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Abstract - This paper is devoted to some mathematical questions related
to the stationary Navier-Stokes problem in three-dimensional exterior domains.
Our approach is based on a combination of properties of Oseen problems in R3
and in exterior domains of R3.
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1 Introduction and preliminary results

This paper continues our previous studies in [7] related to the three-dimensional
stationary Navier-Stokes equations. Let €2’ be a bounded open region of R?,
not necessarily connected, with a Lipschitz-continuous boundary and let 2 be
the complement of €. We suppose that €’ has a finite number of connected
components and each connected component has a connected boundary, so that
Q) is connected. In this paper, we study the following exterior Navier-Stokes
problem:
—vAu+uVu+Vr=f inQ,

NVS) divu=0 in Q,
u=0 on T,
U — Uso at infinity,

where v > 0, f and u,, € R? are respectively the viscosity of the fluid, the
external force field acting on the fluid and a given constant vector of R3. The
problem consists in looking for the velocity field w = (u1,uz,us) of the fluid and
the pressure function . We shall assume that the origin of the coordinate frame
is attached to €. The third equation of the system states that the fluid adheres
at the surface of the body, which is the common no-slip condition. Since the



domain 2 is unbounded, the last equation is really necessary. In this equation,
we have two different cases concerning the behavior of w at infinity. If u., = 0,
the flow is at rest at infinity and in the remaining case, if u,, # 0, the flow is
past at infinity.

In this paper, we are interested in considering the case {2 being an exterior
domain in R? and u,, # 0. We note that the case 2 = R? was considered in
our previous paper [7]. Our purpose is to study some regularity properties of
the weak solutions to the problem (N'S).

To our knowledge, in the three-dimensional situation, following Farwig [12]
and Galdi [13], they consider the problem (N'S) in the case us = 0 or U # 0.
In the case us # 0, they consider the external force field f belonging to the
classical spaces LP(Q2), and in [12] with the weight (1 + |z |)* for some p and
a €]0,1[. The solutions are obtained in the homogeneous Sobolev spaces with
or without the weight. In this paper, we are interested in the case in which the
external force field belongs to the weighted Sobolev spaces W, LP that permits
us to obtain generalized solutions in the weighted Sobolev spaces Wé*’ . We con-
sider also the case in which the external force field belongs to Ld or LI N W '?
and some regularity properties. Our main interest is directed at LP-regularity
of weak solutions, under suitable assumptions on the right-hand side f. This
point is improved in this paper. We assume different levels of regularity of f
and then describe the corresponding level of smoothness of the weak solutions
associated to f. We refine a regularity theory which may be found in [13]. Galdi
assumes that f e LP(Q) for all p € (1, po], with some py > 3 (see Section IX.7
[13]). More precisely, in Theorem 5.9, we recover Galdi’s regularity results.

This paper is organised as follows: In this section, the problem will be in-
troduced and we recall well-known results about weighted Sobolev spaces. In
Section 2, a result about existence of weak solutions for the problem (N'S) will
be presented. In next sections, we shall obtain some regularity properties of the
weak solution u and the associated pressure 7. In Section 4, the exterior Oseen
problem is considered. The identity energy will be given in the last section.

In this paper, we use bold type characters to denote vector distributions or
spaces of vector distributions with 3 components and C' > 0 usually denotes
a generic constant the value of which may change from line to line. We shall
also denote by Bpg the open ball of radius R > 0 centered at the origin and
BE = R3 — Bg. In particular, since ' is bounded, we can find some Ry such
that ' C Bg, and we introduce, for any R > Ry, the set

QR:QQBRandQR:Q—QiR.

We now recall the main notations and results , concerning the weighted Sobolev
spaces, which we shall use later on.

We define D(Q?) to be the linear space of infinite differentiable functions with
compact support on . Now, let D’'(2) denote the dual space of D(2), often
called the space of distributions on 2. We denote by (.,.) the duality pairing
between D(Q2) and D(QQ). Remark that when f is a locally integrable function,



then f can be identified with a distribution by

o) = [ £(0)-pla)do

Given a Banach space B, with dual space B’ and a closed subspace X of B,
we denote by B’ 1 X (or more simply X, if there is no ambiguity as to the
duality product) the subspace of B’ orthogonal to X, i.e.

B 1lX=X'={feBNveX,<fv>=0}=(B/X).

The space X' is also called the polar space of X in B’. A typical point in R? is
denoted by @ = (21, z, z3) and its norm is given by r = |¢| = (22 4+ 22 + 22)2.
We define the weight function p(z) = 1+ r. For each p € R and 1 < p < o0,

1 1
the conjugate exponent p’ is given by the relation — + — = 1. We now define
p p

the weighted Sobolev space
Wo™(Q) = {u € D/(Q), — € LP(%), Vu € L(Q)},
1

where

we = JA+r) ifp#3,
T A4 @2+ ifp=3.

This space is a reflexive Banach space when endowed with the norm:

lullyr ) = (-~ IILp(QJrHVUIILm)) ».

We also introduce the space

WEP(Q) = {ue D/(Q), - € [X(), 2 € L7(Q), Du e LP(Q)},
2 1

where

3
(1407 itpg (33,
(1+7)*In(2+7), otherwise,

Wo =

which is a Banach space equipped with its natural norm given by

[l ullwzr @) =(|| o) +|| IILP(Q)+|IDZUIILPQ)1/’°~

We note that the logarlthmlc weight only appears if p = 3 or p = 3 and all

the local properties of Wy*(€) (respectively, Wy*(€2)) coincide w1th those of
the corresponding classical Sobolev space WP (Q) (respectively, W2P(Q)). For

mp(

m=1orm =2 weset W 0P = D(Q)W0 ? and we denote the dual
space of W 0" P(Q) by Wy ™ ,(Q), which is the space of distributions. When
Q = R3, we have WP (R3) = I/?/gl’p(ﬂ@). If Q is a Lipschitz exterior domain,
then

o

Wor(Q) = {veWyP(Q); v=0onT}



If Qis a C™' exterior domain, then

V?/(Q)’p(Q) ={ve W(f”’(Q); v=0,v=0o0nT},

where 9,v is the normal derivative of v. For all A € N3 where 0 < |\ < 2m
with m = 1 or m = 2, the mapping

u € W) — 0 u e WP ()

is continuous. Also recall the following Sobolev embeddings (see [1]):

« 3
Wyt () — LP" () where p* = P and 1< p < 3. (1.1)
-P
Consequently, by duality, we have
—1,p’ 3p/ /
L) — Wy * () where ¢ = 340 and p' > 3/2. (1.2)

Note also that if Vu € LP(Q) with p > 3 (respectively, p = 3) and u € L"(Q)
for some r > 1, then we have u € L>(§2) (respectively, u € LI(Q) for any real
q > r). Moreover,

e For all u € Wy (Q) N L"(Q), we have

lulle < C (|| Vullus + |[ul[Lr) for all g = 7; (1.3)

e For all u € WyP(Q) N L"(2) with p > 3, we have

[lullpe < C(||Vu|lLe + || ul|rr) forall ¢ € [r,00]. (1.4)
We introduce the space
Lp 1,p du —-1,p
XoP(Q) = qu e WyP(Q); B e Wy P(Q)

which is a Banach space equipped with the following norm

lullx1r () = ||—|\Lp(9) +Z || HLP(Q) + || HW Lp (-
We also introduce the space
)O((l)’p(Q) = {ueXy?(Q); u=0onT},
and we know that D(Q) is dense in )O((l)’p(ﬂ) (cf. [10]). Now we introduce the

following Lemma.

Lemma 1.1. Let Q C R® be a Lipschitz exterior domain. Assume that u €

o 0

W oP(Q) such that a—u € LYQD) with 1 < %—&- %. Then u € L"(2) with
T1

1= %( + % — 1) and we have the estimate as follows

ullzr@) < Cllullyrr ) + || I\Lqm)) (1.5)



Proof. We extend u by zero outside 2 and denote u the extended function.
Then & € W, ?(R?) and aa € LY(R?). We set

ov .
pr € LY(R3)}.

