed, we find the velocity field w in Wé’p(Ri) with a boundary condition

Ohu' =g € ng/p’p(F) for its tangential components.

It is possible because A%2u = 0 in R? and then, we find an ad hoc space in which
we can give a sense (see [6, Lemma 4.8]) to the trace of d,u’ precisely in the space
w /PP

Proof. (i) Firstly, we reduce system (2.1) to three problems on the fundamental
operators A% and A.

According to (2.1b) and applying the operators div and A to (2.1a), we get both
Am =0 and A%u =0 in R .

From the boundary condition (2.1c), we take out

Vied{l,2,...,n—1}, O?u, = 0%g, onT.

In addition, from (2.1d), we take out
02y = O0n(Opty) = Op(—div'u') = —div'g’ onT,
hence, the boundary condition
Au, =A'g, —div'g’ onT,
where A/ = Z;:ll d%. So, we get the following biharmonic problem
(B) : A%y, =0 inRY, wu, =g, and Au,=A’g, —div'g’ onT.

Moreover, we have two Neumann problems

N1): Ar=0 inR", J,7m=Au, onl,
+
N2): Au' =V'mr inR?, d,u' =g onT.
+
(ii) Now, we will solve these three problems.

Step 1: We deal with problem (B). Denoting z, = Au,, we can split our
problem in the following two Dirichlet problems:

Az, =0 inR%}, z,=Ag,—div'g’ onT, (2.2)
Au, =2, inRY, wu, =g, onl.
Concerning (2.2), we notice that A’g,, —div’' g’ € Wo_l_l/p’p(f‘), then we can apply

the result on the singular boundary conditions for the homogeneous Dirichlet problem
(see [7, Theorem 3.5]), provided the following orthogonality condition is satisfied:

A / A =
Vo e AR . (Algn —div'g ,3n<P>WO—1—1/PvP(r)xwg‘””’*P/(F) =0



STOKES SYSTEM WITH SLIP CONDITIONS IN R’} 7

According to the degre of polynomials in A[A:,)_n ] this condition reduces to g’ L
Pl1-n/p], Which is precisely the assumption of Proposition 2.1. Thus problem (2.2)
has a unique solution z, € Wal’p(Ri).

Concerning (2.3), we can apply the result on the generalized solutions to the
Dirichlet problem (see [3, Theorem 3.1]) without any condition since A[Al_n s = {0}
Thus problem (2.3) has a unique solution wu,, € Wol’p(Ri).

Step 2: Next, we study problem (N1). Since Au,, € Wo_l’p(]Rﬁﬁ), it is necessary
to check that the trace of Au,, has meaning. We have both Aw, € Wofl’p(]Rﬁ) and
A2y, =0, then it follows that Au, € Wy '~/"P(T') (sce [7, Lemma 3.7]). Next, the
result on the singular boundary conditions for the homogeneous Neumann problem
(see [4] or [7, Theorem 3.3]) holds, provided the following orthogonality condition is
satisfied:

A —
Yo € ./\/[27n/p,]7 (Auy, <p>WO—lfl/p,P(F)Xwgfl/p/’p/(r‘) =0.

But, according to the degre of polynomials in J\fé_n L it is clear that this condition
is always satisfied. It implies the existence of a unique solution 7 € LP(R" ) to problem
(N1).

Step 3: Finally, we are dealing with problem (N2). We split it in two parts:

Av'=V'r inR}, 9,v'=0 onTl, (2.4)
and
Az'=0 inR}, 0,2'=g" onTl. (2.5)
To solve (2.4), we introduce the auxiliary problem
Aw=m inRY}, Jyw=0 onT. (2.6)

Since we have 7 € LP(R’), problem (2.6) has a solution w € Wg’p(Ri), unique up to

an element of ./\/[A (see [4]). Next, it suffices to put v’ = V'w to obtain a solution

2—n/p]
(non-unique) v’ € Wé’p(Ri) to problem (2.4).

For problem (2.5), with g’ € ng/p’p(l“), we must use an intermediate result for
the Neumann problem (see [7, Theorem 3.4]). The compatibility condition is written
in this case: g’ L P_p/p|. Thus it is realized by the assumption of Proposition 2.1.
So, this problem has a solution 2z’ € W(l)’p(]R’j;), unique up to an element of Py, /-

Then, it is clear that the function ' = v’ 42’ € WP (R" ) is solution to problem
(N2).

(iii) Conversely, it is necessary to show that from w,, 7, u’, we get a solution
(u, ) of the original problem (2.1).

From previous it is clear that

-Au'+V'm = 0 in R%,
Un = Gn on I,
o' = g onT.

It remains to prove that

—Auyp + 0w =0 in R} (2.7)
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and finally, the relation (2.1Db).
For (2.7), thanks to the first equations of (B) and (N1), we get

A(Auy, — O,m) = A%u, =0 in R .
With the boundary condition of (N1), it follows that Au, — d,7 satisfies the problem
A(Aup, —0pm) =0 inRY, Au, —0,m=0 onT. (2.8)

As well Au,, — d,m € Wy hP (R"), then by a uniqueness argument, we necessarily
have Au,, — 9,7 = 0 in R?} (see [7, Theorem 3.5]).

For (2.1b), the boundary conditions of (N2) imply 9, div'u’ = div'g’ on T.
Besides, from the boundary conditions of (B), we get 92u,, = —div' g’ on I'. Then
we have

Op divu = 0, div' u' + 02u,, = div'g’ —div'g'=0 onT.
So, div u satisfies the problem
Adivu =0 inRY, J,divu=0 onT. (2.9)

As well divu € LP(R? ), hence divu = 0 in R”} (see [4] or |7, Theorem 3.3]).
(iv) Concerning the uniqueness question, we have notice that u,, and 7 are unique.
Let v/ = (ui)lgign_l and ’LL; = (uj)lgign_l be solutions to (NQ), then

Aly; —ul) = 0 inRZ,
On (u; — uj) = 0 onl,
where u; —ul € W, P(R%). So we can deduce that u; — ul e J\/ﬁfn/p] (see [4]). It

remains to remark that ./\/[?_n/p] =Rifn < p, and ./\/'[?_n o = {0} if n > p.

