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This paper is devoted to some mathematical questions related to the stationary Navier-Stokes problem in three-dimensional exterior domains. Our approach is based on a combination of properties of Oseen problems in R 3 and in exterior domains of R 3 .

Introduction and preliminary results

This paper continues our previous studies in [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF] related to the three-dimensional stationary Navier-Stokes equations. Let Ω be a bounded open region of R 3 , not necessarily connected, with a Lipschitz-continuous boundary and let Ω be the complement of Ω . We suppose that Ω has a finite number of connected components and each connected component has a connected boundary, so that Ω is connected. In this paper, we study the following exterior Navier-Stokes problem:

(N S)          -ν∆u + u.∇u + ∇π = f in Ω, div u = 0 in Ω, u = 0 on Γ, u → u ∞ at infinity,
where ν > 0, f and u ∞ ∈ R 3 are respectively the viscosity of the fluid, the external force field acting on the fluid and a given constant vector of R 3 . The problem consists in looking for the velocity field u = (u 1 , u 2 , u 3 ) of the fluid and the pressure function π. We shall assume that the origin of the coordinate frame is attached to Ω . The third equation of the system states that the fluid adheres at the surface of the body, which is the common no-slip condition. Since the domain Ω is unbounded, the last equation is really necessary. In this equation, we have two different cases concerning the behavior of u at infinity. If u ∞ = 0, the flow is at rest at infinity and in the remaining case, if u ∞ = 0, the flow is past at infinity.

In this paper, we are interested in considering the case Ω being an exterior domain in R 3 and u ∞ = 0. We note that the case Ω = R 3 was considered in our previous paper [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF]. Our purpose is to study some regularity properties of the weak solutions to the problem (N S).

To our knowledge, in the three-dimensional situation, following Farwig [START_REF] Farwig | The stationary Navier-Stokes equations in a 3D-exterior domain, Recent topics on mathematical theory of viscous incompressible fluid[END_REF] and Galdi [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF], they consider the problem (N S) in the case u ∞ = 0 or u ∞ = 0. In the case u ∞ = 0, they consider the external force field f belonging to the classical spaces L p (Ω), and in [START_REF] Farwig | The stationary Navier-Stokes equations in a 3D-exterior domain, Recent topics on mathematical theory of viscous incompressible fluid[END_REF] with the weight (1 + |x |) α for some p and α ∈]0, 1[. The solutions are obtained in the homogeneous Sobolev spaces with or without the weight. In this paper, we are interested in the case in which the external force field belongs to the weighted Sobolev spaces W -1,p 0 , that permits us to obtain generalized solutions in the weighted Sobolev spaces W 1,p 0 . We consider also the case in which the external force field belongs to L q or L q ∩ W -1,p 0 and some regularity properties. Our main interest is directed at L p -regularity of weak solutions, under suitable assumptions on the right-hand side f. This point is improved in this paper. We assume different levels of regularity of f, and then describe the corresponding level of smoothness of the weak solutions associated to f. We refine a regularity theory which may be found in [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]. Galdi assumes that f ∈ L p (Ω) for all p ∈ (1, p 0 ], with some p 0 > 3 (see Section IX.7 [START_REF] Galdi | An introduction to the mathematical theory of the Navier-Stokes equations[END_REF]). More precisely, in Theorem 5.9, we recover Galdi's regularity results. This paper is organised as follows: In this section, the problem will be introduced and we recall well-known results about weighted Sobolev spaces. In Section 2, a result about existence of weak solutions for the problem (N S) will be presented. In next sections, we shall obtain some regularity properties of the weak solution u and the associated pressure π. In Section 4, the exterior Oseen problem is considered. The identity energy will be given in the last section.

In this paper, we use bold type characters to denote vector distributions or spaces of vector distributions with 3 components and C > 0 usually denotes a generic constant the value of which may change from line to line. We shall also denote by B R the open ball of radius R > 0 centered at the origin and B R = R 3 -B R . In particular, since Ω is bounded, we can find some R 0 such that Ω ⊂ B R0 and we introduce, for any R ≥ R 0 , the set

Ω R = Ω ∩ B R and Ω R = Ω -Ω R .
We now recall the main notations and results , concerning the weighted Sobolev spaces, which we shall use later on. We define D(Ω) to be the linear space of infinite differentiable functions with compact support on Ω. Now, let D (Ω) denote the dual space of D(Ω), often called the space of distributions on Ω. We denote by ., . the duality pairing between D(Ω) and D(Ω). Remark that when f is a locally integrable function, then f can be identified with a distribution by

f, ϕ = Ω f (x) . ϕ(x) dx.
Given a Banach space B, with dual space B and a closed subspace X of B, we denote by B ⊥ X (or more simply X ⊥ , if there is no ambiguity as to the duality product) the subspace of B orthogonal to X, i.e.

B ⊥ X = X ⊥ = {f ∈ B |∀ v ∈ X, < f, v >= 0} = (B/X) .
The space X ⊥ is also called the polar space of X in B . A typical point in R 3 is denoted by x = (x 1 , x 2 , x 3 ) and its norm is given by r

= |x | = (x 2 1 + x 2 2 + x 2 3 ) 1 2
. We define the weight function ρ(x ) = 1 + r. For each p ∈ R and 1 < p < ∞, the conjugate exponent p is given by the relation

1 p + 1 p = 1.
We now define the weighted Sobolev space

W 1,p 0 (Ω) = {u ∈ D (Ω), u w 1 ∈ L p (Ω), ∇u ∈ L p (Ω)},
where

w 1 = (1 + r) if p = 3, (1 + r) ln(2 + r) if p = 3.
This space is a reflexive Banach space when endowed with the norm:

|| u|| W 1,p 0 (Ω) = (|| u w 1 || p L p (Ω) + ||∇u || p L p (Ω) ) 1/p .
We also introduce the space

W 2,p 0 (Ω) = {u ∈ D (Ω), u w 2 ∈ L p (Ω), ∇u w 1 ∈ L p (Ω), D 2 u ∈ L p (Ω)},
where

w 2 =    (1 + r) 2 if p / ∈ { 3 2 , 3}, (1 + r) 2 ln(2 + r), otherwise,
which is a Banach space equipped with its natural norm given by

|| u|| W 2,p 0 (Ω) = (|| u w 2 || p L p (Ω) + || ∇u w 1 || p L p (Ω) + ||D 2 u|| p L p (Ω) ) 1/p .
We note that the logarithmic weight only appears if p = 3 or p = 3 2 and all the local properties of W 1,p 0 (Ω) (respectively, W 2,p 0 (Ω)) coincide with those of the corresponding classical Sobolev space W 1,p (Ω) (respectively, W 2,p (Ω)). For

m = 1 or m = 2, we set • W m, p 0 (Ω) = D(Ω) W m, p 0 (Ω)
and we denote the dual space of

• W m, p 0 (Ω) by W -m,p 0 (Ω), which is the space of distributions. When Ω = R 3 , we have W m,p 0 (R 3 ) = • W m, p 0 (R 3 ). If Ω is a Lipschitz exterior domain, then • W 1, p 0 (Ω) = { v ∈ W 1,p 0 (Ω); v = 0 on Γ }. 3 If Ω is a C 1,1 exterior domain, then • W 2, p 0 (Ω) = { v ∈ W 2,p 0 (Ω); v = ∂ n v = 0 on Γ },
where ∂ n v is the normal derivative of v. For all λ ∈ N 3 where 0 ≤ |λ| ≤ 2m with m = 1 or m = 2, the mapping

u ∈ W m,p 0 (Ω) → ∂ λ u ∈ W m-|λ|,p 0 (Ω)
is continuous. Also recall the following Sobolev embeddings (see [START_REF] Adams | Sobolev Spaces[END_REF]):

W 1,p 0 (Ω) → L p * (Ω) where p * = 3p 3 -p and 1 < p < 3. (1.1)
Consequently, by duality, we have

L q (Ω) → W -1,p 0 (Ω) where q = 3p 3 + p and p > 3/2. (1.2)
Note also that if ∇u ∈ L p (Ω) with p > 3 (respectively, p = 3) and u ∈ L r (Ω) for some r ≥ 1, then we have u ∈ L ∞ (Ω) (respectively, u ∈ L q (Ω) for any real q ≥ r). Moreover,

• For all u ∈ W 1,3 0 (Ω) ∩ L r (Ω), we have

|| u || L q ≤ C ( || ∇u || L 3 + || u || L r ) for all q ≥ r; (1.3) 
• For all u ∈ W 1,p 0 (Ω) ∩ L r (Ω) with p > 3, we have

|| u || L q ≤ C ( || ∇u || L p + || u || L r ) for all q ∈ [ r, ∞ ]. (1.4)
We introduce the space

X 1,p 0 (Ω) = u ∈ W 1,p 0 (Ω); ∂u ∂x 1 ∈ W -1,p 0 (Ω)
which is a Banach space equipped with the following norm

||u|| X 1,p 0 (Ω) = || u w 1 || L p (Ω) + 3 i=1 || ∂u ∂x i || L p (Ω) + || ∂u ∂x 1 || W -1,p 0 (Ω) .
We also introduce the space

• X 1, p 0 (Ω) = { u ∈ X 1,p 0 (Ω); u = 0 on Γ },
and we know that D(Ω) is dense in [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF]). Now we introduce the following Lemma.