It is easy to prove that D(R?) is dense in X, ,(R?), i.e, there exists ¢y € D(R?)
such that ¢ — @ in X, ,(R?). Thanks to Babenko [11], we have the following
inequality

Xpq(R?) = {v € Wy P (R);

0k 11/3 0vk 1/3 0vk 11/3
lonlleres) < ClIG 2 el 5, || vt |5 )
< C(HV%HLP (®3) T HiHLq R3) )

1). Since () is bounded in L"(R?), then @ € L"(R3) and
O

with ;= 5(2 41 -
)

we obtain (1.5

We introduce the

Lemma 1.2. Let Q C R3 be a Lipschitz exterior domain and u € )O([l)’p(Q).
4p jo
i) If 1<p<3, thenue L7 (Q)N L;fp(Q) and the following estimate holds

[ull o, g 1l o < Cllwllgoay: (1.6

it) If p = 3, then there exists a unique constant k(u) such that u + k(u) €
ﬂ L"(Q) and the following estimate holds
r>12

[|u+k(u)||lor@) < Cllu ||X§'p(9) for any r > 12. (1.7)

iii) If 3 < p < 4, then there exists a unique constant k(u) such that u + k(u) €
LA/(A=P)(Q) N L>®(Q) and the following estimate holds

lut k@l g o+l k@) @ € Cllullgirgy:  (19)

Proof Let u € Xo’p(Q) with 1 < p < 4. Extend u by zero out51de Q and denote
u by the extended function. It is clear that @ belongs to WO P(R?). It remains

to prove that aa— eWy ! P(R?). Let Ry > 0 be a real and sufficient large such
1

that O is contained in Bg, and R;, Ry be reals such that Ry > R; > Ry.
Choose now some functions 11 and vy satisfying

Y1 € C°(R?), ¢1(x) =0if |z| < Ry, ¢i(z) =1if [z| > R,
Vz € R? 91 (z) + to(z) = 1.

_ . ~ - ou
We then can write u = w1 + ubs = uj + us. It is easy to prove that a—ul
1
Oug ou
and pr belong to Wy "?(R3), then a—u e Wy "P(R?) and we can deduce
Z1 T

7 € X,P(R3). Moreover,

Ha”Xé’p(Ri“) < C||U||X34’(Q)-



o ou
Since —AT + —— € Wy "P(R?) and
axl

<—Aﬂ+@,1 >
1

=0 if 2
o 0 if p<3/2,

ng’p(R3)><Wol'p/(R3)

we know from Theorem 4.4 [9] there exists a unique v € X" (R3)N L4/ (4=P) (R3)

such that

—Av+@ = —Aﬂ—i—%

and satisfying the following estimate

- Ou
C H — AU —+ 87{1}1 ||W0—1,P(R3)

IN

ol xpe@sy + 110l parsa-m o) (1.9)

IN

CH”'lXé"’(Q)'

The function z = 7 — v € X *(R?) verifying the equation

0
—Az—i——z =0 in R3?,
8171

then z is a polynomial that belongs to WO1 P(R?). Therefore, there exists a
constant k such that z = k, with k = 01if 1 < p < 3. It means that u —k = v in
Q. The estimate (1.6) is immediately deduced from (1.9). The estimates (1.7)
and (1.8) are consequences of (1.3) and (1.4). O

Remark 1.3. The above result is available for all u € X7 (Q) because we know
that u can be extended by Pu € X, (R?).

Defining now

X2P(Q) = {ve W@ 2L e (@),
6I1
Note that
WEP(Q) = L(Q) where pr = - p2 and 1< p<3/2.
—2p

By duality, we have

/

3p
2p' + 3

L7 Wy 2P (Q) where ¢ = and p’ > 3.

Note also that if v € WZP(Q) with 3 <p<3and Vv € L"(Q) for some r, then
Vo e L) forall ¢ > r if p=3/2 and Vo e L"(Q)NL>*(Q) if 3/2 < p < 3.
We now introduce a lemma concerning the extension of X7 () in R®.

Lemma 1.4. Assume v € X3P (Q). Then there exists U € XoP(R3) such that
v=wv1nQ and
151l x2r e < Cllvllgzy: (1.10)



Proof. We know that there exists an linear and continuous extended operator
P of WZP(Q) in WJP(R3). Setting & = Pv and using again the partition of
unity

U = Uy + Vo,

then it is easy to prove that 7 € W' (R3) and o satisfies the estimate (1.10). [

Proposition 1.5. Let Q C R? be a Lipschitz exterior domain and u € XZ'* ().
i) If 1<p<3/2, then u € L*/C=P)(Q) N L3»/G=20)(Q).

it) If 3/2 < p < 2, then there exists a unique constant k such that u+k € LI(Q)
for all ¢ > 2p/(2 — p).

Proof. The proof is similar as in the one of Lemma 1.2 by using once again the
partition of unity and Proposition 4.3 [9)]. O

Proposition 1.6. Let Q C R? be a Lipschitz exterior domain and u € X3P (52).
i) If 1<p<3, then Vu € L*/(4=P)(Q) N L3»/B-7)(Q).
1) If p = 3, then there exists a unique k € &1, independent on x1, such that
Viu+k)e (] L(Q).

r>12
iii) If 3 < p < 4, then there exists a unique k € &y, independent on x1, such
that V(u + k) € L*/(4=P)(Q) N L>®(Q).

Proof. This proposition is a consequence of Lemma 1.2 and Remark 1.3. O

2 Existence of weak solutions in weighted Sobolev
spaces

First of all, we shall study the existence of weak solutions of Navier-Stokes
problem in weighted Sobolev spaces in this chapter. Without loss of generality,
we can set Uy = Ae; with e; = (1,0,0) and A > 0. From now on, we consider
the case of a fixed A > 0.

In 1933, Jean Leray [15] who introduced the concept of the weak solution:

Definition 2.1. A weak solution to the problem (NS) is a field u € H}, (Q)

loc
vanishing on 99, with Vu € L%(Q), div 4 =0 in Q and ‘ llim / lu(o|z|) —
€ |—00 S2
Uso|do = 0 where Sy is the unit sphere of R3 such that for all ¢ € V(Q) = {v €
D(Q), div v = 0}:

V/QVU : Vgoder/S)(u.Vu).cpdm:(ﬁgo).

As in [2], it is easy to prove the following theorem.

Theorem 2.2. Let Q C R3 be a Lipschitz exterior domain. Given a force
fe W,"%(Q), the problem (N'S) has a weak solution w satisfying u — s €
W(l)’Q(Q) and there exists a function m € L (), unique up to a constant, such
that (u,m) solves the problem (N'S) in the sense of distributions and we have

the following estimation

C
l|u— uoo”wév2(9) < ;Hf HWO*W(Q) + C (V) Uoo| (1 4 oo ])- (2.1)



In Theorem 2.2, we see that a pressure 7 locally belongs to L?(£). At the
beginning, we shall establish, without additional assumption, of the properties
of integrability at infinity of the pressure.

Proposition 2.3. Let Q C R? be an exterior domain and let f € Wy ?(9).
The pressure m obtained in Theorem 2.2 has a representative such that

=714+ 7% with 7' € L*(Q) and 72 € Wol’B/Q(Q).

Proof. Let Ry and Rs be reals such that Ry, > R; > Ry and choose some
functions v, and s such that

Y1 € C®(RY), ¢u(z) =0if 2] < Ry, ¢u(z) =1if 2] > Ry,
Ve € R g1 () + a(z) = 1.

Let v = u— uo, where u is a solution given by Theorem 2.2 and let m € L? (Q2)
be the associated pressure. We define (v*, ') as follows

(’l)l,ﬂ'l) = (w1, my1) in Q, (vl,ﬂ'l) = (0,0) in O,

and set (12, 72) = (vig, Tehg) in Q. Tt is easy to check that (v', 7!) € W5 (R3)x
L} (R3) and (v?,7%) € H'(23) x L?(Q2). Moreover, we can establish the equal-
ities in the sense of distributions (respectively in D’'(R3) if i = 1 and in D’(£s)
if i = 2):

ov'

—vAY + A
VAU + B

+Vrl=f" and div v' = ¢', (2.2)

where

s

fi=[fii — vvAyp; — 20V VVY; + VY] + [Av
axl

— (v.Vo)] := ki + h,

(2.3)
Since 1, is C™ on R? with supp ¥ C €, we have naturally denoted by fi; the
distributions on R? given by:

Vo € D(R?), < fihr, ¢ >rs = < f,p01 >q .