Finally, the estimate of Proposition 2.1 is a straightizorward consequence of the
Banach Theorem. Let us notice that we also can get it from the estimates of the
auxiliary problems as we showed in [7] for the no-slip boundary conditions. 0

2.2. The nonhomogeneous case. Resting on the previous result, we now can
deal with the complete problem.
THEOREM 2.3. Assume that - # 1. For any f € WPP(RE), h € W P(RY),

gn € Wolfl/p’p(lj) and g’ € Wal/p’p(F), satisfying the following compatibility condi-
tion if n < p':

) 1 *1 1d = i71 —1/p,p 1/p, p’ ) 21
Vie{l,....n—1}, Mf =96 Dyyv/mn oy /e #' o) (2.10)

problem (S*) admits a solution (u, 7) € Wé’p(Ri) x LP(R"), unique if n > p, unique
up to an element of R"~1 x {0}2 if n < p, with the estimate

geRnlflle{O} [+ 5||ngP(R1) + 7l oe rrn)

< C (”f”W?p(]R:‘_) + ||h||W11P(R1) + Hg’ﬂHWOl*l/P,p(F) + ||g/||ng/p’p(F))

if n < p, and the same without & if n > p.
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Proof. We can give a proof quite similar to the one of the nonhomogeneous case
for the Stokes system with Dirichlet boundary conditions, by extension of the data f
and h to the whole space (see [7]). But another way is to combine this result with the
homogeneous case for the Stokes system with Navier boundary conditions. We will
follow this one.

Firstly, we introduce the auxiliary problem

-Az+Vn = f inRY,
divz = h inR7%, (2.11)
z = 0 onl.

With the assumption 1% # 1, we know that problem (2.11) admits a unique solution

(z,n) € W?’p(Ri) X Wf’p(Rﬁﬁ) (see [7, Theorem 5.2]). Thus we can deduce that
On 2| € W}_l/p’p(l"). In addition, we can notice that we have the imbeddings
WEP(RY) — Wy P(R?) and W{"P(R?) — LP(R") without condition, whereas we
have Wy~ /PP(D) < W, /PP(D) only if & # 1.

Indeed, we can break it down into

Wy TYPP) S WPT)  and - WP(D) < W VPP,

The first imbedding holds without condition. By duality, the second one is equivalent

to Wo/P (I) < W (I'), which holds if 251 # 1 e 2 21,

So, (2, n) € Wy P(R}) x LP(R?) and above all y,2’ € W'/ ?(I'), which allows
us to consider the second auxiliary problem

—Av+VY9=0 and divv=0 in R%,

Up=¢, and O,v' =g -0,z onT, (212)

where ¢’ — 0,2'|p =g — 1z’ € Wal/p’p(f‘). Then, Proposition 2.1 yields (v, ¥) €
Wé’p(R’_}_) x LP(R?" ) solution to (2.12), provided the orthogonality condition

V(PI (S Rn_la <g/ - 'lela (PI>W51/P»P(F)XW(1)/P=P/(F) = 0 (213)

is satisfied if n < p’. Now, we must write this condition by only means of data. It
suffices to notice that we have for all ¢ € R*~! x {0},

f~<pdx:/ (—Az+Vn) - pdx
R R

_ ro
- <’}/1Z y P >ng/p"’(F)><Wé/””’/(F) )

to deduce that the condition (2.13) is written
/ n—1 / / _ / /
v‘p eR ; Ry .f C P dz = <g y P >ng/p'p(l“)><W(l,/p'pl(F) y

that is, more simply, the compatibility condition (2.10).

Then, the pair (u, 7) = (v + z, ¥ + 1) which belongs to Wé’p(R’jr) x LP(R?) is
a solution to (S%).

Finally, the uniqueness of solutions to (S*) is a straightforward consequence of
Proposition 2.1. ]
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Remark 2.4. Unlike Dirichlet boundary conditions, with Navier conditions it is
not reasonable to consider data (f, h) in Wal’p(Ri) x LP(R%). Indeed, with such
data for problem (2.11) we should get the velocity field z in the space WO1 P(R7) and
we cannot give a sense to the trace of 0,2’ in that case without ad hoc assumption.
This limitation is not due to the method employed here, it is the same situation as in
the Neumann problem for the Laplacian (see [4]).

3. A wide class of behaviour at infinity. Naturally, this question will be
solved by the consideration of a scale of weights which extends the weight zero of
the previous section. After the study of the kernel of the operator associated to this
problem, we will show that the method established for the homogeneous system with
the weight zero works in fact for any weight. The main difficulty is to get the compat-
ibility conditions in all the auxiliary problems from the one of the original problem.
Next, the treatment of the nonhomogeneous system will be noticeably different.

3.1. The kernel. In the half-space, a key for this question is the reflection
principle. We can find an extensive study of this principle in the work of Farwig (see
[14]). With these boundary conditions, the reflection principle is simpler than the one
for the Dirichlet conditions and it can be deduced from the classical Schwarz reflection
principle for the harmonic functions.

Let £ € Z and (u, 7) € W%’p(R’jr) X Weo’p(R’jr) be an element of the kernel of the
Stokes operator with Navier boundary conditions — that is a solution of (2.1) with
homogeneous boundary conditions —, then the unique extention (@, 7) of (u, 7) to
the whole space, satisfying

—Au+ V7 =0 and dive=0 in R",
is given by the continuation formulae: for all x = (2/, x,,) € R™,
' (z) = u'(2%), Un(z) = —u,(2*), 7(z) = w(z*), where 2* = (2, —1,).

Moreover, such 7 and u are respectively harmonic and biharmonic tempered distri-
butions in R", thus polynomials. For all k € Z, let us denote

SE={(A ) ePr xPA ;i ~AA+Vu=0and divA=0inR",
O,A =0 and A, =0 on I‘}.