• X 1, p 0 (Ω) (cf.
Lemma 1.1. Let Ω ⊂ R 3 be a Lipschitz exterior domain. Assume that u ∈ • W 1, p 0 (Ω) such that ∂u ∂x 1 ∈ L q (Ω) with 1 < 2 p + 1 q . Then u ∈ L r (Ω) with 1 r = 1 3 ( 2 p + 1 q -1)
and we have the estimate as follows

||u|| L r (Ω) ≤ C(||u|| W 1,p 0 (Ω) + || ∂u ∂x 1 || L q (Ω) ). (1.5) 
Proof. We extend u by zero outside Ω and denote u the extended function.

Then u ∈ W 1,p 0 (R 3 ) and

∂ u ∂x 1 ∈ L q (R 3 ). We set X p,q (R 3 ) = {v ∈ W 1,p 0 (R 3 ); ∂v ∂x 1 ∈ L q (R 3 )}.
It is easy to prove that D(R 3 ) is dense in X p,q (R 3 ), i.e, there exists ϕ k ∈ D(R 3 ) such that ϕ k → u in X p,q (R 3 ). Thanks to Babenko [START_REF] Babenko | On stationary solutions of the problem of flow past a body of a viscous incompressible fluid[END_REF], we have the following inequality

||ϕ k || L r (R 3 ) ≤ C|| ∂ϕ k ∂x 2 || 1/3 L p (R 3 ) || ∂ϕ k ∂x 3 || 1/3 L p (R 3 ) || ∂ϕ k ∂x 1 || 1/3 L q (R 3 ) ≤ C(||∇ϕ k || L p (R 3 ) + || ∂ϕ k ∂x 1 || L q (R 3 )
)

with 1 r = 1 3 ( 2 p + 1 q -1). Since (ϕ k ) is bounded in L r (R 3 ), then u ∈ L r (R 3
) and we obtain (1.5).

We introduce the Lemma 1.2. Let Ω ⊂ R 3 be a Lipschitz exterior domain and u ∈ 

• X 1, p 0 (Ω). i) If 1 < p < 3, then u ∈ L 4p 4-p (Ω) ∩ L
+ || u || L 3p 3-p (Ω) ≤ C || u || X 1, p 0 (Ω) . (1.6) 
ii) If p = 3, then there exists a unique constant k(u) such that u + k(u) ∈ r≥12 L r (Ω) and the following estimate holds

|| u + k(u) || L r (Ω) ≤ C || u || X 1, p 0 
(Ω) for any r ≥ 12.

(1.7)

iii) If 3 < p < 4, then there exists a unique constant k(u) such that u + k(u) ∈ L 4p/(4-p) (Ω) ∩ L ∞ (Ω) and the following estimate holds

|| u + k(u) || L 4p 4-p (Ω) + || u + k(u) || L ∞ (Ω) ≤ C || u || X 1, p 0 (Ω) . (1.8) Proof. Let u ∈ • X 1, p 0 (Ω) with 1 < p < 4.
Extend u by zero outside Ω and denote u by the extended function. It is clear that u belongs to W 1,p 0 (R 3 ). It remains to prove that

∂ u ∂x 1 ∈ W -1,p 0 (R 3 ). Let R 0 > 0 be a real and sufficient large such that Ω is contained in B R0 and R 1 , R 2 be reals such that R 2 > R 1 > R 0 .
Choose now some functions ψ 1 and ψ 2 satisfying

ψ 1 ∈ C ∞ (R 3 ), ψ 1 (x ) = 0 if |x | ≤ R 1 , ψ 1 (x ) = 1 if |x | ≥ R 2 , ∀x ∈ R 3 , ψ 1 (x ) + ψ 2 (x ) = 1.
We then can write

u = uψ 1 + uψ 2 = u 1 + u 2 . It is easy to prove that ∂ u 1 ∂x 1 and ∂ u 2 ∂x 1 belong to W -1,p 0 (R 3 ), then ∂ u ∂x 1 ∈ W -1,p 0 (R 3 ) and we can deduce u ∈ X 1,p 0 (R 3 ). Moreover, || u || X 1,p 0 (R 3 ) ≤ C || u || X 1,p 0 (Ω) . Since -∆ u + ∂ u ∂x 1 ∈ W -1,p 0 (R 3 ) and < -∆ u + ∂ u ∂x 1 , 1 > W -1,p 0 (R 3 )×W 1,p 0 (R 3 ) = 0 if p < 3/2,
we know from Theorem 4.4 [START_REF] Amrouche | Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in R 3[END_REF] there exists a unique v ∈ X 1,p 0 (R 3 )∩L 4p/(4-p) (R 3 ) such that

-∆v + ∂v ∂x 1 = -∆ u + ∂ u ∂x 1
and satisfying the following estimate

|| v || X 1,p 0 (R 3 ) + || v || L 4p/(4-p) (R 3 ) ≤ C || -∆ u + ∂ u ∂x 1 || W -1,p 0 (R 3 ) ≤ C || u || X 1,p 0 (Ω) .
(1.9)

The function z = u -v ∈ X 1,p 0 (R 3 ) verifying the equation

-∆z + ∂z ∂x 1 = 0 in R 3 ,
then z is a polynomial that belongs to W 1,p 0 (R 3 ). Therefore, there exists a constant k such that z = k, with k = 0 if 1 < p < 3. It means that u -k = v in Ω. The estimate (1.6) is immediately deduced from (1.9). The estimates (1.7) and (1.8) are consequences of (1.3) and (1.4).

Remark 1.3. The above result is available for all u ∈ X 1,p 0 (Ω) because we know that u can be extended by P u ∈ X 1,p 0 (R 3 ).

Defining now

X 2,p 0 (Ω) = { v ∈ W 2,p 0 (Ω); ∂v ∂x 1 ∈ L p (Ω) }.
Note that W 2,p 0 (Ω) → L p * (Ω) where p * = 3p 3 -2p and 1 < p < 3/2.

By duality, we have

L q → W -2,p 0 
(Ω) where q = 3p 2p + 3 and p > 3.

Note also that if v ∈ W 2,p 0 (Ω) with 3 2 ≤ p < 3 and ∇v ∈ L r (Ω) for some r, then ∇v ∈ L q (Ω) for all q ≥ r if p = 3/2 and ∇v ∈

L r (Ω) ∩ L ∞ (Ω) if 3/2 < p < 3.
We now introduce a lemma concerning the extension of X 2,p 0 (Ω) in R 3 .

Lemma 1.4. Assume v ∈ X 2,p 0 (Ω). Then there exists v ∈ X 2,p 0 (R 3 ) such that v = v in Ω and || v || X 2,p 0 (R 3 ) ≤ C || v || X 2,p 0 (Ω) .
(1.10)

Proof. We know that there exists an linear and continuous extended operator P of W 2,p 0 (Ω) in W 2,p 0 (R 3 ). Setting v = P v and using again the partition of unity

v = vψ 1 + vψ 2 ,
then it is easy to prove that v ∈ W 2,p 0 (R 3 ) and v satisfies the estimate (1.10). Proposition 1.5. Let Ω ⊂ R 3 be a Lipschitz exterior domain and u ∈ X 2, p 0 (Ω).

i) If 1 < p < 3/2, then u ∈ L 2p/(2-p) (Ω) ∩ L 3p/(3-2p) (Ω). ii) If 3/2 ≤ p < 2,
then there exists a unique constant k such that u+k ∈ L q (Ω) for all q ≥ 2p/(2 -p).

Proof. The proof is similar as in the one of Lemma 1.2 by using once again the partition of unity and Proposition 4.3 [START_REF] Amrouche | Weighted Sobolev spaces for a scalar model of the stationary Oseen equations in R 3[END_REF].

Proposition 1.6. Let Ω ⊂ R 3 be a Lipschitz exterior domain and u ∈ X 2, p 0 (Ω). i) If 1 < p < 3, then ∇u ∈ L 4p/(4-p) (Ω) ∩ L 3p/(3-p) (Ω).
ii) If p = 3, then there exists a unique k ∈ P 1 , independent on x 1 , such that

∇(u + k) ∈ r≥12 L r (Ω).
iii) If 3 < p < 4, then there exists a unique k ∈ P 1 , independent on

x 1 , such that ∇(u + k) ∈ L 4p/(4-p) (Ω) ∩ L ∞ (Ω).
Proof. This proposition is a consequence of Lemma 1.2 and Remark 1.3.

Existence of weak solutions in weighted Sobolev spaces

First of all, we shall study the existence of weak solutions of Navier-Stokes problem in weighted Sobolev spaces in this chapter. Without loss of generality, we can set u ∞ = λe 1 with e 1 = (1, 0, 0) and λ ≥ 0. From now on, we consider the case of a fixed λ > 0.