This notation also applies to each other term in the definition (2.3) with ¢ = 1.
Considering now with ¢ = 2, the regularity of v and 7 near the boundary depends
on the regularity of (f 2,¢?) and on the properties of the Oseen problem in
the bounded domain 5. Similarly, the regularity of v and 7 near the infinity
depends on the regularity of (f!, g') and on the properties of the Oseen problem
in the bounded domain R3. We have 7 = 7! + 72 and from Theorem 2.2, we
obtain 72 € L?(Q). Thus, the main of the proof deals with the properties of 7!
and therefore of (f!,g'). We consider

1
—vAa + A%‘ + Vb =k and div @' = —wVyy in R (24)
1

Since 17 is bounded and has bounded derivatives with compact support, it is
easy to check that the term fi);, vAyq, VoV, and 7V, belong to Wo_l’2 (R3)

0
and because W(R3) C LS(R3) then we have v.a—wl € LY(R?) for all ¢ € [1,6].
Ty



Even simple is to prove that g* = —v.Vip; € L2(R3) NW,; ?(R3) and therefore

dg* _
99 ¢ W, 2’2(1R3) satisfying the following compatibility condition

833‘1
1
<6g, 1> - 0.
(9.’)3‘1 W072’2(R3)><W02’2(]R3)

Applying Theorem 1.10 [7], there exists a unique solution (a',b') € (X4°(R?) x
L?(R3)) of (2.4) such that a' € L™ (R3) where 4 < r; < 6. Thanks to Holder

inequality, we deduce that (v.Vv)y; € L*2(R3) and, in particular, we have
0

v.a—wl € L3/2(R®). Therefore, from Theorem 1.9 (see [7]), the system as follows
T
2 da? 2 2 ‘T3
—vAa® + )\87 + Vb*=hy and div a* =0in R°, (2.5)
1

has a unique solution (a?,b%) € L*! (R3) x W&’3/2(R3) such that Va? € L™ (R3),
2
V2a? € L3/2(R?) and g—a € L3/%(R3) for all s, € [6,00) and 7, € [12/5, 3).
€1
We set z= v' — a' — @® and § = 7! — b' — b2. Subtracting (2.2) to (2.4) and
(2.5), we get

)
vAz A(,)TZ +VO=0 and divz=0in R®. (2.6)
1

Therefore, we have

1
—vAcurl z+ )\M =0 inR3,
5‘x1
and we get ¥ = curl z, then for i = 1,2, 3,
IS LA S G )
8$1

where ¥; € L?(R3) + L™(R3) — S'(R3). Then, from Lemma 4.1 [9], ¥ is a
polynomial which belongs to L2(R?) + L"2(R3). Consequently, ¥ = 0 = curl z
and div z = 0. Therefore,

—Az=curl curl z+ V div z=0 in R3.

Similarly, it is easy to prove that z is a constant, then we can deduce from
(2.6) that VO = 0 and by the way the existence of a constant ¢ such that

7' = bl 4+ b2 + ¢. Therefore, the proposition is proved setting 7! = 72 + b!,
2 _ 2

T =b". O

3 Regularity of weak solutions

Let v = u — uy, where u is the weak solution of the Navier-Stokes problem
(NS) given by Theorem 2.2. Then we rewrite the Navier-Stokes problem (N'S)



as follows:

—vAv+ )\@ +Vr=f—ovVov inQ,

6%‘1
(NVS) divo=20 in Q, (3.1)
V= —Uso on F,
v—0 if |z| — oo.

We start our studies by adding assumptions on the force field f. First, we
assume additionally that f € W5 ?(Q), and then, we will consider the case

more generally f e W5 %(Q) N W, "?(Q) with p > 3. Following this idea, we
state and prove the

Theorem 3.1. Let Q C R? be an exterior domain with a CY' boundary. Given
p>3and fe Wy 2(QNW, P (Q). Then, each weak solution u to the problem
(N'S) satisfies

ve W2(Q) N W P(Q)NL™(Q) and (%” e W, "2 (Q) (3.2)
1

for any r1 > 6 and any ro > 3. Besides, the associated pressure has a represen-
tative
7€ L3(Q) N LP(Q), (3.3)

and if p > 3, then we have v € L>(Q).

Proof. We use once again the partition of unit introduced in Proposition 2.3.
We first prove the case p = 3 and then consider the case p > 3.

a) The case p = 3: f e Wy"2(Q) N Wy (). Let u be a weak solution
of (NS) given by Theorem 2.2 and v = u — Uy, Since v € L°(Q) and v.Vv =
div (v ® v), we have that v.Vv € W, "*(Q), v% € L¥2(R%) — W, "*(R?)

1
and f, —(v.Vo)y; € W (R3). Moreover, since v € HY,.(Q) and w € L?(Qy),

loc
we deduce easily from Sobolev imbedding theorem that

— VOV, — voAY + 7V € Wi P(R?), —o.Vihy € L3(R?).
Hence, the pair (f',g") belongs to Wy '?(R?) x L3(R3). Otherwise, we can
1
easily see that g' € L3/2(R3) ¢ W, "*(R3) and therefore gi e Wy 23 (R?)
X1

satisfying the following compatibility condition

o 1
<97 1> 0.
8.131 WO_2’3(R3)><WO2’3/2(R3)

Then, applying Theorem 1.10 [7], the following Oseen system

—vAw+ )\g—w +Vg=f! and divw=g¢'in R3 (3.4)
Z1

has a unique solution (w,q) € (X§*(R?) x L3(R?)) such that w € L"(R3) for
any r > 12. We set z = v' — w and § = 7! — ¢g. Subtracting (2.2) to (3.4), we
get

—vAz+ A;—z +V0=0 and divz=0in R3.
€1

10



Proceeding analogously as in the proof of Proposition 2.3, we can deduce that
Vz = 0 in R3. Since z belongs to Wy?(R?) + W (R3), then z must be
a constant ¢ and Vo' = Vw. As z € LS(R3) + L'?(R3), then ¢ = 0, i.e.
vt = w and v' € W5 (R®) N W *(R3). Moreover, we have v! € L™ (R?) and
vt

e € Wal’” (R3) for any r; > 6 and any rp > 3. Since z = 0, we deduce
T

that VO = 0, then # must be a constant, 7.e, there exists a constant a such
that 7! = ¢ + a with ¢ € L3>(R3). Let us now come to the regularity near the
boundary. Recall that (v?,7%) € H!(Q2) x L?(€s) satisfies (2.2) with i = 2.
Moreover, we can prove-like we proved- that (f2,g%) € W=13(Qy) x L3(£y).
Thanks to Green’s formula and div v = 0, we have

/Qz ¢*(x)dx = —/nguoo.nda. (3.5)

With such data, and since 25 has C''! boundary, we can deduce from Proposi-
tion 4.2 [10] that (v?,72) € W3(Qy) x L3(Q2) which immediately imply that
(v?,7%) € W5 (Q) x L3(£2). This ends the proof of the case p = 3.

b) The case p > 3: Let f € Wy () N Wy'P(Q). It is clear that f €
ng’S(Q) and since we have proved the theorem for p = 3, we know that
ve W2 (Q) N W3 (Q) NL"(Q) for any r; > 6 and © € L3(). Then

(f1g') € Wy ' P(R3) x LP(R®) and (f2, g%) € WP (Qy) x LP().

As in the case a), we prove that (v!,7') € WJ?(R3) x LP(R?) and (v?,72) €
WP(Q) x LP(Q), i.e, ve WP(Q) and 7 € LP(Q). Moreover v € L>°(). The
proof is complete. O

From Sobolev embedding theorem and the properties of the duality, we know
that L3/2(Q) — W, L3(Q). If we now reinforce the assumptions of Theorem
3.1, f belongs to L3/2(Q) instead of W "?(Q), we can prove the following.

Theorem 3.2. Let Q C R3 be an exterior domain with C*' boundary.
i) Assume that f € W5 2(Q) N L¥2(Q). Then each weak solution u to the
problem (N'S) satisfies

ve W Q) N WP (Q) NL(Q), (3.6)

g—" e L32(Q)NLA(Q) N W, "2(Q) and Vve L¥%(Q) (3.7)
€1

for any ry > %, ro > 3. Besides, the associated pressure w belongs to I/Vol’?’/2 ().