According to the maximum degre of polynomials in weighted Sobolev spaces (see [2]),
we can characterize this kernel as follows:

COROLLARY 3.1. Let ¢ € Z with hypothesis (1.6), then the kernel of the Stokes
operator with Navier boundary conditions in Wé’p(Ri) X Wg’p(Rfﬁ) is the space

St :
(1—£—n/p]
In fact this kernel does not depend on the regularity according to the Sobolev
imbbedings. More precisely, we have the following result:
COROLLARY 3.2. Let ¢ € Z and m € N* with (1.7), then the kernel of the Stokes

operator with Navier boundary conditions in Wﬂié’p(Ri) x Wih(R™Y) is the space
St

(1—£—n/p]"

Using an idea due to T. Z. Boulmezaoud (see [11]), we also can express this space
from the polynomials spaces AkA and N, kA which define the kernels of the Laplacian
with Dirichlet and Neumann boundary conditions in the half-space. With this aim, we
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will use the operator IIy — introduced in [5] for the biharmonic problem — defined
as follows:

1 Tn
Vs e N2, Mys(a!,z,) = 3 xn/ s(x',t)dt
0

and satisfying for all s € J\/’,CA, Allys = s in R and IIys = 0,1Ixys =0 on T
PROPOSITION 3.3. Let £ € Z. The pair (X, p) € S,

(1——n/p] if and only if there
exists ¢ € N[Alfe—n/p] X A[Al_z_n/p] such that

A =@ — VIIydiv e, w=—divep. (3.1)

Proof. Given (A, u) € S[upefn/p]? we have Ay = 0 in R?} and 0,0 = 0 on T,
hence i € -/\/[f‘—z—n/p]' So we can write A(A — VIIyu) = AX— Vu = 0, which implies
the existence of ¢ € Pﬁ_e_n/p] such that

@ =A— Vlypu. (3.2)

In fact, we can see that ¢ € N[Al_g_n/p] X A[Al—e—n/p] by considerations on the parity of
X', A\n and VIIyp. In addition, applying the operator div to (3.2), we get divp = —p,
which yieds (3.1) by substitution in (3.2).

Conversely, we can verify that such a pair (A, u) belongs to S[ul—é—n/p]' ]

Remark 3.4. Tt is clear that if £ > 0, this kernel is reduced to {0} and if £ = 0, we
find R"~! x {0}? as in Proposition 2.1 and Theorem 2.3. Symmetrically, if £ > 0, it
appears a compatibility condition for the data, which extends the one of the weight
Z€10.

3.2. Generalized solutions. Here is the generalization of Theorem 2.3 for any
weight ¢ € Z. This result will be completely proved at the end of this section.
THEOREM 3.5. Let ¢ € Z and assume that

n/p ¢ {1l,....0+1} and n/pg{l,...,—(}. (3.3)
For any f € WOR(RY), h € WHE(RY), g, € W, /PP(D), ¢ € W, '/PP(D),

satisfying the compatibility condition
A A
Y0 € Niionsp) X Al ey

—Vh)-pd div f, Iy di L o s
/Ri(f ) pdr + < ivf, Uy IV<P>W[+1£p(Ri)XW1—YZP71(R:L—) (34)

+/anan@ndx/ - <gl7 ‘pl>Wzl/p,p(F)><W17;1/p’yP/(F) = 07

problem (S*) admits a solution (u, 7) € Wy P(RY) x W,"P(R?), unique up to an

#

element of S[ with the estimate

1—L—n/p]’
inf (I + Ml gy + 7 + Bl e ) <
(Ayﬂ)esflfl—n/ﬂ W R e D)

C (”fHW?Jﬁ(]Ri) + Hh”Werf(Ri) + ||gn||W21*1/P,p(F) + ||g/||Wzl/p’p(I‘)) .
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Since the kernel has been characterized before, now it remains to show the neces-
sity of condition (3.4) and above all the existence of a solution, that is the surjectivity
of this operator. As for the weight zero, we will start with the homogeneous problem,
then we will consider more regular data on the boundary, to finish by this theorem.

3.3. The compatibility condition. If (u, 7) is a solution to (S*), then we
have the following Green formula:

f
V(}\, M) € S[l.t,_e_n/p/]a

/(fAu+V7r)~)\dx 7/ (divu)pdz =
RY

R
! / / Vi
7/Fu”a”)‘"dx + <a"“’>‘>WZl/p’p(r)xW1j/”/’”/(F) * /Fu”’udx'

n
+

Hence a first formulation of the compatibility condition for data f, h, g., g':

YA, p) € S

[1+6—n/p'] f-Axde — [ hpde =

i R (3.5)

- /Fg’n (anATL - /u‘) dz/ + <g/7 A/>WZI/PvP(F)Xwi;l/plqp/(r) .
Now, in order to use Proposition 3.3, we can observe that
A A
Vo € Nitsronsp) X Al oo/

fr(Vilydivp)dr = (=div f, Iy d”“">W*1’P<Ri)xv"v£;’_’l(mi>

n Vi 1
R +

and

/ hdivepdr = — Vh-pdz.
R? R
On the other hand, for the trace terms, we have

N =¢ and O\, —pt =0np, on I.

According to Proposition 3.3 and introducing these identities in (3.5), we get (3.4) as
second formulation for the compatibility condition.

3.4. Weak and strong solutions in the homogeneous case. Here again, we
start with the homogeneous Stokes system (2.1). In fact the method of Subsection
2.1 works for any weight. The extra trouble comes from the compatibility conditions
for the auxiliary problems. Following step by step the proof of Proposition 2.1, we
throw light on this question.

Proof of Proposition 2.1 revisited. Point (i) is unchanged.