In 1933, Jean Leray [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF] who introduced the concept of the weak solution:

Definition 2.1. A weak solution to the problem (N S) is a field u ∈ H 1 loc (Ω) vanishing on ∂Ω, with ∇u ∈ L 2 (Ω), div u = 0 in Ω and lim |x |→∞ S2 |u(σ|x |) - u ∞ |dσ = 0 where S 2 is the unit sphere of R 3 such that for all ϕ ∈ V(Ω) = {v ∈ D(Ω), div v = 0}: ν Ω ∇u : ∇ϕ dx + Ω (u. ∇u) . ϕ dx = f, ϕ .
As in [START_REF] Alliot | On the regularity and decay of the weak solutions to the steady-state Navier-Stokes equations in exterior domains[END_REF], it is easy to prove the following theorem.

Theorem 2.2. Let Ω ⊂ R 3 be a Lipschitz exterior domain. Given a force f ∈ W -1,2 0 (Ω), the problem (N S) has a weak solution u satisfying u -u ∞ ∈ W 1,2
0 (Ω) and there exists a function π ∈ L 2 loc (Ω), unique up to a constant, such that (u, π) solves the problem (N S) in the sense of distributions and we have the following estimation

||u -u ∞ || W 1,2 0 (Ω) ≤ C ν || f || W -1,2 0 (Ω) + C(ν)|u ∞ |(1 + |u ∞ |). (2.1)
In Theorem 2.2, we see that a pressure π locally belongs to L 2 (Ω). At the beginning, we shall establish, without additional assumption, of the properties of integrability at infinity of the pressure. Proposition 2.3. Let Ω ⊂ R 3 be an exterior domain and let f ∈ W -1,2 0 (Ω). The pressure π obtained in Theorem 2.2 has a representative such that

π = τ 1 + τ 2 with τ 1 ∈ L 2 (Ω) and τ 2 ∈ W 1,3/2 0 (Ω).
Proof. Let R 1 and R 2 be reals such that R 2 > R 1 > R 0 and choose some functions ψ 1 and ψ 2 such that

ψ 1 ∈ C ∞ (R 3 ), ψ 1 (x ) = 0 if |x | ≤ R 1 , ψ 1 (x ) = 1 if |x | ≥ R 2 , ∀x ∈ R 3 , ψ 1 (x ) + ψ 2 (x ) = 1. Let v = u -u ∞
where u is a solution given by Theorem 2.2 and let π ∈ L 2 loc (Ω) be the associated pressure. We define (v 1 , π 1 ) as follows

(v 1 , π 1 ) = (vψ 1 , πψ 1 ) in Ω, (v 1 , π 1 ) = (0, 0) in Ω , and set (v 2 , π 2 ) = (vψ 2 , πψ 2 ) in Ω. It is easy to check that (v 1 , π 1 ) ∈ W 1,2 0 (R 3 )× L 2 loc (R 3 ) and (v 2 , π 2 ) ∈ H 1 (Ω 2 )×L 2 (Ω 2 )
. Moreover, we can establish the equalities in the sense of distributions (respectively in

D (R 3 ) if i = 1 and in D (Ω 2 ) if i = 2): -ν∆v i + λ ∂v i ∂x 1 + ∇π i = f i and div v i = g i , (2.2) 
where

f i = [fψ i -νv∆ψ i -2ν∇v∇ψ i + π∇ψ i ] + [λv ∂ψ i ∂x 1 -(v.∇v)ψ i ] := k i + h i , g i = -v.∇ψ i . (2.3) Since ψ 1 is C ∞ on R 3 with supp ψ 1 ⊂ Ω,
we have naturally denoted by f ψ 1 the distributions on R 3 given by:

∀ϕ ∈ D(R 3 ), < f ψ 1 , ϕ > R 3 = < f, ϕψ 1 > Ω .
This notation also applies to each other term in the definition (2.3) with i = 1. Considering now with i = 2, the regularity of v and π near the boundary depends on the regularity of (f 2 , g 2 ) and on the properties of the Oseen problem in the bounded domain Ω 2 . Similarly, the regularity of v and π near the infinity depends on the regularity of (f 1 , g 1 ) and on the properties of the Oseen problem in the bounded domain R 3 . We have π = π 1 + π 2 and from Theorem 2.2, we obtain π 2 ∈ L 2 (Ω). Thus, the main of the proof deals with the properties of π 1 and therefore of (f 1 , g 1 ). We consider

-ν∆a 1 + λ ∂a 1 ∂x 1 + ∇b 1 = k 1 and div a 1 = -v∇ψ 1 in R 3 . (2.4)
Since ψ 1 is bounded and has bounded derivatives with compact support, it is easy to check that the term fψ 1 , v∆ψ 1 , ∇v∇ψ 1 and π∇ψ

1 belong to W -1,2 0 (R 3 )
and because W 1,2 0 (R 3 ) ⊂ L 6 (R 3 ) then we have v.

∂ψ 1 ∂x 1 ∈ L q (R 3 ) for all q ∈ [1, 6].
Even simple is to prove that

g 1 = -v.∇ψ 1 ∈ L 2 (R 3 ) ∩ W -1,2 0 (R 3 ) and therefore ∂g 1 ∂x 1 ∈ W -2,2 0 (R 3
) satisfying the following compatibility condition

∂g 1 ∂x 1 , 1 
W -2,2 0 (R 3 )×W 2,2 0 (R 3 ) = 0.
Applying Theorem 1.10 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF], there exists a unique solution

(a 1 , b 1 ) ∈ (X 1,2 0 (R 3 )× L 2 (R 3 )) of (2.4) such that a 1 ∈ L r1 (R 3
) where 4 ≤ r 1 ≤ 6. Thanks to Hölder inequality, we deduce that (v.∇v)ψ 1 ∈ L 3/2 (R 3 ) and, in particular, we have

v. ∂ψ 1 ∂x 1 ∈ L 3/2 (R 3
). Therefore, from Theorem 1.9 (see [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF]), the system as follows

-ν∆a 2 + λ ∂a 2 ∂x 1 + ∇b 2 = h 1 and div a 2 = 0 in R 3 , (2.5) has a unique solution (a 2 , b 2 ) ∈ L s1 (R 3 )×W 1,3/2 0 (R 3 ) such that ∇a 2 ∈ L r2 (R 3 ), ∇ 2 a 2 ∈ L 3/2 (R 3 ) and ∂a 2 ∂x 1 ∈ L 3/2 (R 3 ) for all s 1 ∈ [6, ∞) and r 2 ∈ [12/5, 3]. We set z = v 1 -a 1 -a 2 and θ = π 1 -b 1 -b 2 . Subtracting (2.
2) to (2.4) and (2.5), we get

-ν∆z + λ ∂z ∂x 1 + ∇θ = 0 and div z = 0 in R 3 . (2.6) 
Therefore, we have

-ν∆curl z + λ ∂(curl z) ∂x 1 = 0 in R 3 ,
and we get Ψ = curl z, then for i = 1, 2, 3,

-ν∆Ψ i + λ ∂ψ 1 ∂x 1 = 0 in R 3 ,
where

Ψ i ∈ L 2 (R 3 ) + L r2 (R 3 ) → S (R 3 ). Then, from Lemma 4.1 [9], Ψ is a polynomial which belongs to L 2 (R 3 ) + L r2 (R 3 ). Consequently, Ψ = 0 = curl z and div z = 0. Therefore, -∆z = curl curl z + ∇ div z = 0 in R 3 .
Similarly, it is easy to prove that z is a constant, then we can deduce from (2.6) that ∇θ = 0 and by the way the existence of a constant c such that

π 1 = b 1 + b 2 + c. Therefore, the proposition is proved setting τ 1 = π 2 + b 1 , τ 2 = b 2 .

Regularity of weak solutions

Let v = uu ∞ where u is the weak solution of the Navier-Stokes problem (N S) given by Theorem 2.2. Then we rewrite the Navier-Stokes problem (N S)

as follows:

(N S)              -ν∆v + λ ∂v ∂x 1 + ∇π = f -v.∇v in Ω, div v = 0 in Ω, v = -u ∞ on Γ, v -→ 0 if |x| → ∞. (3.1)
We start our studies by adding assumptions on the force field f. First, we assume additionally that f ∈ W -1,3 0 (Ω), and then, we will consider the case more generally f ∈ W -1,2 0 (Ω) ∩ W -1,p 0 (Ω) with p ≥ 3. Following this idea, we state and prove the Theorem 3.1. Let Ω ⊂ R 3 be an exterior domain with a C 1,1 boundary. Given p ≥ 3 and f ∈ W -1,2 0 (Ω)∩W -1,p 0 (Ω). Then, each weak solution u to the problem

(N S) satisfies v ∈ W 1,2 0 (Ω) ∩ W 1,p 0 (Ω) ∩ L r1 (Ω) and ∂v ∂x 1 ∈ W -1,r2 0 (Ω) (3.2)
for any r 1 ≥ 6 and any r 2 ≥ 3. Besides, the associated pressure has a representative

π ∈ L 3 (Ω) ∩ L p (Ω), (3.3) 
and if p > 3, then we have v ∈ L ∞ (Ω).
Proof. We use once again the partition of unit introduced in Proposition 2.3. We first prove the case p = 3 and then consider the case p > 3.