3 _
i1) Let 5 <p< 3. Assume that f € W5 ?(Q) N LP(Q). Then each solution u

to the problem (N'S) satisfies

ve Wi2(Q) N WP (Q) L™ (Q) and (%” e W, "2 (Q) (3.8)
1

for any r1 € [3p,0c] if 3 <p <2, for anyry € [6,00] if 2 <p <3 and for any
ro > 3. Besides, the associated pressure satisfies

™ e L3(Q) N LP(Q) (3.9)
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P
where px = 3_o " Moreover, we have

0
V2p € LP(), 37” € LP(Q) and 7 € WP (Q). (3.10)
1
Proof. i) Let u be a weak solution of (NS). Since L*/2(Q) — W *(Q), from
Theorem 3.1, we know that w and 7 satisfy (3.2) and (3.3)with p = 3. Now

v
it remains to prove that v belongs to L9/2(Q) and e V2v, Vr belong to
€1

L3/2(Q). Tt is then clear that f' € L3/2(R%)and ¢' € Xé’S/Z(R3). Then, by
applying Theorem 1.9 [7], the following Oseen system

0
—vAw+ )\671” +Vu=fFf! and divw=g'in R?, (3.11)
1

has a unique solution (w,p) such that w € L*(R3), Vw € L"(R3), V2w €
L3/2(R3), STZ € L*2(R?) and the pressure ;1 € Wy*/*(R3) for all s € [6,00)

and r € [12/5,3]. We set z = v' — w and 6 = 7! — . Subtracting (3.1) to
(3.11), we get

5]
—vAz+ )\a—z +V0=0 and div z=0in R>.
Z1

By the analogous techniques as in the proof of Theorem 3.1, we conclude v' = w,

1
= p e Wit A(R?), ZL e L¥?(R%) and V2v' € L3/2(R3). Thanks to
Z1

3
Lemma 1.4 [7] with ¢ = 5+ We can deduce v' € L%2(R?). Let us now come

to the regularity near the boundary. First, we verify easily that (f 2,¢°%) €
L3/2(Qg) x W13/2(Q,). With such data, and since Q has C1! boundary, we
can deduce from Proposition 4.3 [10] that (v?,72) € W23/2(Qy) x W1H3/2(Qy)
which immediately imply that (v?, %) € W§’3/2(Q) x W13/2(Q). Finally, since
v=v' 4+ v? and 7 = 7! + 72, we obtain (3.6) and (3.7).

i1) Thanks to the Sobolev embedding theorem, since f € L?(§2) where g <p<3,
3p

we can deduce that f € Wy '"*(Q) with px = 32 and px > 3. From Theorem

3.1, we have (3.2) and (3.3) but px plays a role as p in Theorem 3.1. From
3
Holder’s inequality, we obtain v.Vv € L%(Q) for all 3 < g2 < 3 and then

f—v.Vov e LP(Q). Proceeding similarly as in the previous case, we prove (3.10).
By applying Lemma 1.1, we have v € L37(£2) and we deduce (3.8). Finally, we
obtain m € LP*(2) from 7 € VVO1 P(Q). The theorem is completely proved.

O

In Theorem 3.2 (i), we proved v € L™ (Q) for any r; > 9/2. To obtain
v € L™ (Q) with r; < 9/2, we have to assume additionally a condition for f. We
can state the

Theorem 3.3. Let Q C R? be an exterior domain with C%' boundary. Assume
that f € W5 "2(Q) N L32(Q) N LY3(Q). Then each weak solution u and the

12



associate pressure 7 to the problem (N'S) satisfy the results in Theorem 3.2 i).
Moreover,

Vv e LY3(Q), 887” cLY3Q), me Wp**(Q) and veL™(Q) (3.12)
1

for any r1 > 4.

Proof. From Theorem 3.2 and Theorem 5.26 [10], we have the following estimate

v
Al ggrllerzie) < CULF = vV lluaraa) + luscllwarssram)

< O £ lluzon + 1 0 llus@IV0 lluey + luscllwsrsongy) 19
S COUl Fllerz@) + 11 v lls@llf w12 @) + tscllwarsarzr))-
Applying Lemma 1.4 [7] with ¢ = 3/2, we can deduce
| ||L~"/2(Q CUl fllwsrzioy + 1l v llLes) +1).
We define the sequence {q;} as follows
2
S 84, kEN (3.14)

with go = 2. Clearly, the sequence {qgi} is strictly decreasing and converges to
4/3. By induction, we can deduce for 4/3 < ¢, < 2 with k£ € N that

o]l p2ars1 () + /\|| ||qu+1(Q) <O flluawsr o) + 1l v ‘|L2qk+1/(2’qk+1)(Q) +1)
< C(| flluaw+r ) + 1| v [|Lsar @) +1)-
(3.15)
Thanks to Babenko [11] and (3.15), we have the following estimate
1/3 1/3 1/3
1o llgsniny < C || ||Lék+1(g - HLé(Q | 5— HLé(Q
1/3 3.16
< c||—||Léh+l(Q) (8.16)
< O+ || v [[psan () '/?.

Then we deduce

C 1+ v|psan (@)

1 || ||L3qk () < + -+
+[|v +1(Q 1 1
< C1+3+--- 3k (] + Hv||L3qo(Q))

a-"“

When k — +00, then g — 4/3 and we can deduce v € L*(2) with the following
estimate
I+|lvle) < CA+|lvlLew) < C.

Since v € L*(Q) and Vv € L2(Q), we obtain f— v.Vv € L*/3(Q) and we deduce
(3.12). The Theorem is completely proved.
O
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4 The exterior Oseen problem
For our studies, we shall introduce the following problem. Let
a fixed z € L3(Q) such that div z= 0 in Q, (4.1)

we search a solution (w,6) to the following Oseen problem

—vAw+ )\STw +2zVw+Vo=f inQ,
1
divw=0 1in €,

w=u, onl.
We introduce the space
VP(Q) = {v € W)P(Q), divv =0}

As in [2], we can prove the following lemma

Lemma 4.1. Let Q C R3 be a Lipschitz exterior domain. Assume that z
satisfies (4.1), w, = 0 and let f € Wy (). Then Problem (4.2) has a solution

(w.6) € W2(Q) x LE,,(Q).
We have the following corollary.

Corollary 4.2. With the same hypothesis as in Lemma 4.1, we can deduce that

0 _
6 € L?(Q). Moreover, we have w € L*(Q), 871” e W, 2(Q).
1

Proof. We use once again the partition of unit with the role of w (6, respectively)
as v (m, respectively) introduced in Proposition 2.3. Proceeding analogously as
in the proof of Theorem 3.1, we can deduce that § belongs to L?(Q2). Moreover,

we have g—z € Wal’Q(Q) because Aw, z.Vw, VO and f belong to Wal’Q(Q).
Thanks to Lemma 1.2, we deduce w € L*(Q). O

Lemma 4.3. Let Q C R3 be a Lipschitz exterior domain. Assume that z
satisfies (4.1), ux = 0 and let f € Wo_l’Q(Q). Then Problem (4.2) has a unique
o 0 _
solution (w,0) € (W 5 %(Q) NLA(Q)) x L3(Q) with 5‘7“) e W, () and w
1
satisfies the energy equality

2 —
V/Q [Vw |*de= < f’w>W51’2(Q)xV°v§’2(Q) . (4.3)
Moreover, we have the estimate
ow
w [[La@) + [[Vwl|Le @) + ||aTcl|\w51«2(Q) +1IVOL2 (o) (4.4)

SO llwzr2(0) T 12VWw [ly=12(0))-

Proof. The existence of (w,0) € (\%/'(1)2(9) NL4(Q)) x L3(Q) such that g—w €
T
W, '?(Q) is given by Lemma 4.1 and Corollary 4.2. Since the space V(Q) is
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dense in V2(Q), for any ¢ € VZ(Q), we have

ow
v fQ Vw.Vede+ \ < (973317 ¥ >ng’2(Q)><VOVé’2(Q) (4.5)

+ < z~vwa30 >WJ1’2(Q)><V(§/(1)’2(Q) =< f790 >W0_1’2(Q)><\;V(1)’2(Q) .

Since D(1?) is dense in )0(32(9) (see [8]), for all ¥, ¢ 6)0(3’2((2), we obtain

(23 _ [y 0
8I17‘p —1,2 21,2 76:61 Q1,2 —1,2 ’
W, () xWy' ~(22) Wy " () xW ()

Then, we deduce

0
<¢,¢> 0 (4.6)
01" w2 @)W 2 (@)
and we have for any ¢ € VZ(Q),
. _ Iy,
<d1V (Z® 90)7<P>W51’2(Q)><V(§/(1)’2(Q) = */in ©j oz dx
1 8@?
- | 2T%de=0 (4
5 Qz oz, z=0 (4.7)

From (4.6) and (4.7) and (4.5), we have (4.3). The uniqueness of (w,f) is a
immediate consequence of (4.3). O

We consider the following nonhomogeneous problem.

Lemma 4.4. Let Q C R3 be a Lipschitz exterior domain. Assume that z
satisfies (4.1), u, € HY2(T) and let f € W5 "*(Q). Then Problem (4.2) has a
unique solution (w,0) € (X5%(Q)NLA(Q)) x L2(Q) and we have the estimate

ow
0 oy +1Vwllie + 1152 v + IV0e@
< CUIF Nl 2y + 1125w [y 1y + llepar).