(ii) The compatibility condition (3.4) adapted to problem (2.1) is written

A A
Ve € Nittionson X Allteon/p)s
/ o (3.6)
an 671()0“ dz’ — <g , @ >Wzl/p'p(r)><W17;1/p,"p/(r) = 0,
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Step 1: Problem (B). For (2.2), the compatibility condition is
A .
Vl/) € ‘A[3+Z—n/p/]7 <A/gn - lel 9/7 67L1;[}>W;171/p,p(F)XWi—zl/p’,p’(F) =0 (37)

(see [7, Theorem 3.5]). By means of Green formulae, we can rewrite it

A
v'l/) € A[3+E—n/p’}’ \/an 871A/w dxl + <g/7 anv,w>wzl/p'p(l—‘)><Wi_el/p/'p/(F) = O'

Now, to see that it is a consequence of (3.6), it suffices to remark that
A A A
V¢ S A[3+€—n/p’]7 A%ﬁ S A[l-‘r@—n/p/] and anlw S N[l-i—f—n/p/]'

So, we get z, € W[l’p(Ri)/A[A_l_z_n/p] as solution to (2.2).
For (2.3), the compatibility condition is

A _ ’
Vw S "4[1+£—n/p/]’ <ZTL3 ,l/}>WZ71,p(Ri)XV€/1J£p/ (Ri) - /an anw d:U (3-8)

(see [5, Theorem 2.5]). First, (3.6) implies that for any ¢ € A[A1+2—n/p/]a we have
fr gn Oppdz’ = 0. It remains to show that the left-hand term is also zero. For this,
we need to express A[A1+e—n/p/] by means of the kernel of the biharmonic operator By
— that is the space of polynomials ¢ such that A%2¢ =0 in R and ¢ = 9,¢( = 0 on

I' —. We showed in [5, Lemma 4.4] that
Vk€Z,  Bpio=IpAL @ IIyNA, (3.9)

where IIp, — which is the equivalent for the odd harmonic polynomials with respect
to z, of the operator Il for the even harmonic polynomials with respect to z,, — is
defined as follows:

1 [
vre AL, Tlpr(a,z,) = 5/ tr(a' t)dt
0
and satisfies for all r € AkA, Allpr = r in R?} and IIpr = 0,1lpr = 0 on I'. From
(3.9), we get for any ¢ € .A[AIH_”/I),], Mpty = ¢ € Bjg4y—n/p] and thus we have
¥ = A(. So, by means of a Green formula (see [7, Lemma 3.7] for the justification),
we get

V) € ARty np)s ¢ € Bisii—nyp) such that

<Zna ¢> = <Zn7 A<> = <A2’n, C> =0.

— o 7
W, R PR xWhE (R

So (3.8) is proved and we get u, € Wel’p(IRf_)/A[Al_e_n/p] as solution to (2.3).

Step 2: Problem (N1). Here Au, € W[l_l/p’p(l“) (see [7, Lemma 3.7]) and for
this problem, the compatibility condition is

A
Yy € M2+£—n/p/]a (Aup, w>W[_1_1/P7P(F)XWE21/p/,p/(F) =0 (3.10)
(see [7, Theorem 3.3]). For any ¢ € ./\/@_é_n/p,], if we put ¢ = Om" Y(a' t)dt, this
yields ¢ = 9,¢ with ¢ € A[%+Z7n/p,}. Since Au,, = A’g, —div' g’ on T, we see that

(3.10) is exactly written as the condition (3.7), which is satisfied.
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So, we get T € Wzo’p(R?r)//\/[éé_n/p] as solution to (N1).
Step 3: Problem (N2). For (2.6), the compatibility condition is

V) € NG/ / mpdr =0 (3.11)
R

"
(see [4, Theorem 3.1]). According to (3.9), we also have for any ¢ € ./\/[%_n/p,],
Nyt = ¢ € Bjag¢—nyp) and thus 1 = A(. So, we have

Ve € NZ s 3¢ € Biagu—nyp) such that

J

Thus (3.11) is proved and we get w € Wf’p(Ri)/N’é%fn/p] as solution to (2.6).

Consequently, v/ = V'w € W%7P(R1)/N[A1_€_n/p] is solution to problem (2.4).
Finally, for problem (2.5), the compatibility condition is

wwdx:/ 7 Aldx = (Am, ) = 0.
R

n n
+ +

Vo' € N o nps ', LP/>W;1/F,p(r)xwl_;up/,p/m =0 (3.12)
(see [7, Theorem 3.4]). It is clear that (3.12) is include in (3.6) and then we get
z € W;’p(Ri)/N‘[Al_g_n/p} as solution to (2.5).

Sou' =v' +2' € Wé’p(]Rﬁ)/N[Al_e_n/p] is solution to (N2).

Remark 8.6. The set of critical values for all these auxiliary problems is given
by hypothesis (1.6). This is the good set of critical values for the homogeneous
problem (2.1) and the supplementary value n/p’ = ¢ + 1 will only appear in the
nonhomogeneous problem (S%).

(iii) To recover the n*" component of (2.1a) — that is (2.7) — and (2.1b) from
(B), (N1) and (N2), we will use the nonuniqueness of their respective solutions wu,, 7
and v’ constructed in (ii), to select a “good one”.

Since Au, — 0,7 satisfies (2.8) and belongs to W[l’p(Ri), we can deduce that
Au,—0,7 € A[Afpefn/p]- As 7 is defined up to an element, ofj\/[égfn/p], 0,7 is defined
up to an element of -A[A—1—e—n/p] and thus we can chose 7 such that Aw,, — 0,7 = 0.

Since div w satisfies (2.9) and belongs to Wzo’p(Ri), we can deduce that divu €
'/\/’[élfn/p]' As o’ is defined up to an element of Nﬁ,g,n/p], div’ v’ is defined up to
an element of N2 —n/p and thus we can chose ¢’ such that divu = 0.

To finish this proof], let us notice that the characterization of the kernel answers
to point (iv). O

So we have established the existence of weak solutions to the homogeneous prob-
lem and we can sum up that in the following result:

PROPOSITION 3.7. Let £ € Z with hypothesis (1.6). For any g, € Wel_l/p’p(f‘)
and g’ € W;l/p’p(F), satisfying the compatibility condition (3.6), problem (2.1)
admits a solution (u, ™) € W}’p(Ri) X Wzo’p(Ri), unique up to an element of
nglfffn/p]’ with the estimate

inf (et Mg + 7+ llgy) <

i
(N WES) i /ml

C (Igallyyr-170.0y + 18" g1/ )
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Now, always for the homogeneous problem, we will consider the case of more
regular boundary conditions, which yields strong solutions.
PROPOSITION 3.8. Let £ € Z and assume that

n/p'¢{l,....0+1} and n/pg{l,...,—0—1}. (3.13)
For any g, € WZ__ll/p’p(I‘) and g’ € W;;ll/p’p(l"), satisfying the condition (3.6),

problem (2.1) admits a solution (u, ) € W?fl(Ri) X Wg;j(Ri), unique up to an
element of Sflféfn/p]’ with the corresponding estimate.