a) The case p = 3:

f ∈ W -1,2 0 (Ω) ∩ W -1,3 0 (Ω).
Let u be a weak solution of (N S) given by Theorem 2.2 and

v = u -u ∞ . Since v ∈ L 6 (Ω) and v.∇v = div (v ⊗ v), we have that v.∇v ∈ W -1,3 0 (Ω), v ∂ψ 1 ∂x 1 ∈ L 3/2 (R 3 ) → W -1,3 0 (R 3 ) and f ψ 1 -(v.∇v)ψ 1 ∈ W -1,3 0 (R 3 ). Moreover, since v ∈ H 1 loc (Ω) and π ∈ L 2 (Ω 2 )
, we deduce easily from Sobolev imbedding theorem that

-2ν∇v∇ψ 1 -νv∆ψ 1 + π∇ψ 1 ∈ W -1,3 0 (R 3 ), -v.∇ψ 1 ∈ L 3 (R 3 ).
Hence, the pair (f 1 , g 1 ) belongs to W -1,3

0 (R 3 ) × L 3 (R 3 ). Otherwise, we can easily see that g 1 ∈ L 3/2 (R 3 ) ⊂ W -1,3 0 (R 3 ) and therefore ∂g 1 ∂x 1 ∈ W -2,3 0 (R 3 )
satisfying the following compatibility condition

∂g 1 ∂x 1 , 1 
W -2,3 0 (R 3 )×W 2,3/2 0 (R 3 ) = 0.
Then, applying Theorem 1.10 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF], the following Oseen system

-ν∆w + λ ∂w ∂x 1 + ∇q = f 1 and div w = g 1 in R 3 (3.4) has a unique solution (w, q) ∈ (X 1,3 0 (R 3 ) × L 3 (R 3 )) such that w ∈ L r (R 3
) for any r ≥ 12. We set z = v 1 -w and θ = π 1 -q. Subtracting (2.2) to (3.4), we get

-ν∆z + λ ∂z ∂x 1 + ∇θ = 0 and div z = 0 in R 3 .
Proceeding analogously as in the proof of Proposition 2.3, we can deduce that ∇z = 0 in R 3 . Since z belongs to W 1,2 0 (R 3 ) + W 1,3 0 (R 3 ), then z must be a constant c and ∇v

1 = ∇w. As z ∈ L 6 (R 3 ) + L 12 (R 3 ), then c = 0, i.e. v 1 = w and v 1 ∈ W 1,2 0 (R 3 ) ∩ W 1,3 0 (R 3 ). Moreover, we have v 1 ∈ L r1 (R 3 ) and ∂v 1 ∂x 1 ∈ W -1,r2 0 (R 3
) for any r 1 ≥ 6 and any r 2 ≥ 3. Since z = 0, we deduce that ∇θ = 0, then θ must be a constant, i.e, there exists a constant a such that π 1 = q + a with q ∈ L 3 (R 3 ). Let us now come to the regularity near the boundary. Recall that

(v 2 , π 2 ) ∈ H 1 (Ω 2 ) × L 2 (Ω 2 ) satisfies (2.2) with i = 2.
Moreover, we can prove-like we proved-that

(f 2 , g 2 ) ∈ W -1,3 (Ω 2 ) × L 3 (Ω 2 ).
Thanks to Green's formula and div v = 0, we have

Ω2 g 2 (x)dx = - Γ ψ 2 u ∞ .ndσ. (3.5) 
With such data, and since Ω 2 has C 1,1 boundary, we can deduce from Proposition 4.2 [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF] that

(v 2 , π 2 ) ∈ W 1,3 (Ω 2 ) × L 3 (Ω 2 ) which immediately imply that (v 2 , π 2 ) ∈ W 1,3 0 (Ω) × L 3 (Ω).
This ends the proof of the case p = 3.

b) The case p > 3:

Let f ∈ W -1,2 0 (Ω) ∩ W -1,p 0 (Ω). It is clear that f ∈ W -1,3 0
(Ω) and since we have proved the theorem for p = 3, we know that

v ∈ W 1,2 0 (Ω) ∩ W 1,3 0 (Ω) ∩ L r1 (Ω) for any r 1 ≥ 6 and π ∈ L 3 (Ω). Then (f 1 , g 1 ) ∈ W -1,p 0 (R 3 ) × L p (R 3 ) and (f 2 , g 2 ) ∈ W -1,p (Ω 2 ) × L p (Ω 2 ).
As in the case a), we prove that

(v 1 , π 1 ) ∈ W 1,p 0 (R 3 ) × L p (R 3 ) and (v 2 , π 2 ) ∈ W 1,p 0 (Ω) × L p (Ω), i.e, v ∈ W 1,p 0 (Ω) and π ∈ L p (Ω). Moreover v ∈ L ∞ (Ω). The proof is complete.
From Sobolev embedding theorem and the properties of the duality, we know that L 3/2 (Ω) → W -1,3 0 (Ω). If we now reinforce the assumptions of Theorem 3.1, f belongs to L 3/2 (Ω) instead of W -1,3 0 (Ω), we can prove the following.

Theorem 3.2. Let Ω ⊂ R 3 be an exterior domain with C 1,1 boundary. i) Assume that f ∈ W -1,2 0 (Ω) ∩ L 3/2 (Ω). Then each weak solution u to the problem (N S) satisfies v ∈ W 1,2 0 (Ω) ∩ W 1,3 0 (Ω) ∩ L r1 (Ω), (3.6) 
∂v ∂x 1 ∈ L 3/2 (Ω) ∩ L 3 (Ω) ∩ W -1,r2 0 (Ω) and ∇ 2 v ∈ L 3/2 (Ω) (3.7)
for any r 1 ≥ 9 2 , r 2 ≥ 3. Besides, the associated pressure π belongs to W

1,3/2 0 (Ω). ii) Let 3 2 < p < 3. Assume that f ∈ W -1,2 0 (Ω) ∩ L p (Ω). Then each solution u to the problem (N S) satisfies v ∈ W 1,2 0 (Ω) ∩ W 1,p * 0 (Ω) ∩ L r1 (Ω) and ∂v ∂x 1 ∈ W -1,r2 0 (Ω) (3.8) for any r 1 ∈ [3p, ∞] if 3 2 < p < 2, for any r 1 ∈ [6, ∞] if 2 ≤ p < 3
and for any r 2 ≥ 3. Besides, the associated pressure satisfies

π ∈ L 3 (Ω) ∩ L p * (Ω) (3.9) 
where p * = 3p 3 -p

. Moreover, we have

∇ 2 v ∈ L p (Ω), ∂v ∂x 1 ∈ L p (Ω) and π ∈ W 1,p 0 (Ω). (3.10) 
Proof. i) Let u be a weak solution of (N S). Since L 3/2 (Ω) → W -1,3 0 (Ω), from Theorem 3.1, we know that u and π satisfy (3.2) and (3.3)with p = 3. Now it remains to prove that v belongs to L 9/2 (Ω) and ∂v ∂x 1 , ∇ 2 v, ∇π belong to

L 3/2 (Ω). It is then clear that f 1 ∈ L 3/2 (R 3 )and g 1 ∈ X 1,3/2 0 (R 3
). Then, by applying Theorem 1.9 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF], the following Oseen system

-ν∆w + λ ∂w ∂x 1 + ∇µ = f 1 and div w = g 1 in R 3 , (3.11) 
has a unique solution (w, µ)

such that w ∈ L s (R 3 ), ∇w ∈ L r (R 3 ), ∇ 2 w ∈ L 3/2 (R 3 ), ∂w ∂x 1 ∈ L 3/2 (R 3 ) and the pressure µ ∈ W 1,3/2 0 (R 3 ) for all s ∈ [6, ∞)
and r ∈ [12/5, 3]. We set z = v 1 -w and θ = π 1 -µ. Subtracting (3.1) to (3.11), we get

-ν∆z + λ ∂z ∂x 1 + ∇θ = 0 and div z = 0 in R 3 .
By the analogous techniques as in the proof of Theorem 3.1, we conclude v 1 = w,

π 1 = µ ∈ W 1,3/2 0 (R 3 ), ∂v 1 ∂x 1 ∈ L 3/2 (R 3 ) and ∇ 2 v 1 ∈ L 3/2 (R 3
). Thanks to Lemma 1.4 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF] with q = 3 2 , we can deduce v 1 ∈ L 9/2 (R 3 ). Let us now come to the regularity near the boundary. First, we verify easily that (f 2 , g 2 ) ∈ L 3/2 (Ω 2 ) × W 1,3/2 (Ω 2 ). With such data, and since Ω 2 has C 1,1 boundary, we can deduce from Proposition 4.3 [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF] that Hölder's inequality, we obtain v.∇v ∈ L q (Ω) for all 3 2 ≤ q 2 < 3 and then

(v 2 , π 2 ) ∈ W 2,3/2 (Ω 2 ) × W 1,3/2 (Ω 2 ) which immediately imply that (v 2 , π 2 ) ∈ W 2,3/2 0 (Ω) × W 1,3/2 (Ω). Finally, since v = v 1 + v 2 and π = π 1 + π 2 ,
f -v.∇v ∈ L p (Ω).
Proceeding similarly as in the previous case, we prove (3.10). By applying Lemma 1.1, we have v ∈ L 3p (Ω) and we deduce (3.8). Finally, we obtain π ∈ L p * (Ω) from π ∈ W 1,p 0 (Ω). The theorem is completely proved.