Proof. 1t is easily to show Lemma 4.4 by applying Lemma 4.3 and Lemma 5.8
[10] with the case p = 2. O

Our objective is to consider the Navier-Stokes equations by using the prop-
erties of the Oseen equations. We now consider some properties of the Oseen
equations. Beforehand, we introduce

Xé’p(Q) N L4p/(4—P)(Q) if 1<p<d4,

Yy (Q) =
a ") {Xé’p(Q) if p>4,

and .
Y(lJ’p(Q) = {v Eyol’p(Q); v=0 on T},

with the same definition when 2 = R3. Now defining

NF(Q) = {(u,7) € YLP(Q) x LP(Q), T(u, 1) = (0,0) in Q},

p

NZ(Q) = {(u.7) €Y LP(Q) x LP(Q), T (u, ©) = (0,0) in Q},

p

15



with

T(u,m) = (—Aut 2% 4 Vi, —div u),
81‘1

and its adjoint

T (u,7) = (—Au— U L G —div u).
a.’El

Moreover, if 1 < p < 4, u satisfies the properties i)-iii) of Lemma 1.2. We
introduce the characterization of the kernel Nf (). (see [10]).

Lemma 4.5. Let Q be an exterior domain with a CY! boundary.
1) If 1<p<4,then NJ(Q) ={(0,0)}.
2) If p>4, then NJF () = {(Ac — ¢, pe); ¢ € R*} where

Ge) e () Yam@ x () L(Q)

r>4/3 5>3/2

is the unique solution of the following system

O
—AX. + 3 + V=0, divad.=0inQ, Ac=conT. (4.9)
1

Remark that we have the similar results for A" (22). We now introduce the

Theorem 4.6. [10] Let Q be an exterior domain with a C1 boundary. Assume
that f € W5 "P(Q) and uw, € WYP'P(T'). Moreover, if 1 < p < 4/3, assume
that we have the compatibility condition

Y(v,n) € N, (Q), <fiv>a+ < (Vvo—nl).nu. >r=0. (4.10)

i) If 1 <p <4, then the following problem

0
—Au+87u+V7r:f, divu=0inQ, u=wu, on I (4.11)
1

has a unique solution (u,m) € YoP() x LP(Q) satisfying the estimate
1 lyargay + 11 sy < C UL vy + 1 sy )

i) If p > 4, then problem (4.11) has a solution (u,7) € Y (Q) x LP(Q),
unique up to an element ofN;‘(Q), satisfying the estimate

inf u+v P +|| T+ P <C —1,p +|| vy »’\p .
i ol I ) < € 1 g Hl e o)

The next Lemma characterizes the kernel N'P¢(Q2) of the exterior Oseen
system:

NPQ) = {(u,7) € [Y,7(2) + Yy (Q)] x [LP(Q) + LU(Q)),
T(u,7) =(0,0)in Q,u=0o0nT}

with 1 <p < g < o0.
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Lemma 4.7. Let Q2 be an exterior domain with a C*' boundary and 1 < p <
q < o0.
i) If g <4, then NP9(Q) = {(0,0)}.
ii) If q >4, then
NPAQ) = {(Ac — e, pue); €€ RB}
where
Ao € () YEr @ x () L(Q)
r>4/3 5>3/2

is the unique solution of the system (4.9). Moreover, we have A, € L*(Q2) N
L>(Q) for all s > 2.

Proof. Let (z,6) € NP9(Q), then z = u— v with u € YJ*(R2), v e Yy(R2) and
w=wvon . Let now ¥ € Y59R?) be an extended function of v outside €.
We set %= u in Q, % = ¥ outside Q and Z= % — v. Then w e Y *(R?),Z=0
outside €2 and we can prove that divz= 0 in R3. We now extend 6 by 0 outside
Q and denote 0 its extended function. It is easy to see that § € LP(R3)+ L9(R?).

Now setting

he-—az+ 2 4 Vo,
65(}1
then supp h C T and h € Wy "7 (R?).
4
1) The case p > 3 Thanks to Theorem 1.10 [7], there exists w € Y §P(R3) and
a € LP(R?) such that

0

Aw+ 22 L Va=h and divw =0 in R,
(9171

We now set that y = w — z and k = o — 0. Hence, we have

P
Ay+ Y L VEk=0 and divy =0 in R?,

61’1
and we deduce 5 |
—Acurly + M =0in R?.
8331
We take ® = curly. Then, for i =1, 2,3, we have
—Ad®; + 0% =0
8.%‘1

where ®; € LP(R3) + LY(R3) — S'(R3). It is deduced that ® is a polynomial
which belongs to LP(R?) + L4(R3). Consequently, ® = 0 = curly. Therefore,

—Ay = curlcurly + Vdivy = 0.

Since y € Y y7(R3) + Y §%(R?), then y must be a constant ¢ and Vw =
VZz. Moreover, we obtain Vk = 0 in R3. Then k is a constant belonging to
LP(R3) + L9(R3), it means o = 6§ in R3.

a) The case g < 4: As y € L?/4=P)(R3) 41,49/ (4=9(R3) then ¢ = 0. Therefore,
w=2in R? and w = 0 on I. Since p < 4, from Theorem 4.6, then w = 0
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in Q, i.e., z =0 in Q. Therefore, VO = 0 in Q and we can deduce that 0 is a
constant which belongs to LP(Q2) 4+ L?(2). Hence, § = 0 in Q.

b) The case q > 4: There exists a constant ¢ = (c1, c2, ¢3) such that w —Z = ¢
and w = ¢ on I'. Consider now the following problem

o,
81'1

—A)vi + + Vul = O, div >"L' =0in Q, )‘i = €; On F, (412)

where (e, ez, e3) is the canonical basis of R3. We know that the system (4.12)

has a unique solution (A;, p;) such that A; € ﬂ Y "(Q) and p; € ﬂ L"(9).
r>4/3 7>3/2

If p < 4, from Theorem 4.6, w is unique and then w; = c.e; = e¢.\; on T,

therefore w; = ¢.A; in Q. Now we set A, = (€. A1, €A, c.A3) and p. = c.pu

with g = (u1, 2, 13). By construction of A. and p., we deduce that (A, pe) is

the unique solution of the following system

Ac . .
fA)\C+Z 4+ V=0, divA,=0in Q, A,=conl,
T

such that A, € ﬂ Y, (Q) and p. € ﬂ L"(Q). Tt is easy to see that
r>4/3 r>3/2

(w,a) = (w,0) = (A, pte) in Q. Then we obtain (z,0) = (A: — ¢, pe) in Q. If

p > 4, we obtain again (z,0) = (A. — ¢, itc) in Q by proceeding similarly as in

the case p < 4.

4 .
2) The casel < p < -: Weset m = (m;); withm; =< h;,1 >W0_1,p(R3)XW3,p/(R3)
and H; = h; — dd;;m; where ¢ is the Dirac distribution and J;; denotes the

Kronecker symbol. From Theorem 1.10 [7], there exists a unique solution
(wo, ap) € YyP(R?) x LP(R?) such that

—Awy + 75?170 +Vag=H, divwg =0 in R3.
81‘1
We now set that

w=wg—Omanda=ayg—P.m
where (O, P) is the fundamental solution of Oseen equations. Then we have

—Aw+a—w+w=h, divw = 0 in R®,
8331

Moreover, proceeding as in the case 1 of this Lemma, we obtain Vw = Vz
and o = 6 in R®. Note now that the pair (a,b) € N,/ () satisfies the Green’s

formula: for all (¢,&) € D(Q?) x D(Q),

/{(—Az/; + 371/’ +V&a —bdiveplde =< (Va —bI).n, ¢ >p,  (4.13)
Q 1

where <, >p denotes the duality pairing between W~1/7"# (') and W'/?"2(I).
Thanks to the density of D(Q) in X7 (Q) and D(Q) in LP(2), applying (4.13)
with (1, €) = (wo, ap) € XyP(Q) x LP(2) and (a,b) = (vs — B,0p) € N, (Q)
(B € R?), we obtain

< (V’Uﬁ - 9ﬁ[)ﬂ7 wo >W—l/p,)p/(F)le/p/’p(l—‘): 0. (414)
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a) The case ¢ < 4: Then we have w — 2z = 0 in R3 and w = 0 on I'. Therefore,
we deduce wo = O.m on I'. From (4.14), we have

m < (V’Ug - 9[31).7’1,, O >r=0. (415)

By some calculs, we can obtain

0 = /{ AO+§£+VP)U5*9ﬁdIVO}dZB

= (va—egf)’no>r —ﬁ/

then we deduce < (Vvg — 6gI).n, O >r# 0 and from (4.15), m = 0. Then
(wo,ap) = (0,0) in ©Q and we can deduce that (w, ) = (0,0) and (z,6) = (0,0)
in Q.
b) The case ¢ > 4: There exists a constant ¢ such that w — 2z = ¢ in R3 and
w = conI'. Then we have wg = ¢+ O.m on I'. Applying (4.14), we deduce
that

< (Vvg —03I).n,c+ O.m >pr=0.