Proof. We simply resume the proof of Proposition 3.7 — which we named “ Proof
of Proposition 2.1 revisited” — at the begining of Subsection 3.4, using the regularity
results for the harmonic and biharmonic operators.

In order, for the biharmonic problem (B), split in the Dirichlet problems (2.2)
and (2.3), we find z, € ijﬁ(Rﬁ) solution to (2.2) (see [7, Theorem 3.8]); as well we
find w,, € ijr’{ (R’ ) solution to (2.3) (see [3, Corollary 3.4]). For the first Neumann

problem (N1), we find 7 € ng_;_’{(Ri) (see [7, Theorem 3.4]). Last, concerning the

second Neumann problem (N2), we find v’ € W?’fl(Ri) (see [4, Corollary 3.3]).
Moreover, all these results hold under hypothesis (3.13), which yields the optimal set
of critical values for such data. |

Remark 3.9. We also can get Proposition 3.8 as a regularity result from Propo-

sition 3.7. Indeed, we have W/ '/P*P(I) — W, /") if © # —(. On the

other hand, the imbedding W;;f/“’(r) s W[l/p’p(F) can be broken down into

Wzlgll/p’p(l") — W&’l’/p(l") and Wfﬁ/p(lﬂ) < W, /P"P(T"). The first one also holds

if % # —( and by duality, we find ﬁ # £ 4+ 1 as condition for the second one.
So, under hypothesis (3.13), if in addition % # —f, we can deduce from Propo-
sition 3.7 that problem (2.1) admits a solution (u, 1) € W P(R%) x W P(RL).
Then, as in [7, Corollary 5.5], we can show by regularity arguments that in fact
(u, m) € W?;rpl (R%) x W;ﬁ(Rﬁ). The cost of this approach is thus the supplemen-
tary critical value % = —/.

3.5. The nonhomogeneous case. We start with enough regular data on the
boundary — that is the ones of Proposition 3.8 — to get strong solutions to the
complete problem.

THEOREM 3.10. Let ¢ € Z with hypothesis (3.13). For any f € W?ﬁ(Rﬁ),

h € Wjﬁ{(Ri), gn € Wézgll/p’p(lj), g € W};ll/p’p(F), satisfying the condition (3.4),
problem (S*) admits a solution (u, ) € W?fl(]l%ﬁ) X W;ﬁ(R:ﬁ), unique up to an

element of S[ﬁl—f—n/pp with the estimate

inf (||U + AHW,?;j(Rg) + |+ M||W;+>f;(m)) <

i
X ESH oyl

C (”f”ng(]Ri) + Hh”ijrf(Ri) + Hg"”Wf;ll/pfp(F) + ”g/HW;;;ll/"*P(I‘)) .

+1

Proof. Tt suffices to show the existence. We will naturally use the result in the
homogeneous case established above and first, we consider the lifted problem

(S)) —Av+Vr=F and divv=H inR%,
¢ v, =0 and 0, =0 onlI.
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Indeed, according to Lemma 1.1, there exists a lifting function ug € W?;rpl (R7)

of g’ such that J,ugy = g’ on I' and there also exists u,, € WZ_?(Rﬁ) such that
Ug, = gn on I'. Then, if we put ug = (ug, ug,), F = f + Aug, H = h — divug and
v = u — ug, the two problems (S,) and (S*) are equivalent. In addition, by means of
Green formulae, we can easily verify that condition (3.5) — i.e. the alternative form

of (3.4) — becomes for (S,):

VA, p) € S

14+4—n/p']? F-Adz — H[,Ldfﬁ =0. (314)

R R
Next, we extend F and H to the whole space by F € W%ﬁ (R™) and H € W;ﬁ(R”)

as follows:

Y € D(R"), Vi € D(R™),

F-pdr = | F-(¢ +¢", on—})da,
/n RY ) (3.15)

Hiydr = H (¢ +¢*)du,
R R}

where ¢*(x) = 9(z*) for any « = (2, z,,) € R™ with «* = (2/, —x,,). That is, to give
the functional writing to this extension:

FH ! — (F’ H)(.’El, xn) if T, > 0,
(F7 H)(l' s l'n) = { (1;1/7 _Fn, H)(x', _xn) if z, < 0.

Now, by Theorem 1.3, with hypothesis (3.13), we know that there exists (w, ¥) €

W?fl (R™) x W;_;_’{(]R") solution to the problem

(S): ~Aw+VY9=F and divw=H in R",
provided the condition (F, H) L Sjj4¢_p/p is fulfilled, that is
V(A, M) € Sito—nyp)s F-Adz — | HMdz =0. (3.16)
Rm™ Rn
Thanks to (3.15), we can write (3.16) as
F-(AN+A* A, —A%)dz — H (M + M*)dz =0. (3.17)
R” R?

Since (A + A", A, — A%, M + M*) € SflM_n/p,], the condition (3.17) — and thus

(3.16) — is a simple consequence of (3.14). Then, the pair of functions (v, 7) defined
in R% by

1
(v, 1) == (W +w"™, w, —w,, I +I)

2
belongs to W%, (R%) x W% (R%) and, by a straightforward calculation, we can see
that it satisfies (S}). d

Now, we can establish the existence of generalized solutions announced in Sub-
section 3.2.
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Proof of the existence in Theorem 3.5. (i) Assume that = > ¢+ 1. According
to Proposition 3.7, there exists (v, ¥) € W P(R%) x W,"P(R?) satisfying

—Av+V9=0 and divv=0 in R,
Up=¢g, and 9Ipv'=g" onT.