In Theorem 3.2 (i), we proved v ∈ L r1 (Ω) for any r 1 ≥ 9/2. To obtain v ∈ L r1 (Ω) with r 1 < 9/2, we have to assume additionally a condition for f. We can state the Theorem 3.3. Let Ω ⊂ R 3 be an exterior domain with C 1,1 boundary. Assume that f ∈ W -1,2 0 (Ω) ∩ L 3/2 (Ω) ∩ L 4/3 (Ω). Then each weak solution u and the associate pressure π to the problem (N S) satisfy the results in Theorem 3.2 i). Moreover,

∇ 2 v ∈ L 4/3 (Ω), ∂v ∂x 1 ∈ L 4/3 (Ω), π ∈ W 1,4/3 0
(Ω) and v ∈ L r1 (Ω) (3.12)

for any r 1 ≥ 4.

Proof. From Theorem 3.2 and Theorem 5.26 [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF], we have the following estimate

λ|| ∂v ∂x 1 || L 3/2 (Ω) ≤ C(|| f -v.∇v || L 3/2 (Ω) + ||u ∞ || W 4/3,3/2 (Γ) ) ≤ C(|| f || L 3/2(Ω) + || v || L 6 (Ω) ||∇v || L 2 (Ω) + ||u ∞ || W 4/3,3/2 (Γ) ) ≤ C(|| f || L 3/2 (Ω) + || v || L 6 (Ω) ||f || W -1,2 0 (Ω) + ||u ∞ || W 4/3,3/2 (Γ) ). (3.13) 
Applying Lemma 1.4 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF] with q = 3/2, we can deduce

||v|| L 9/2 (Ω) + λ|| ∂v ∂x 1 || L 3/2 (Ω) ≤ C(|| f || L 3/2 (Ω) + || v || L 6 (Ω) + 1).
We define the sequence {q k } as follows

2q k+1 2 -q k+1 = 3q k , k ∈ N (3.14) 
with q 0 = 2. Clearly, the sequence {q k } is strictly decreasing and converges to 4/3. By induction, we can deduce for 4/3 ≤ q k ≤ 2 with k ∈ N that

||v|| L 3q k+1 (Ω) + λ|| ∂v ∂x 1 || L q k+1 (Ω) ≤ C(|| f || L q k+1 (Ω) + || v || L 2q k+1 /(2-q k+1 ) (Ω) + 1) ≤ C(|| f || L q k+1 (Ω) + || v || L 3q k (Ω) + 1).
(3.15) Thanks to Babenko [START_REF] Babenko | On stationary solutions of the problem of flow past a body of a viscous incompressible fluid[END_REF] and (3.15), we have the following estimate

|| v || L 3q k+1 (Ω) ≤ C || ∂v ∂x 1 || 1/3 L q k+1 (Ω) || ∂v ∂x 2 || 1/3 L 2 (Ω) || ∂v ∂x 3 || 1/3 L 2 (Ω) ≤ C || ∂v ∂x 1 || 1/3 L q k+1 (Ω) ≤ C (1 + || v || L 3q k (Ω) ) 1/3 . (3.16) 
Then we deduce

1 + || v || L 3q k+1 (Ω) ≤ C (1 + || v || L 3q k (Ω) ) 1/3 ≤ C 1+ 1 3 +...+ 1 3 k (1 + || v || L 3q 0 (Ω) ) 1 3 k .
When k → +∞, then q k → 4/3 and we can deduce v ∈ L 4 (Ω) with the following estimate

1 + || v || L 4 (Ω) ≤ C (1 + || v || L 6 (Ω) ) ≤ C.
Since v ∈ L 4 (Ω) and ∇v ∈ L 2 (Ω), we obtain fv.∇v ∈ L 4/3 (Ω) and we deduce (3.12). The Theorem is completely proved.

The exterior Oseen problem

For our studies, we shall introduce the following problem. Let

a fixed z ∈ L 3 (Ω) such that div z = 0 in Ω, (4.1) 
we search a solution (w, θ) to the following Oseen problem

-ν∆w + λ ∂w ∂x 1 + z.∇w + ∇θ = f in Ω, div w = 0 in Ω, w = u * on Γ. (4.2)
We introduce the space

V p (Ω) = {v ∈ • W 1, p 0 (Ω), div v = 0}.
As in [START_REF] Alliot | On the regularity and decay of the weak solutions to the steady-state Navier-Stokes equations in exterior domains[END_REF], we can prove the following lemma Proof. We use once again the partition of unit with the role of w (θ, respectively) as v (π, respectively) introduced in Proposition 2.3. Proceeding analogously as in the proof of Theorem 3.1, we can deduce that θ belongs to L 2 (Ω). Moreover,

we have ∂w ∂x 1 ∈ W -1,2 0 
(Ω) because ∆w, z.∇w, ∇θ and f belong to W -1,2 0 (Ω).

Thanks to Lemma 1.2, we deduce w ∈ L 4 (Ω). (Ω). Then Problem (4.2) has a unique solution (w, θ) ∈ (

• W 1, 2 0 (Ω) ∩ L 4 (Ω)) × L 2 (Ω) with ∂w ∂x 1 ∈ W -1,2 0 
(Ω) and w satisfies the energy equality

ν Ω |∇w | 2 dx = < f , w > W -1,2 0 (Ω)× • W 1, 2 0 (Ω) . (4.3)
Moreover, we have the estimate

||w || L 4 (Ω) + ||∇w|| L 2 (Ω) + || ∂w ∂x 1 || W -1,2 0 (Ω) + ||∇θ|| L 2 (Ω) ≤ C(||f || W -1,2 0 (Ω) + ||z.∇w || W -1,2 0 (Ω) ). (4.4)
Proof. The existence of (w, θ) ∈ (

• W 1, 2 0 (Ω) ∩ L 4 (Ω)) × L 2 (Ω) such that ∂w ∂x 1 ∈ W -1,2 0 
(Ω) is given by Lemma 4.1 and Corollary 4.2. Since the space V(Ω) is dense in V 2 (Ω), for any ϕ ∈ V 2 (Ω), we have [START_REF] Amrouche | The stationary Oseen equations in R 3 . An approach in weighted Sobolev spaces[END_REF]), for all ψ, ϕ ∈

ν Ω ∇w.∇ϕdx + λ < ∂w ∂x 1 , ϕ > W -1,2 0 (Ω)× • W 1, 2 0 (Ω) + < z.∇w, ϕ > W -1,2 0 (Ω)× • W 1, 2 0 (Ω) = < f, ϕ > W -1,2 0 (Ω)× • W 1, 2 0 (Ω) . (4.5) Since D(Ω) is dense in • X 1, 2 0 (Ω) (see
• X 1, 2 0 (Ω), we obtain ∂ψ ∂x 1 , ϕ W -1,2 0 (Ω)× • W 1, 2 0 (Ω) = -ψ, ∂ϕ ∂x 1 • W 1, 2 0 (Ω)×W -1,2 0 (Ω)
.

Then, we deduce ∂ψ ∂x 1 , ψ

W -1,2 0 (Ω)× • W 1, 2 0 (Ω) = 0 (4.6)
and we have for any ϕ ∈ V 2 (Ω), div (z ⊗ ϕ), ϕ

W -1,2 0 (Ω)× • W 1, 2 0 (Ω) = - Ω z i ϕ j ∂ϕ j ∂x i dx = - 1 2 Ω z i ∂ϕ 2 j ∂x i dx = 0. (4.7) 
From (4.6) and (4.7) and (4.5), we have (4.3). The uniqueness of (w, θ) is a immediate consequence of (4.3).

We consider the following nonhomogeneous problem. (Ω). Then Problem (4.2) has a unique solution (w, θ) ∈ (X 1,2 0 (Ω) ∩ L 4 (Ω)) × L 2 (Ω) and we have the estimate

||w || L 4 (Ω) + ||∇w|| L 2 (Ω) + || ∂w ∂x 1 || W -1,2 0 (Ω) + ||∇θ|| L 2 (Ω) ≤ C(||f || W -1,2 0 (Ω) + ||z.∇w || W -1,2 0 (Ω) + ||u * || H 1/2 (Γ) ). (4.8)
Proof. It is easily to show Lemma 4.4 by applying Lemma 4.3 and Lemma 5.8 [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF] with the case p = 2.

Our objective is to consider the Navier-Stokes equations by using the properties of the Oseen equations. We now consider some properties of the Oseen equations. Beforehand, we introduce

Y 1,p 0 (Ω) = X 1,p 0 (Ω) ∩ L 4p/(4-p) (Ω) if 1 < p < 4, X 1,p 0 (Ω) if p ≥ 4, and 
• Y 1, p 0 (Ω) = { v ∈ Y 1,p 0 (Ω); v = 0 on Γ }, with the same definition when Ω = R 3 . Now defining N + p (Ω) = {(u, π) ∈ • Y 1, p 0 (Ω) × L p (Ω), T(u, π) = (0, 0) in Ω}, N - p (Ω) = {(u, π) ∈ • Y 1, p 0 (Ω) × L p (Ω), T * (u, π) = (0, 0) in Ω}, with T(u, π) = (-∆u + ∂u ∂x 1 + ∇π, -div u),
and its adjoint

T * (u, π) = (-∆u - ∂u ∂x 1 + ∇π, -div u).
Moreover, if 1 < p < 4, u satisfies the properties i)-iii) of Lemma 1.2. We introduce the characterization of the kernel N + p (Ω). (see [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF]).