We set that 4 = ¢ + O.m. It is easy to prove that u € Wl/r/””(f‘) for all
4
3 < r < 4. Thanks to Theorem 4.6, the following system

0y,
—Ayo+ 5

By 0 4+ VK =0, divyo=0in Q, yo=pon I,

has a unique solution (yy,x) € Y () x L™(Q). Then (y, — wo,x — ag) €
NPT(Q) and we deduce that (y,,x) = ('wo,ao) Moreover, we can see that
p € W/P'P(T). Then there exists (s,w) € Yy9(Q) x L4(Q) such that

—As—l—a—-l-Vw—O divs=0in, s=ponl.
81‘1

Then (s — wo,w — ag) € N™(Q) and (wo, ap) € Y4(Q) x LI(Q). Therefore,
we deduce that (w, o) € Y9(Q) x LI(Q). Since w = ¢ on I’ and thanks to the
characterization of N4(Q), we obtain that (z,0) = (A. — ¢, i¢)-

4
3
U =0 x¢p and K =P * . The reasonning can be applied by remplacing §6;;
by @i, U by O and K by P. O

Finally, in the case p = -, let ¢ € D(R?) satisfying / w; = 1. We set
R3

Thanks to the above lemma, we immediately deduce the following corollary.

Corollary 4.8. Let Q be an exterior domain with a C*' boundary. Assume
few, 1p(Q), U, € Wl/”/p( ) with 1 < p < 4 satisfying the compatibility
condztzon (4.10) and (u,m) € Yo’p(Q) x LP(Q) be the unique solution of the
system (4.11). If in addition, f € W5 9(Q) and u, € WY99(T) with 1 < g < 4
satisfying the compatibility condition (4.10) by remplacing p by q, then we also
have (u, ) € Y5U(Q) x LY(RQ).

We denote by [g] the integer part of ¢. For any k € N, & (respectively,
97,?) stands for the space of polynomials (respectively, harmonic polynomials)
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of degree < k. If k is strictly negative integer, we set by convention &7, = {0}.
We introduce the following space of polynomials:

A
Ne = {(Ap) € P x Py, AA+§—+W=0, divA=0 inR*}.
Z1

Observe that Ny = R3 x {0} and N7 = £ x R® where 2] is the space of
polynomials of degree less than or equal to one not depending on ;.

We now introduce the space Z,(2) as follows:
X5(Q) if p>4,
Z,(Q) = { X2P(Q)Nn WJ’%’(Q) if 2<p<d,
XEPQ) AW Q)N L (Q) i 1<p<2
Define that
AF(Q) = {(u,7) € Z,(Q) x Wy P(Q), T(u,7)=(0,0)inQ, u=0onT}.
We can characterize the kernel Af () (see [10]), as follows:

Lemma 4.9. Let Q be an exterior domain with a C*' boundary.
i) If 1 <p<2, then A;(Q) = {(0,0) }.
i) If 2<p<4, then AF(Q) = {(Ae— ¢, pe); c€ R}, where

Aepie) € () Yo' (@) x () L°()
r>4/3 5>3/2

is the unique solution of the problem (4.9).
i) If p >4, then A (Q) = {(Ac— ¢, e —n); (¢,n) € N1}, where

Aetie) € () Yo' (@) x () L*(Q)
r>4/3 $>3/2
is the unique solution of the problem (4.9).

The next lemma characterizes the kernel AP7(Q) of the exterior Oseen sys-
tem:

API(Q) = { (u,7) € [Zy(Q) + Zg(Q)] x Wy " (Q) + Wy (Q)],
T(u,7)=(0,0)inQ, u=0onT}.

Lemma 4.10. Let Q be an exterior domain with a CY' boundary and 1 < p <
q < o0.

i) If 1 <p<2, then AP1(Q) = {(0,0)}.

i) If 2 <p <4, then A»1(Q) = { (A — ¢, pe); ¢ € R3}, where

Aerpe) € () YT (@) x () L8
r>4/3 s>3/2

is the unique solution of the problem (4.9).
i) If p >4, then AP1(Q) = {(Ac— c,uc—n); (e,n) € N1}, where

Aetie) € () Yo' (@) x () L*(Q)

r>4/3 $>3/2

is the unique solution of the problem (4.9).
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Proof. The proof can be obtained by proceeding similarly as in the one of Lemma
4.7. O

The following corollary is immediately deduced from the previous lemma.

Corollary 4.11. Let Q be an exterior domain with a C*t. Let f € LP(Q),
w, € WHHPP(TY) with 1 < p < 2 and (u,7) € Z,(Q) x Wy P(Q) be the unique
solution of the system (4.11). If in addition, f € L(), u, € W'H1/4-4(T) with
1 < q <2, then we also have (u,7) € Z,(Q) x Wy 4(Q).

5 More regularity for the velocity field v and the
pressure m of the Navier-Stokes system

We now introduce the following result which we shall need in this part. The
proof of this lemma is similar as the one of Lemma 4.2 [7].

Lemma 5.1. Let Q C R3 be a Lipschitz exterior domain and z € L*(Q) such
that div z = 0. Then, for all ¢ > 0, there exist p = p(e, z) > 0 and a sequence
(zr)ren € L3(Q) NL4(Q), such that div z, = 0, satisfying

2z — zin LY(Q). (5.1)

Moreover, there exist sequences (ai) and (bg) in L3(Q) N L*(Q) satisfying for
each k € N

2, = a + by, with ||ag|[La@) < e and supp b, C Q. (5.2)

From now on, € is an exterior domain with C!'! boundary in R?. Note that
LS/5(Q) — W, *(Q) and L¥/2(Q) — W, ?(Q), and with the previous results
in hand, we can now prove the following theorem.

Theorem 5.2. Assume that f € L/5(Q) NL3/2(Q). Then each weak solution
(u, ) to the problem (N'S), satisfies

ve LI(Q) for all q € [3,00), € W2 (Q)n W% (),

Vo e L2/7(Q)nL3(Q), VZve LY/°(Q) NL32(Q), (5.3)
ov '

— e L¥5(Q) nL3(Q).

o €LY (@) NIHE)

Proof. Let u be a weak solution of (NS). As f satisfies the hypothesis of

Theorem 3.3, then (v, 7) verify (3.2), (3.3), (3.6), (3.7) and in particular, v €

L*(Q) and aa—v e LY3(Q). Let € > 0, p > 0 and v, = ay, + by be a sequence
T

as z; in Lemma 5.1. Since v, € L3(Q) and div v, = 0, from Lemma 4.4, there
exists a unique solution (wy, 0;) € X% (Q) x L2(Q) satisfying
ow

3 k4 vp.Vwg + VO, =f and divw, =0in Q (5.4)
T

with wy, = —us on I'. Thanks to Theorem 5.26 [10], we have

—vAw, + A

[ wi [|Ls@) + | Vwg |[piz/7 )+
Wy,
+ || N llLo/sa) + 1| V2wk |noss o) + | 0k rersq) (5.5)

< CO(If Nwsrse + [l ve-Vwg |[Loss ) + || oo llwrres/s ),
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where C' > 0 depends only on A, v and 2. Note now that by construction of
the sequence by, we have |by| < v almost everywhere in 2, we have

|| v Vawg HLe/s(Q)
<l ar L)l Vwr [lizr7 ) + 11 bk llps @) | Vo lls2@,)
< el| Vg [[Liz/r o) + [ vllue@) |l Vo llps2@,) (5.6)

But there exists C7 € R such that
Vk € N*, [[ Vg |[pa2,) < Cr(ll fllLers@) + || oo [lwrrssssry). (5.7)

Contradicting (5.7) means that there exists a sequence (ky,)men= such that, for
all m € N*|

IVwg,, [l s @, =1,

3|~

8wk
| - vAwy,, + ”\ﬁ + VU, -Vw,, + Vi, [|Less ) + ||wk,, | lwresemr) <
(5.

o0

)
Then we deduce from (5.5), (5.6) and (5.8) that

lwk,, s @) + [| Vaog,,

L2y + || V2w, |lLe/s (o)
8wk .
+| 3

16/5 Q) < C.

m

8wk“> is bounded
61’1 m
in L6/5(Q), (wy,, )m is bounded in L3(Q) and (6, ) is bounded in W, %/%(Q).