In addition, by Theorem 3.10, there exists (w, ¢) € W?fl (R7) x Wéljj (R ) satisfying
—-Aw+V(=f and divw=h inR7,
w,=0 and 0d,w' =0 onl.

The pair (u, 7) = (v + w, ¥ + ) answers to the question.
(ii) Assume that & < £+ 1. We cannot directly construct a solution as above.
Indeed, the compatibifity conditions — which are now non-trivial — of the auxiliary

and initial problems must coincide. Let N be the dimension of the subspace Sfl —n/p]

of WP (Rm) x WhE (R7), which is imbedded in W7 | (R7) x W=2'(R") and
{ei1, ..., en} abasis of Sﬁl—i—[—n/p/]'
a family {e], ..., ex} of elements of W7, (R%) x W, ;% (R%), which extends the dual
basis of the dual space (S[ﬁlJan/p/])/. First, we can give a more compact writing of

the compatibility condition (3.5) — which is equivalent to (3.4) — as:

According to Hahn-Banach Theorem, there exists

i
V(Av ,LL) € 8[14,_[_”/[)/]7

<(f7 7h)a ()‘7 '[L)>W21+11(R1)XWE’IJ(R1)7W(i’gp,ll(Ri)XWEf’(Ri) =

/
<ga ()‘ y M~ 871)\77.)>W;1/p,p(F)XW[}—l/p,p(F)7Wl_}l/p’,p/(l—x)xw_—el/p’,p’(l—«) ;

where g = (¢’, gn). We denote the corresponding trace mapping by
2’ ’ n 1’ / n 2_1 /7 ’ 1_1 /7 /
k: W—f+1(R+) X W—Zﬁ—l(R—F) - W_e/+/1p PAT) x W—z+{p P(T)
A i) = (WA, Yok = mAn)
and €; = k(e;). With a suitable numbering of the family, {e1, ..., €4} form a basis
of the subspace /{(SP1+Z7n/p,]) of W2__€i/1p PA(T) x Wi;i{p T — W:X’i’p (T) x
W__él__ll/p "P(T) and €;, =0 for i € {d+ 1, ..., N}. Here again, according to Hahn-

Banach Theorem, there exists a family {7, ..., €5} of elements of W};ll/p’p(l") X
Wf;ll/p’p(l“) which extends the dual basis of {eq, ..., €4}. Now, let us consider the
functions defined by
N d
(F,—H)=Y e/ ((f.—h),e;)) and G=) &l (g, e;).
i=1 i=1

They satisfy
<(F7 _H)a €k> = <(.fa _h)v 6k> = <97 5k> for k € {L SERE) N}7

(F, —H), ex) = (G, ex) = (g, e) forke{l, ..., d},
(F, —H),ex) =(G,er)=0 forke{d+1,..., N}
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By Theorem 3.10, there exists (v, ¥) € W?;rpl (R7) x ngjr’l’ (R%) satisfying
(—Av + V¥, dive) =(f—-F,h—H) inR%,
(anvla vn) =0 onI'.

By Proposition 3.7, there exists (w, ¢) € W, P(R%) x W, P(R") satisfying

(—Aw+ V(, divw) =0 in R%,
(Ophw',w,) =g—G onT.
By Theorem 3.10, there exists (z, n) € W?’fl (R7) x Wzljﬁ (R7%) satisfying
(-Az+Vn,divz) =(F,H) inR7,
(6nz/a Zn) =G onlI.

Finally, the pair (u, 7) = (v + w + 2z, 9 + ( + n) answers to the question. a

To end this section, we can give a global regularity result which extends the strong
solutions of Theorem 3.10.

COROLLARY 3.11. Let ¢ € Z and m > 1 be two integers and assume (1.7). For

all f € W PP(RY), h € WIE(R), g, € Wit TP P(T) and g/ € W /PP (DD),

satisfying the compatibility condition (3.4), problem (S*) admits a solution (u, T) €
W:Zié’p(Ri) x WL (RY), unique up to an element of S[ﬁpun/p]’ with the estimate
inf (e Ml + 17+ dllwrzey ) <
A ES o) Wote PR mie®E) )OS

c (||f||wg;;;=1’(m) Hlhlw @y + lgnllymi-sms ) + ”g/”WZZ;;/PTP(r)) :

m—4L£

Proof. The case m = 1 corresponds to Theorem 3.10. We suppose that m > 2.

(1) Assuming that ¢ < —2, hypothesis (1.7) — which yields the set of critical
values — is reduced to n/p ¢ {1,...,—¢ — m}. We begin to establish the result
for the homogeneous problem, as in Proposition 3.8. The arguments are the same,
using the regularity results for the Laplacian with Dirichlet and Neumann boundary
conditions (see [3, 5]). Next, for the complete problem, we apply the method of the
proof of Theorem 3.10 with an ad hoc extention for F' and H — in this case, there is
no compatibility condition —.

(2) Assuming that ¢ > —1 and n/p’ ¢ {1,...,¢ + 1}, we can adapt the proof
by induction of the regularity result for the Stokes system with Dirichlet boundary
conditions (see [7, Corollary 5.5]). ad

4. Very weak solutions. The aim of this section is to return to the homoge-
neous problem (2.1) in which we envisage now very singular data on the boundary,
that is more precisely

g e W, TVPP(T) and g, € W, /PP(D).