Lemma 4.5. Let Ω be an exterior domain with a C 1,1 boundary.

1) If 1 ≤ p < 4, then N + p (Ω) = {(0, 0)}. 2) If p ≥ 4, then N + p (Ω) = {(λ c -c, µ c ); c ∈ R 3 } where (λ c , µ c ) ∈ r>4/3 Y 1,r 0 (Ω) × s>3/2 L s (Ω)
is the unique solution of the following system

-∆λ c + ∂λ c ∂x 1 + ∇µ c = 0, div λ c = 0 in Ω, λ c = c on Γ. (4.9)
Remark that we have the similar results for N - p (Ω). We now introduce the Theorem 4.6. [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF] Let Ω be an exterior domain with a C 1,1 boundary. Assume that f ∈ W -1,p 0 (Ω) and u * ∈ W 1/p ,p (Γ). Moreover, if 1 < p ≤ 4/3, assume that we have the compatibility condition

∀(v, η) ∈ N - p (Ω), < f, v > Ω + < (∇v -ηI).n, u * > Γ = 0. (4.10) i) If 1 < p < 4, then the following problem -∆u + ∂u ∂x 1 + ∇π = f, div u = 0 in Ω, u = u * on Γ (4.11) has a unique solution (u, π) ∈ Y 1,p 0 (Ω) × L p (Ω) satisfying the estimate || u || Y 1,p 0 (Ω) + || π || L p (Ω) ≤ C ( || f || W -1,p 0 (Ω) + || u * || W 1/p ,p (Γ) ). ii) If p ≥ 4, then problem (4.11) has a solution (u, π) ∈ Y 1,p 0 (Ω) × L p (Ω), unique up to an element of N + p (Ω), satisfying the estimate inf (v,η)∈N + p (Ω) ( || u+v || Y 1,p 0 (Ω) +|| π+η || L p (Ω) ) ≤ C ( || f || W -1,p 0 (Ω) +|| u * || W 1/p ,p (Γ) ).
The next Lemma characterizes the kernel N p,q (Ω) of the exterior Oseen system:

N p,q (Ω) = {(u, π) ∈ [Y 1,p 0 (Ω) + Y 1,q 0 (Ω)] × [L p (Ω) + L q (Ω)], T(u, π) = (0, 0) in Ω , u = 0 on Γ} with 1 < p < q < ∞. Lemma 4.7.
Let Ω be an exterior domain with a C 1,1 boundary and

1 < p < q < ∞. i) If q < 4, then N p,q (Ω) = {(0, 0)}. ii) If q ≥ 4, then N p,q (Ω) = {(λ c -c, µ c ); c ∈ R 3 } where (λ c , µ c ) ∈ r>4/3 Y 1,r 0 (Ω) × s>3/2 L s (Ω)
is the unique solution of the system (4.9). Moreover, we have

λ c ∈ L s (Ω) ∩ L ∞ (Ω) for all s > 2.
Proof.

Let (z , θ) ∈ N p,q (Ω), then z = u -v with u ∈ Y 1,p 0 (Ω), v ∈ Y 1,q 0 (Ω) and u = v on Γ. Let now v ∈ Y 1,q 0 (R 3 ) be an extended function of v outside Ω. We set u = u in Ω, u = v outside Ω and z = u -v. Then u ∈ Y 1,p 0 (R 3
), z = 0 outside Ω and we can prove that div z = 0 in R 3 . We now extend θ by 0 outside Ω and denote θ its extended function. It is easy to see that θ ∈ L p (R 3 )+L q (R 3 ). Now setting

h = -∆ z + ∂ z ∂x 1 + ∇ θ, then supp h ⊂ Γ and h ∈ W -1,p 0 (R 3 ).
1) The case p > We now set that y = wz and k = α -θ. Hence, we have -∆y + ∂y ∂x 1 + ∇k = 0 and div y = 0 in R 3 , and we deduce

-∆curl y + ∂(curl y ) ∂x 1 = 0 in R 3 .
We take Φ = curl y . Then, for i = 1, 2, 3, we have

-∆Φ i + ∂Φ i ∂x 1 = 0 where Φ i ∈ L p (R 3 ) + L q (R 3 ) → S (R 3 ). It is deduced that Φ is a polynomial which belongs to L p (R 3 ) + L q (R 3 ). Consequently, Φ = 0 = curl y . Therefore,
-∆y = curl curl y + ∇div y = 0.

Since y ∈ Y 1,p 0 (R 3 ) + Y 1,q 0 (R 3 ), then y must be a constant c and ∇w = ∇ z . Moreover, we obtain ∇k = 0 in R 3 . Then k is a constant belonging to L p (R 3 ) + L q (R 3 ), it means α = θ in R 3 . a) The case q < 4: As y ∈ L 4p/(4-p) (R 3 )+L 4q/(4-q) (R 3 ), then c = 0. Therefore, w = z in R 3 and w = 0 on Γ. Since p < 4, from Theorem 4.6, then w = 0 in Ω, i.e., z = 0 in Ω. Therefore, ∇θ = 0 in Ω and we can deduce that θ is a constant which belongs to L p (Ω) + L q (Ω). Hence, θ = 0 in Ω. b) The case q ≥ 4: There exists a constant c = (c 1 , c 2 , c 3 ) such that wz = c and w = c on Γ. Consider now the following problem

-∆λ i + ∂λ i ∂x 1 + ∇µ i = 0, div λ i = 0 in Ω, λ i = e i on Γ, (4.12) 
where (e 1 , e 2 , e 3 ) is the canonical basis of R 3 . We know that the system (4.12) has a unique solution

(λ i , µ i ) such that λ i ∈ r>4/3 Y 1,r 0 (Ω) and µ i ∈ r>3/2 L r (Ω).
If p < 4, from Theorem 4.6, w is unique and then w i = c.e i = c.λ i on Γ, therefore w i = c.λ i in Ω. Now we set λ c = (c.λ 1 , c.λ 2 , c.λ 3 ) and µ c = c.µ with µ = (µ 1 , µ 2 , µ 3 ). By construction of λ c and µ c , we deduce that (λ c , µ c ) is the unique solution of the following system

-∆λ c + ∂λ c ∂x 1 + ∇µ c = 0, div λ c = 0 in Ω, λ c = c on Γ, such that λ c ∈ r>4/3 Y 1,r 0 (Ω) and µ c ∈ r>3/2 L r (Ω). It is easy to see that (w , α) = (w , θ) = (λ c , µ c ) in Ω. Then we obtain (z , θ) = (λ c -c, µ c ) in Ω. If p ≥ 4, we obtain again (z , θ) = (λ c -c, µ c )
in Ω by proceeding similarly as in the case p < 4.

2) The case

1 < p < 4 3 : We set m = (m j ) j with m j =< h j , 1 > W -1,p 0 (R 3 )×W 1,p 0 (R 3 )
and H i = h i -δδ ij m j where δ is the Dirac distribution and δ ij denotes the Kronecker symbol. From Theorem 1.10 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF], there exists a unique solution

(w 0 , α 0 ) ∈ Y 1,p 0 (R 3 ) × L p (R 3 ) such that -∆w 0 + ∂w 0 ∂x 1 + ∇α 0 = H , div w 0 = 0 in R 3 .
We now set that w = w 0 -O.m and α = α 0 -P.m

where (O, P) is the fundamental solution of Oseen equations. Then we have

-∆w + ∂w ∂x 1 + ∇α = h, div w = 0 in R 3 .
Moreover, proceeding as in the case 1 of this Lemma, we obtain ∇w = ∇ z and α = θ in R 3 . Note now that the pair (a, b) ∈ N - p (Ω) satisfies the Green's formula: for all (ψ, ξ)

∈ D(Ω) × D(Ω), Ω {(-∆ψ + ∂ψ ∂x 1 + ∇ξ)a -b div ψ}dx = < (∇a -bI).n, ψ > Γ , (4.13) 
where <, > Γ denotes the duality pairing between W -1/p ,p (Γ) and W 1/p ,p (Γ).