Thus, there exist subsequences, again denoted by (wg,, )m and (0k,, )m, such that

—win W) n W), T 00 yes(0) . — win

810 le
L3(Q), and 65, — 6 in Wol’G/s(Q). Moreover, since W2’6i5(ﬁp) — WL3/2(Q,)
with compact imbedding, we have wy,, — w in W13/2 (Q,) with

Therefore (wy,, )m is bounded in W% (Q) n W27 (q), (

Wy,

m

||V'w||L3/2(§p) =1, (5.9)

and 9
—vAw+ A% FoVw+VI=0 in Q. (5.10)
1

Since w € W?(Q) and 6 € L?(Q), then we have Aw and V6 belonging to
W, Q). On the other hand, we deduce that v.Vw = div (v&w) € W *(Q)

because v and w belong to L4(Q). Since L/5(Q) — W *(Q) we also have

0 _
99 W, L2(Q)). Moreover, w is divergence free and, because of (5.8), it has

0z

also zero trace at the boundary. Then, we deduce w = 0 in Q which contradicts
(5.9). Thanks to (5.5), (5.6) and (5.7), we have the following estimation

I 'wk ||L3 ©) + || Vwy, ||L12/7(Q)
H 2 |lgers @ T | V2w ||poss @ F 0k llyyrers g

< C(I\f lLors@) + [l 0lls@ll flluers ) + [ toollwisr/orsr))-
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We can show that there exist a subsequence of (wy); which converges weakly
towards w in W§’6/5(Q) N Wé’uﬁ(ﬂ) N L3(Q) and a subsequence of (0)x
which converges weakly towards 6 in WO1 -6/ %(Q) being a solution of the system
as follows

—VAw+)\g—w+v.Vw+V9:f and divw=01in Q.
T

We set y=v—w and x =7 — 6. Then we deduce that (y, x) is a solution of
the following system

*VAy+/\§7y+’U.V’y+VX:0 and divy=01in .
1

Since y satisfies the energy equality (4.3) with f = 0, we deduce that y = 0
then xy = 0. Thanks to uniqueness arguments, we show that w = v and 0 = 7.
Theorem is completely proved. O

Thanks to Theorem 3.2 (part ii), Theorem 5.2, Sobolev embedding theorem
and by duality arguments, we can prove the following.

Corollary 5.3. i) Assume that f € LP(Q) for allp € [6/5,2). Then the Navier-
Stokes problem (N'S) has a solution (u, ) satisfying
ve LI(Q), Vve L5 (Q), e Wy (Q),

V2o L2 (Q), 20 e Lo(0), (5.11)
6331

for any q € [3,00], any s1 € [12/7,6), any s2 € [6/5,2) and any s3 € [6/5,6).
it) Assume that f € LP(Q) for all p € [6/5,3). Then we have (5.11) for any
q € [3,00], 81 € [12/7,00), s2 € [6/5,3) and s3 € [6/5,00).

We now prove the following Theorem.

Theorem 5.4. Assume that f € LP(Q) for allp € (1,3/2]. Then each weak
solution (u, ) to the problem (N'S) satisfies

ve LI(Q), Voe L (Q), e Wy™(Q),

V2oe L), U cro), (5.12)
8951

forany ¢ € (2,00), any s1 € (4/3,3], any s2 € (1,3/2] and any s3 € (1,3].
Proof. Remark that from Theorem 5.2, as v € L3(Q) and Vv € L'¥/7(Q), we

12
have f — v.Vv € L'?/1(Q). By applying Theorem 5.26 [10] with p = 1T’ the
following system

fVAw+)\§—w+V0:ffv.Vv, divw=0 inQ; w=—-uy, onl,
1

has a unique solution (w, #) satisfying w € L2*/2=P)(Q)NL3»/G=2)(Q), Vw €

L/ () 1 L0 (0), Vi € 12(0), 9% & LA(@) and 0 € Wa(Q),
1
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i.e., (w,0) € Ziz/11(9) x Wol’u/u(ﬂ). On the other hand, from (5.3), we can
show (v, 7) € Zg/5(Q) x VVOLG/5(Q). Thanks to Corollary 4.11, we have (w,0) =
(v, 7). Then, we obtain v € L'2/5(Q)NL'?/7(Q), Vv € LY/3(Q)NL?/7(Q), Vv,
and aa—v belong to L'2/11(Q), 7 € Wy'*/"(Q). Combining with the results in
T
Theorem 5.2, we have v € L4(Q) for all ¢ € [12/5,00) and Vv € L¥3(Q)NL3(Q).
Hence, it is easy to prove that f — v.Vv belongs to L?(Q) for all p € ]1,3/2]
2p 3p 4p 3p
and we can deduce that v € L2-7(Q) N LSii?P(Q), Vv e L7 (Q)N L;fP(Q),
ov

Vv € LP(Q), 3 € LP(Q) and 7 € WyP(Q). Clearly, we have (5.12) by
T

combining with (5.3). O

Thanks to Corollary 5.3 and Theorem 5.4, we immediately obtain the fol-
lowing results.

Corollary 5.5. i) Assume that f € LP(Q) for all 1 < p < 2. Then each weak
solution (u, ) to (N'S) satisfies

ve LI(), Vve L (Q), 7 e Wy (Q),

V2o L2 (Q), 20 e Lo(0), (5.13)
81‘1

for any q € (2,00], any s1 € [4/3,6), any sz € [1,2) and any s3 € [1,6).

i1) Assume that f € LP(Q) for all 1 < p < 3. Then we have (5.13) for any
q € (2,00], 51 € (4/3,0), 52 € (1,3) and s3 € (1,00).

We now search weak solutions of Navier-Stokes system (NS) such that v €
L%(Q) and 7 € LI(Q) for small values of ¢ (¢ < 2) with similar properties for
Vw. The following theorem allow us to improve the results in Theorem 5.2 by
taking an additional assumption for f.

4
Theorem 5.6. Let o < p <2 and f € LO/5(Q) N L32(Q) N W "P(Q). Then
each weak solution (u, ) to the problem (N'S) satisfies (5.3). Besides, we have

7w € LP(Q) and ({;37’0 e W, 15(Q) for any s > p. (5.14)
1

4 12
In particular, if 3 <p< - we obtain additionally

ve LYQ) for any q¢ > 447]) and Vv e LP(Q). (5.15)
-p

Proof. From Theorem 5.2, if w is a solution of (N'S), we have v satisfies (5.3).
In particular, v € L3(2) N L*(Q) and div (v® v) € Wo_l’g/Q(Q) NwW; ().

1) The case 3/2 < p < 2: We have f— v.Vv € W, (). As p>4/3, then

the compatibility condition (4.10) is automatically satisfied. Thanks to Theo-
rem 4.6, the following system

—VAw—i—)\g—w—&—VG:f—v.Vv, divw=0 in; w=—-uy, onl,
1
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has a unique solution (w, ) satisfying w € L*/4=P)(Q) N L3P/G-P)(Q), 9 ¢
0 -
Lr(Q), Vw € LP(Q) and 371” € W,'"P(Q). Tt is easy to see that (w,f) €
1

YLP(Q) x LP(Q) and (v, 7) € Yo¥/?(Q) x L3/2(R). Applying Corollary 4.8, we
have (w,0) = (v,7), then we obtain (5.14).

2) The case 4/3 < p < 3/2: Since fe L%/3(Q) — W "?(Q2), then in particular
f£e W;/%(Q). From the case 1) of this theorem, we have v € L4/(4=P)(Q)
L37/3=2)(Q). Applying with p = 3/2, we have v € L'*/°(Q)NL3(Q). Hence, we
can show that v.Vv = div (v®v) € Wo_l’4/3(§2) N W51’3/2(Q) and f—v.Voe
Wal’p(Q). By applying Theorem 4.6 and Corollary 4.8, we have (5.14) and
(5.15).

The proof is complete by combining the case 1) with the case 2). O

Remark 5.7. Because of the compatibility condition (4.10), the above problem

4
is open for the case 1 < p < 3

In Theorem 5.4, we know that if f € L?(Q) for all p € (1,3/2], then v satisfies
(5.12). With additional assumption for f, we shall prove that the weak solutions
given in Theorem 5.4 satisfy better properties.

4
Proposition 5.8. Given r > 3" Assume that f € LP(Q) N Wy (Q) for
all p € (1,3/2]. Then each weak solution (u,7) to (NS) satisfies (5.12) and

v _
e e W, 1’5(9) for any s > r. Moreover,
T

, ™€ LYQ) forall r<t<3. (5.16)

N W

4
e d
if g<r=<

Proof. We know that (u, m) satisfies (5.12). In addition, thanks to Theorem 5.4,
we have v® v € L4(R3) for all ¢ > 1. Then we deduce f — v.Vv e W " (Q).