First, we will establish two preliminary lemmas. The second one yields a Green
formula in order to solve this new problem by a duality argument.
Let us denote by

T: (u, n) — (—Au+ Vr, —divu)
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the Stokes operator. For any ¢ € Z, we introduce the space
7 (RY) = {( 7)€ WO (R?) x W, Y P(R?);
T(u, 7) € Wil (RE) x WL (RE)

which is a reflexive Banach space equipped with the graph-norm. Then we have the
following density result:
LEMMA 4.1. Let { € Z and assume that

n/p¢{1l,....0—1} and n/pg{l,...,—0+1}, (4.1)
then the space D(R™) x D(R?) is dense in 17, (RY).
/
Proof. For every continuous linear form A € (sz 1(R”)) there exists a unique

(v, ¢, w, 9) € WOEL (R2)x WhEL (RY) x WP | (R7) x WO (R7) such that

for all (u, 7) € T}, (R%),

(A, (u, ) = ((v, Q), (u, m) + ((w, V), T(u, 7)). (4.2)
Thanks to the Hahn-Banach theorem, it suffices to show that any A which vanishes
on D(RY) x D(RY) is actually zero on 77, (R%). Let us suppose that A = 0 on
D(R%) x D(R%), thus on D(R%) x D(R?). Then we can deduce from (4.2) that

(v, ) +T(w,¥) =0 inRY,

hence T'(w, 9) € W £+1( )X e £+1( ). Let @, , W, ¥ be respectively the zero
extensions of v, ¢, w, J to R" By (4.2), it is clear that we have

(@, )+ T(w,d) =0 in R",

and thus T(w, ¥) € W(i’f_;l(R") X Wiﬁl(R"). Besides, we have the following Green
formula: for any (¢, ¢) € D(R™) x D(R™),

(T(@,9). (o, ) = (@, V), T(e, ) (4.3)
On the other hand, we have both Spy_s_y/p C W?;]DIJ(R") X Wel_ﬁl(R”) and the
imbedding Wtz+1 L(R™) x W;ﬁ L(R™) — W?”;(R”) x W, '/ P(R™) under hypothesis
(4.1), then by density of D(R"™) x D(R™) in W“_1 1 R™) x W;_;’L 1 (R™), we can deduce

that (4.3) holds for any (¢, ¥) € Sj1—¢—n/p) and thus T'(w, 1§) L Spn—t—nyp)-
With this orthogonality condition, we can apply Theorem 1.3 and it follows that

(w, 9) € W? £+1(Rn) X Wlﬁl(R”). Since w and 9 are the zero extensions of w and

9, it follows that (w, ¥) € W2’f+1(R")x W Z—i—l(Ri)' Then, by density of D(R’) x

D(R?}) in WQZPH( n)x W é+1( ), we can construct a sequence (wy, Ux),cy C
D(R?) x D(R?) such that (wy, I) — (w, 9) in W>F,, (R2)x WhE (R?). Thus,
for any (u, 7) € Ty (R} ), we have
(A, (u, 7)) = = (T(w, 9), (u, 7)) + (w, V), T(u, 7))
= khigo{_ <T(wkv i), (w, 7)) + (wi, Ii), T'(u, 7T)>}

:07
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i.e. A is identically zero. |

Thanks to this density lemma, we can prove the following result:

LEMMA 4.2. Let ¢ € Z. Under hypothesis (4.1), we can define the following linear
continuous mapping — that is the traces of order 1 for the tangential component and
of order O for the normal component of the velocity field —:

—1-1/p, —1/p,
7T RY) — W) < WP,
(u, ™) — (O, up)|p = (MU1s -y M UR—1, YoUn)-

Moreover, we have the following Green formula:

Y, ) € T2 (RY), Yoo, ) € W () x WhE (BY)
such that o, =0, O’ =0 and divep =0 on T,
<T(’U,7 ﬂ-)a (907 ¢)>W0,p

41,1

= ((u, m), T, ¥))

®R)XWEP®RL), WOF | (R x WO (RT) (4.4)

WO R (R X W, L P (RY), WP (RE) W (RT)
+ <(8nul7 Un)7 (80,7 P — an@n»r .

Proof. Let us make two remarks to start. Firstly, the left-hand term in (4.4) is
nothing but the integral [, T'(u, 7) - (¢, 1) dz. Secondly, the reason for the loga-
+

rithmic factor in the definition of 77 (R?) is that the imbeddings W7, (R) —
W(i’fil, _1(R%) and Wi’/il(Ri) — WE’[’: /_1(Ri) hold without supplementary critical

value with respect to (4.1) — whereas the imbedding W%e’il(Rﬁ) — WOJ?Q(RLL)
fails if n/p’ € {¢, £ + 1} —.
So we can write the following Green formula:
V(u, 7) € D(RY) x D(RY), Y(p, ) € WP (RE) x WA, (RY)
such that ¢, =0, 0, =0 and divp =0 on T,
[ rwmn @ = [ @n- e 49
R7 R
+ [0 wa) - (¢, 6= Do) da.
r

We can deduce the following estimate:

!/ /
|<(8ﬂu ) un)7 (QO = an‘Pn)>F| < ||(U, Tr)HTZl(]Ri) H(SD7 w)HW%ﬁl(Ri)XWf Ijr’l(Ri)‘

2

According to Lemma 1.1, for any pu = (1, j1n) € W17 (D) x W7 P(D), there
exists a lifting function (¢, ¥) € WQ_’ng(RQL_) « Wikil(Ri) such that
(o, M) = (W', 0) € W2 UPT (1) x WP (D),
(0, 71)n = (0, —div’ ') € W2 7P (1) x W2 7P (D),
Yot = pi — div' @' € W PP(T)

— d.e. (¢, ¥ — Onpn) = p with o, =0, O’ =0 and dive =0 on I’ —, satisfying

||(907 ¢)||W%lﬁl(ﬂgi)xwizi’l(ﬂgi) <C H/'LHW?Ji/lP’:P'(F)XWEL:{P’»P’(F)a
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where C is a constant not depending on (¢, 9) and p. Then we can deduce that
li
[[(Onud’, Un)||W;_1;1/p,p(F)XW;_11/p,p(p) < Cl(u, 7r)||TZI(]R1)'

Thus the linear mapping 7* : (u, m) — (9,4, u,)|p defined on D(RT) x D(RY) is
continuous for the norm of 77, (R%}). In addition, since D(R’}) x D(R?) is dense in
Tf, 1(R7%), the mapping 7% can be extended by continuity to a mapping still called
Vel (Tgl(R’_f_); Wz_ll_l/p’p(F) X W[_ll/p’p(l“)) Moreover, we also can deduce the
formula (4.4) from (4.5) by density of D(RT) x D(R%) in 17 (RY). d