Thanks to the density of D(Ω) in X 1,p 0 (Ω) and D(Ω) in L p (Ω), applying (4.13) with (ψ, ξ)

= (w 0 , α 0 ) ∈ X 1,p 0 (Ω) × L p (Ω) and (a, b) = (v β -β, θ β ) ∈ N - p (Ω) (β ∈ R 3 ), we obtain < (∇v β -θ β I).n, w 0 > W -1/p ,p (Γ)×W 1/p ,p (Γ) = 0. (4.14) 
a) The case q < 4: Then we have wz = 0 in R 3 and w = 0 on Γ. Therefore, we deduce w 0 = O.m on Γ. From (4.14), we have

m < (∇v β -θ β I).n, O > Γ = 0. (4.15) 
By some calculs, we can obtain

0 = Ω {(-∆O + ∂O ∂x 1 + ∇P)v β -θ β div O}dx = < (∇v β -θ β I).n, O > Γ -β Γ ∂O ∂n ,
then we deduce < (∇v β -θ β I).n, O > Γ = 0 and from (4.15), m = 0. Then (w 0 , α 0 ) = (0, 0) in Ω and we can deduce that (w , α) = (0, 0) and (z , θ) = (0, 0) in Ω.

b) The case q ≥ 4: There exists a constant c such that wz = c in R 3 and w = c on Γ. Then we have w 0 = c + O.m on Γ. Applying (4.14), we deduce that

< (∇v β -θ β I).n, c + O.m > Γ = 0.
We set that µ = c + O.m. It is easy to prove that µ ∈ W 1/r ,r (Γ) for all 4 3 < r < 4. Thanks to Theorem 4.6, the following system

-∆y 0 + ∂y 0 ∂x 1 + ∇κ = 0, div y 0 = 0 in Ω, y 0 = µ on Γ,
has a unique solution (y 0 , κ) ∈ Y 1,r 0 (Ω) × L r (Ω). Then (y 0 -w 0 , κ -α 0 ) ∈ N p,r (Ω) and we deduce that (y 0 , κ) = (w 0 , α 0 ). Moreover, we can see that µ ∈ W 1/p ,p (Γ). Then there exists (s, ω) ∈ Y 1,q 0 (Ω) × L q (Ω) such that -∆s + ∂s ∂x 1 + ∇ω = 0, div s = 0 in Ω, s = µ on Γ.

Then (s -w 0 , ω -α 0 ) ∈ N r,q (Ω) and (w 0 , α 0 ) ∈ Y 1,q 0 (Ω) × L q (Ω). Therefore, we deduce that (w , α) ∈ Y 1,q 0 (Ω) × L q (Ω). Since w = c on Γ and thanks to the characterization of N q,q (Ω), we obtain that (z , θ) = (λ c -c, µ c ).

Finally, in the case

p = 4 3 , let ϕ ∈ D(R 3 ) satisfying R 3 ϕ i = 1. We set U = O * ϕ and K = P * ϕ.
The reasonning can be applied by remplacing δδ ij by ϕ i , U by O and K by P.

Thanks to the above lemma, we immediately deduce the following corollary.

Corollary 4.8. Let Ω be an exterior domain with a C 1,1 boundary. Assume

f ∈ W -1,p 0 (Ω), u * ∈ W 1/p ,p ( 
Γ) with 1 < p < 4 satisfying the compatibility condition (4.10) and (u, π) ∈ Y 1,p 0 (Ω) × L p (Ω) be the unique solution of the system (4.11). If in addition, f ∈ W -1,q 0 (Ω) and u * ∈ W 1/q ,q (Γ) with 1 < q < 4 satisfying the compatibility condition (4.10) by remplacing p by q, then we also have (u, π) ∈ Y 1,q 0 (Ω) × L q (Ω).

We denote by [q] the integer part of q. For any k ∈ N, P k (respectively, P ∆ k ) stands for the space of polynomials (respectively, harmonic polynomials)

Proof. The proof can be obtained by proceeding similarly as in the one of Lemma 4.7.

The following corollary is immediately deduced from the previous lemma.

Corollary 4.11. Let Ω be an exterior domain with a C 1,1 . Let f ∈ L p (Ω), u * ∈ W 1+1/p ,p (Γ) with 1 < p < 2 and (u, π) ∈ Z p (Ω) × W 1,p 0 (Ω) be the unique solution of the system (4.11). If in addition, f ∈ L q (Ω), u * ∈ W 1+1/q ,q (Γ) with 1 < q < 2, then we also have (u, π) ∈ Z q (Ω) × W 1,q 0 (Ω).

5 More regularity for the velocity field u and the pressure π of the Navier-Stokes system

We now introduce the following result which we shall need in this part. The proof of this lemma is similar as the one of Lemma 4.2 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF].

Lemma 5.1. Let Ω ⊂ R 3 be a Lipschitz exterior domain and z ∈ L 4 (Ω) such that div z = 0. Then, for all ε > 0, there exist ρ = ρ(ε, z) > 0 and a sequence

(z k ) k∈N ∈ L 3 (Ω) ∩ L 4 (Ω), such that div z k = 0, satisfying z k → z in L 4 (Ω). (5.1) 
Moreover, there exist sequences (a k ) and

(b k ) in L 3 (Ω) ∩ L 4 (Ω) satisfying for each k ∈ N z k = a k + b k with ||a k || L 4 (Ω) ≤ ε and supp b k ⊂ Ω ρ . (5.2) 
From now on, Ω is an exterior domain with C 1,1 boundary in R 3 . Note that L 6/5 (Ω) → W -1,2 0 (Ω) and L 3/2 (Ω) → W -1,3 0 (Ω), and with the previous results in hand, we can now prove the following theorem.

Theorem 5.2. Assume that f ∈ L 6/5 (Ω) ∩ L 3/2 (Ω). Then each weak solution (u, π) to the problem (N S), satisfies

v ∈ L q (Ω) for all q ∈ [3, ∞), π ∈ W 1,6/5 0 (Ω) ∩ W 1,3/2 0 (Ω), ∇v ∈ L 12/7 (Ω) ∩ L 3 (Ω), ∇ 2 v ∈ L 6/5 (Ω) ∩ L 3/2 (Ω), ∂v ∂x 1 ∈ L 6/5 (Ω) ∩ L 3 (Ω). (5.3) 
Proof. Let u be a weak solution of (N S). As f satisfies the hypothesis of Theorem 3. (Ω). Moreover, since W 2,6/5 (Ω ρ ) → W 1,3/2 (Ω ρ ) with compact imbedding, we have w km → w in W 1,3/2 (Ω ρ ) with

(w k , θ k ) ∈ X 1,2 0 (Ω) × L 2 (Ω) satisfying -ν∆w k + λ ∂w k ∂x 1 + v k .∇w k + ∇θ k = f and div w k = 0 in Ω (5.4) with w k = -u ∞ on Γ.
||∇w || L 3/2 (Ωρ) = 1, (5.9) 
and -ν∆w + λ ∂w ∂x 1 + v.∇w + ∇θ = 0 in Ω.

(5.10)

Since w ∈ W 1,2 0 (Ω) and θ ∈ L 2 (Ω), then we have ∆w and ∇θ belonging to W -1,2 0 (Ω). On the other hand, we deduce that v.∇w = div (v⊗w) ∈ W -1,2 0 (Ω) because v and w belong to L 4 (Ω). Since L 6/5 (Ω) → W -1,2 0 (Ω) we also have

∂w ∂x 1 ∈ W -1,2 0 
(Ω). Moreover, w is divergence free and, because of (5.8), it has also zero trace at the boundary. Then, we deduce w = 0 in Ω which contradicts (5.9). Thanks to (5.5), (5.6) and (5.7), we have the following estimation

|| w k || L 3 (Ω) + || ∇w k || L 12/7 (Ω) || ∂w k ∂x 1 || L 6/5 (Ω) + || ∇ 2 w k || L 6/5 (Ω) + || θ k || W 1,6/5 0 (Ω) ≤ C(|| f || L 6/5 (Ω) + || v || L 6 (Ω) || f || L 6/5 (Ω) + || u ∞ || W 1+1/6,6/5 (Γ) ).
We can show that there exist a subsequence of (w k ) k which converges weakly towards w in W (Ω) ∩ L 3 (Ω) and a subsequence of (θ k ) k which converges weakly towards θ in W 1,6/5 0

(Ω) being a solution of the system as follows -ν∆w + λ ∂w ∂x 1 + v.∇w + ∇θ = f and div w = 0 in Ω.

We set y = vw and χ = π -θ. Then we deduce that (y, χ) is a solution of the following system -ν∆y + λ ∂y ∂x 1 + v.∇y + ∇χ = 0 and div y = 0 in Ω.

Since y satisfies the energy equality (4.3) with f = 0, we deduce that y = 0 then χ = 0. Thanks to uniqueness arguments, we show that w = v and θ = π.

Theorem is completely proved.

Thanks to Theorem 3.2 (part ii), Theorem 5.2, Sobolev embedding theorem and by duality arguments, we can prove the following.

Corollary 5.3. i) Assume that f ∈ L p (Ω) for all p ∈ [6/5, 2). Then the Navier- Stokes problem (N S) has a solution (u, π) satisfying v ∈ L q (Ω), ∇v ∈ L s1 (Ω), π ∈ W 1,s2 0 (Ω), ∇ 2 v ∈ L s2 (Ω), ∂v ∂x 1 ∈ L s3 (Ω), (5.11) 
for any q ∈ [3, ∞], any s 1 ∈ [12/7, 6), any s 2 ∈ [6/5, 2) and any s 3 ∈ [6/5, 6).

ii) Assume that f ∈ L p (Ω) for all p ∈ [6/5, 3). Then we have (5.11) for any q ∈ [3, ∞], s 1 ∈ [12/7, ∞), s 2 ∈ [6/5, 3) and s 3 ∈ [6/5, ∞).