3

4r i
Proceeding as in Theorem 5.6, it is easy to prove that v € LT (Q) N L3-7(Q),

Vv e L"(Q), 5)7” e W, (Q) and 7 € L7(Q). As v € L4(Q) for any ¢ > 2, we
1

ov -
have e e W, 1#(Q) for any s > r. For the pressure, we note that thanks to
1

(5.12), 7 € L*(Q) for all 3/2 < t < 3 and then, we have (5.16). The Theorem is
completely proved. [

We now prove the following theorem.

Theorem 5.9. Let 4/3 < p < o0 and qo > 3. Assume that f € L1(Q) N
W, '"2(Q) for all q € (1,q0]. Then the problem (N'S) has a solution (u, ) sat-
isfying the properties of Corollary 5.5 part ii). Moreover, we have 7 € Wol’SQ(Q)
and V?v € L*2(Q) for all sy € (1,q0]. In particular, if 4/3 < p < 3/2, we have
additionally © € L* (Q) for any ki > p.

Proof. In particular, we have fe€ L9(Q) for all 1 < ¢ < 3. From Corollary 5.5
part ii), we have

ve Lo(Q), Voe L5 (Q), 7 € W, (Q),
V2o e L2 (), 2V e L (), (5.17)
(9:21
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for any sg € (2,00], any s; € (4/3,00), any s2 € (1,3) and any s3 € (1,00).
Using the partition of unity, we can deduce (f',¢") € LI(R3) x X)'?(R?) and
(f 2,9%) € Li() x WyUQy) for all ¢ € (1,qo] satisfying (3.5). Applying
Theorem 1.9 [7], Proposition 4.3 [10] and proceeding as in Theorem 3.1, we

0
can obtain that = € Wy'Y(Q2), V2v € L2(9), 8—1’ € L(©2). Combining with the
X1

previous results, we have (5.17) for all so € (1, qo], s3 € (1,00). As v®v € L"(R3)
for any r > 1, then f—v.Vv € Wo_l’p(Rg). We use the same technique as in the
proof of Theorem 5.6, we have (v,7) € (X5P(Q) x LP(Q)) such that w € L¥(Q)
for all ffpp <s< ip. Note that 7 € LF1(Q) for any k; > p if 4/3 < p < 3/2.
The Theorem is completely proved. O

Now we introduce the stress tensor T and the related stretching tensor D,
T (u, ) = —7I + 2vD(u), where I is the identity matrix and D(u) = {D;;}(u)
with 9 9
U; U
+ .
We now consider the energy identity. The key idea to find the conditions to
obtain the energy identity (5.18), is to test the Navier-Stokes problem with v.

1
)

D;j(u)

Theorem 5.10. Let f € L5/5(Q) N L*/2(Q) and (u,7) be a weak solution of
(NS). Then we have the energy identity

u/ |Vv|2dx—)\/T.n da:/f.v da. (5.18)
Q r Q

Proof. Let (u,m) be a weak solution of (MS). From Theorem 5.2, we know that
(5.3) takes place. Let ap € H'(Q2r) where R > Ry such that ag = 0 on 99,
ap = Us, 00 OBsp, divag =0 in Qyr. We set that a = us in B2F and a = ag
in Qor. Then, we have a— us, € W(IJ’Q(Q) with compact support and diva = 0.
As V(Q) is dense in V2(Q) (cf. [2]), there exists a sequence (19;) € V(Q) with
(1;) = v— a+ us in VZ(Q) with compact support. Since v € L3(£2) then we
deduce v — a+ u,, € L3(Q). Testing (3.1) with (2),), we obtain

ov
VfQ Vo.Vipde+ A < aixl’d)l >w51*2(§z)x\;’vé’2(sz)

TRV Sy skt e T S PV T wg @k 2@
When ¢ — oo, we deduce that
v [o Vv |2de—v | VvVad:z:—&—)\<ﬁ V+ U — @ > 0
Q Q . 81‘1, o] Wal,fzxvvé,z
+ <oV, v+ Uy — a>W51'2xVOV§)’2 =<fiv—a+ ux >W51’2x\%/é*2 .
(5.19)
From (5.3), v and v.Vo are in L3/2(Q). Then, we can rewrite (5.19) as follows

8%‘1

v [ |V [Pde—v [, VoVade+ X[, %.(v+ Uy — @) dT

X (5.20)
+ [ oVu.(v+ ux — a) de= [, f.(v— a+ ux) de.
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Next, we multiply (3.1) with u,, — a € Wé’z(Q) having compact support.
Integrating on €2 and using integration by parts, we get

—z/fQV'v:Vada:—)\fFT.nda+/\fQ;—;1.(uoo—a) de

(5.21)
+ o v.VV.(Uss — @) dx = [, f(tUso — a) dz.

0
It is easy to see that [, v.Vv.v =0 and [, 87”'1) =0 ( cf. [12]). From (5.20)
1
and (5.21), we have (5.18). O

References

[1]
2]

13l

4]

[5]

16]

7]

18]

19]

[10]

R. A. Apawms, Sobolev Spaces, Academic Press, New York, (2003).

F. ArLuior, C. AMROUCHE, On the regularity and decay of the weak solu-
tions to the steady-state Navier-Stokes equations in exterior domains, Ap-
plied Nonlinear Analysis, Edited by A. Sequeira, H. Beirao da Veiga and
J. H. Videman, Kluwer Academic, Dordrecht, (1999), pp. 1-18.

F. ALLior, C. AMROUCHE, The Stokes problem in R3: an approach in
weighted Sobolev spaces, Mathematical Models and Methods in Applied
Sciences, 9, (1999), pp. 723-754.

C. AMROUCHE, V. GIRAULT, Decomposition of vector spaces and appli-
cation to the Stokes problem in arbitrary dimension, Czechoslovak Mathe-
matical Journal, Praha, 44 (119), (1994), pp. 109-140.

C. AMROUCHE, V. GIRAULT, J. GIROIRE, Weighted Sobolev spaces for the
Laplace equation in R™, Journal de Mathématiques Pures et Appliquées,
73 (6), (1994), pp. 579-606.

C. AMROUCHE, V. GIRAULT, J. GIROIRE, Dirichlet and Neumann exterior
problems for the n-dimensional Laplace operator: an approach in weighted
Sobolev spaces, Journal de Mathématiques Pures et Appliquées, 76 (1),
(1997), pp. 55-81.

C. AMROUCHE, HH. NGUYEN, The stationary three-dimensional Navier-
Stokes Equations with a non-zero constant velocity at infinity, Mathemat-
ical Methods in the Applied Sciences, (online: DOI 10.1002/mma. 1020),
(2008).

C. AMROUCHE, U. RAZAFISON, The stationary Oseen equations in R3.
An approach in weighted Sobolev spaces, Journal of Mathematical Fluids
Mechanics, 9 (2), (2007), pp. 211-225.

C. AMROUCHE, U. RAZAFISON, Weighted Sobolev spaces for a scalar model

of the stationary Oseen equations in R3, Journal of Mathematical Fluids
Mechanics, 9 (2), (2007), pp. 181-210.

C. AMROUCHE, U. RAZAFISON, On the Oseen problem in three-
dimensional exterior domains, Analysis and Applications, 4-2, (2006), pp.
133-162.

27



[11]

[12]

[13]

[14]

[15]

[16]

K. I. BABENKO, On stationary solutions of the problem of flow past a body
of a viscous incompressible fluid, Mathematics of the USSR, Sbornik , 20,
(1973), pp. 1-25.

R. FARWIG, The stationary Navier-Stokes equations in a 3D-exterior do-
main, Recent topics on mathematical theory of viscous incompressible fluid,
Tsukuba, (1996). Lecture Notes in Numerical and Applied Analysis, 16,
(1998), pp. 53-115.

G. P. GALDI, An introduction to the mathematical theory of the Navier-
Stokes equations, vol 1 and vol II, Springer tracts in natural philosophy,
Springer, Berlin, (1994).

V. GIRAULT, P-A. RAVIART, Finite element methods for Navier-Stokes
equations (Theory and Algorithms), Springer-Verlag Berlin Heidelberg,
(1986).

J. LERAY, Sur le mouvement d’un liquide visqueux emplissant [’espace,
Acta Mathematica, 63, (1934), pp. 193-248.

J. L. LioNs, Quelques méthodes de résolution des problémes aux limites
non linéaires, Dunod, Paris, (1969).

28