Thanks to this lemma, we now can give the result for singular boundary condi-

tions.
THEOREM 4.3. Let { € 7 with hypothesis (4.1). For any g = (@', gn) €

W;j;l/p’p(F) X ngll/p’p(F), satisfying the compatibility condition

V‘P = (QD/, 9071) € N[Al-i-é—n/p’] X A[A1+€7n/p’]7
/ /
- <g , P >W;71;1/p‘p(F)><W27;i/1p,'p/(F) (46)

—+ <gn, anipn>W£:11/p,p(F)XWiZi{p/,p’(F) = 07

problem (2.1) admits a solution (u, 7) € WP (R™) x W, ;P(R™), unique up to an

#

element of S[lflfn/p]’ and there exists a constant C' such that

(* mefslﬁfe /](”“*’\”W%wm*'”“”wz1#<R1>) < Clgle-
s —L—n/p

Proof. To start with, let us observe that such a pair (u, ) belongs to T, | (R ) and
then Lemma 4.2 gives a sense to these boundary conditions. Next, we can observe that
problem (2.1) is equivalent to the variational formulation: Find (u, 7) € W' (R%) x

W, P(R™) satisfying

V(v, ¥) € W2E L (R]) x WHE | (RT)
such that v,, =0, d,v' =0 and divv=0o0nT,

7T 719 / o 7 = (47)
(G ) T O ey ), Wt ey i )

/
- <gv (’U ) 9 — 8nvn)>W;_11—1/p,p(r)xwe—_ll/z',p(l—\)’ Wife_l*_/lp’,p'(l—\)xwiéi,lp’(r) .
Indeed, the direct implication is straightforward. Conversely, if the pair (u, ) satisfies
(4.7) then we have for any (¢, ¥) € D(R%) x D(R%),
(T'(u, ™), (¢, ¢)>’D/(R1)xD'(Ri),'D(Ri)xD(Ri) = ((u, m), T(ep, ¥)) =0,

thus T'(u, m) = 0 in R%. In addition, according to the Green formula (4.4), we have
V(v, 9) € W2—’ep+1(RT—sL-) X Wikil(Ri)

such that v, =0, 9,v' =0 and divv =0o0nT,
<(8nu/7un)7 (U/a '19 - a’ﬂfv’n»I‘ = <g7 (,0/7 0 - 8TLU7I)>F °
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As we saw in the proof of Lemma 4.2, by Lemma 1.1, it follows that for any p €
2—1/p’, 1-1
W2 ) x WP (D),

<(anu/ - g/a Up — gn)u /JJ>1‘ = 07

that is O,u’ = g’ and u,, = g,, on I'. Hence (u, 7) satisfies (2.1).
Now, let us solve problem (4.7). By Theorem 3.10, we know that under hypothesis

(4.1), for all (f, h) € WOHI(R”)X W £+1( n) L S[1 (—n/p) there exists a unique
(v, 9) € Wz’ep“( 1) x W 23-1( )/S[1+Z o/ SOLution to

—Av+VYy=f and dive=h inR}, 9,v'=0 and v, =0 onT,
with the estimate
C (1w oy + Il e ) -

Consider the linear form E: (f, h) — (g, (v, 9 — Oyvy)) defined on the product
space W H_I(R”)x W L,_H(R") 1 S1 (—nyp- According to (4.6), we have for any

1(2; Dl gy

B R XWEE (RR)/S?

—£+1 [1+6—n/p’]

p € ./\/ Mtt—n/p] ¥ A[1+57n/p] or equivalently, for any (A, u) € 81+€ np]

IZ(f, )| = g, (v + ¢, 0 = 0yvn + Onon))p|
= g, (0" + X, [9 4 1] = On[vn + An]))p |

< C ”g”W;_lfl/p’p(F)XWeill/p’p(F) ||(’U, ’19) ( )sz P (R")XW 1’+1(R1)

Thus

= W< Cliglwzoverwywzyerw 10 Dz @pyews g, @pst,,

< Cliglwame @y cwzye ey (”f”w[i'éil(m)+”hHWi*;il<Ri>)'

In other words, E is continuous on WO’ZPH(R”) W e+1( )L Sﬁl (—nsp)> a0d

according to the Riesz representatlon theorem, we can deduce that there exists a
unique (u, 7) € WP (R?) x W, ’p(R")/S1 ¢—nyp — Which is the dual space of

W0)5+1(Rn)x W z+1( ) 4 5[1 t—n/p] such that

Y(f, h) e w? e+1(Rn)X W £+1(Rn)a

20 = P s w7y o i @y
Then, we can conclude that the pair (u, 7) satisfies (4.7) and moreover the kernel of
the associated operator is 8[1 t—n/p]" 0
To end this study, using the method of the proof of the existence in Theorem 3.5,
we can establish the existence of very weak solutions to the nonhomogeneous problem
with very singular boundary conditions.
THEOREM 4.4. Let ¢ € Z and assume that

n/p'¢{l,....0+1} and n/pé¢{l,...,—0+1}.
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n ) n —1/p, —1-1/p,
For any f € W(,?_’fl(IR_F), h € W€1+§’(R+), gn € We_l/p ), g € W, | /p (),
satisfying the compatibility condition

A A
Ve € N[l-i—é—n/p’] X Al e/

/ (f=Vh) - pdx + (divf, Iydive)
R w

o ’
i z+1fp(R1)XW1,’gp,1(Ri)
+ a —1/p, 1—-1/p’,p’/
<gn7 n<;0n>W271/p p(F)XW,pr/lp » (1)

! / —
<g , P >W;j;1/p=p(F)XW2_;i€p’,p’(F) - 07
problem (S*) admits a solution (u, T) € Wg_’fl(Ri) x W, Y P(R%), unique up to an

element of SFl—l—n/p]’ with the estimate

inf (”u+>‘”W2j’l(R1) + HW+M”W[}£”(]R1)) <

#
(A, N)es[l,[,n/p]

C (I lwous ey + Ilhwagpn) + 19allsmney + 19 w10y ) -
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