We now prove the following Theorem.

Theorem 5.4. Assume that f ∈ L p (Ω) for all p ∈ (1, 3/2]. Then each weak solution (u, π) to the problem (N S) satisfies

v ∈ L q (Ω), ∇v ∈ L s1 (Ω), π ∈ W 1,s2 0 (Ω), ∇ 2 v ∈ L s2 (Ω), ∂v ∂x 1 ∈ L s3 (Ω), (5.12) 
for any q ∈ (2, ∞), any s 1 ∈ (4/3, 3], any s 2 ∈ (1, 3/2] and any s 3 ∈ (1, 3].

Proof. Remark that from Theorem 5.2, as v ∈ L 3 (Ω) and ∇v ∈ L 12/7 (Ω), we have fv.∇v ∈ L 12/11 (Ω). By applying Theorem 5.26 [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF] with p = 12 11 , the following system (Ω). Combining with the results in Theorem 5.2, we have v ∈ L q (Ω) for all q ∈ [12/5, ∞) and ∇v ∈ L 4/3 (Ω)∩L 3 (Ω).

-ν∆w + λ ∂w ∂x 1 + ∇θ = f -v .∇v , div w = 0 in Ω; w = -u ∞ on Γ, has a unique solution (w , θ) satisfying w ∈ L 2p/(2-p) (Ω) ∩ L 3p/(3-2p) (Ω), ∇w ∈ L 4p/(4-p) (Ω) ∩ L 3p/(3-p) (Ω), ∇ 2 w ∈ L p (Ω), ∂w ∂x 1 ∈ L p (Ω) and θ ∈ W 1,p 0 (Ω),
Hence, it is easy to prove that fv.∇v belongs to L p (Ω) for all p ∈ ]1, 3/2] and we can deduce that

v ∈ L 2p 2-p (Ω) ∩ L 3p 3-2p (Ω), ∇v ∈ L 4p 4-p (Ω) ∩ L 3p 3-p (Ω), ∇ 2 v ∈ L p (Ω), ∂v ∂x 1 ∈ L p (Ω) and π ∈ W 1,p 0 (Ω).
Clearly, we have (5.12) by combining with (5.3).

Thanks to Corollary 5.3 and Theorem 5.4, we immediately obtain the following results. Corollary 5.5. i) Assume that f ∈ L p (Ω) for all 1 < p < 2. Then each weak solution (u, π) to (N S) satisfies

v ∈ L q (Ω), ∇v ∈ L s1 (Ω), π ∈ W 1,s2 0 (Ω), ∇ 2 v ∈ L s2 (Ω), ∂v ∂x 1 ∈ L s3 (Ω), (5.13 
)

for any q ∈ (2, ∞], any s 1 ∈ [4/3, 6), any s 2 ∈ [1, 2) and any s 3 ∈ [1, 6).
ii) Assume that f ∈ L p (Ω) for all 1 < p < 3. Then we have (5.13) for any q

∈ (2, ∞], s 1 ∈ (4/3, ∞), s 2 ∈ (1, 3) and s 3 ∈ (1, ∞).
We now search weak solutions of Navier-Stokes system (N S) such that v ∈ L q (Ω) and π ∈ L q (Ω) for small values of q (q ≤ 2) with similar properties for ∇v. The following theorem allow us to improve the results in Theorem 5.2 by taking an additional assumption for f. In particular, if

4 3 < p < 12 7
, we obtain additionally v ∈ L q (Ω) for any q ≥ 4p 4 -p and ∇v ∈ L p (Ω).

(5.15)

Proof. From Theorem 5.2, if u is a solution of (N S), we have v satisfies (5.3). In particular,

v ∈ L 3 (Ω) ∩ L 4 (Ω) and div (v ⊗ v) ∈ W -1,3/2 0 (Ω) ∩ W -1,2 0 (Ω).
1) The case 3/2 ≤ p < 2: We have fv.∇v ∈ W -1,p 0 (Ω). As p>4/3, then the compatibility condition (4.10) is automatically satisfied. Thanks to Theorem 4.6, the following system

-ν∆w + λ ∂w ∂x 1 + ∇θ = f -v .∇v , div w = 0 in Ω; w = -u ∞ on Γ, has a unique solution (w , θ) satisfying w ∈ L 4p/(4-p) (Ω) ∩ L 3p/(3-p) (Ω), θ ∈ L p (Ω), ∇w ∈ L p (Ω) and ∂w ∂x 1 ∈ W -1,p 0 (Ω). It is easy to see that (w , θ) ∈ Y 1,p 0 (Ω) × L p (Ω) and (v , π) ∈ Y 1,3/2 0
(Ω) × L 3/2 (Ω). Applying Corollary 4.8, we have (w , θ) = (v , π), then we obtain (5.14).

2) The case 4/3 < p < 3/2: The proof is complete by combining the case 1) with the case 2). In Theorem 5.4, we know that if f ∈ L p (Ω) for all p ∈ (1, 3/2], then v satisfies (5.12). With additional assumption for f, we shall prove that the weak solutions given in Theorem 5.4 satisfy better properties. Proof. We know that (u, π) satisfies (5.12). In addition, thanks to Theorem 5.4, we have v ⊗ v ∈ L q (R 3 ) for all q > 1. Then we deduce fv.∇v ∈ W -1,r 0 (Ω). Proceeding as in Theorem 5.6, it is easy to prove that v ∈ L (Ω) and π ∈ L r (Ω). As v ∈ L q (Ω) for any q ≥ 2, we have ∂v ∂x 1 ∈ W -1,s 0 (Ω) for any s ≥ r. For the pressure, we note that thanks to (5.12), π ∈ L t (Ω) for all 3/2 < t ≤ 3 and then, we have (5.16). The Theorem is completely proved.

Since f ∈ L 6/5 (Ω) → W -1,2 0 (Ω), then in particular f ∈ W -1,3/2 0 (Ω). From the case 1) of this theorem, we have v ∈ L 4p/(4-p) (Ω) ∩ L 3p/(3-p) (Ω). Applying with p = 3/2, we have v ∈ L 12/5 (Ω) ∩ L 3 (Ω). Hence, we can show that v.∇v = div (v ⊗ v) ∈ W -1,4/3 0 (Ω) ∩ W -1,3/2 0 (Ω) and f -v.∇v ∈ W -1,p 0 (Ω).
We now prove the following theorem.

Theorem 5.9. Let 4/3 < p < ∞ and q 0 ≥ 3. Assume that f ∈ L q (Ω) ∩ W -1,p 0 (Ω) for all q ∈ (1, q 0 ]. Then the problem (N S) has a solution (u, π) satisfying the properties of Corollary 5.5 part ii). Moreover, we have π ∈ W 1,s2 0 (Ω) and ∇ 2 v ∈ L s2 (Ω) for all s 2 ∈ (1, q 0 ]. In particular, if 4/3 < p ≤ 3/2, we have additionally π ∈ L k1 (Ω) for any k 1 ≥ p.

Proof. In particular, we have f ∈ L q (Ω) for all 1 < q < 3. From Corollary 5.5 part ii), we have v ∈ L s0 (Ω), ∇v ∈ L s1 (Ω), π ∈ W 1,s2 0 (Ω),

∇ 2 v ∈ L s2 (Ω), ∂v ∂x 1 ∈ L s3 (Ω), (5.17) 
for any s 0 ∈ (2, ∞], any s 1 ∈ (4/3, ∞), any s 2 ∈ (1, 3) and any s 3 ∈ (1, ∞).

Using the partition of unity, we can deduce (f 1 , g 1 ) ∈ L q (R 3 ) × X 1,q 0 (R 3 ) and (f 2 , g 2 ) ∈ L q (Ω 2 ) × W 1,q 0 (Ω 2 ) for all q ∈ (1, q 0 ] satisfying (3.5). Applying Theorem 1.9 [START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF], Proposition 4.3 [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF] and proceeding as in Theorem 3.1, we can obtain that π ∈ W 1,q 0 (Ω), ∇ 2 v ∈ L q (Ω), ∂v ∂x 1 ∈ L q (Ω). Combining with the previous results, we have (5.17) for all s 2 ∈ (1, q 0 ], s 3 ∈ (1, ∞). As v⊗v ∈ L r (R 3 ) for any r > 1, then fv.∇v ∈ W -1,p 0 (R 3 ). We use the same technique as in the proof of Theorem 5.6, we have (v, π) ∈ (X 1,p 0 (Ω) × L p (Ω)) such that w ∈ L s (Ω) for all 4p 4-p ≤ s ≤ 3p 3-p . Note that π ∈ L k1 (Ω) for any k 1 ≥ p if 4/3 < p ≤ 3/2. The Theorem is completely proved. Now we introduce the stress tensor T and the related stretching tensor D, T (u, π) = -πI + 2νD(u), where I is the identity matrix and D(u) = {D ij }(u) with D ij (u) = 1 2 ( ∂u i ∂x j + ∂u j ∂x i ).

We now consider the energy identity. The key idea to find the conditions to obtain the energy identity (5.18), is to test the Navier-Stokes problem with v. (5.18)

Proof. Let (u, π) be a weak solution of (N S). From Theorem 5.2, we know that (5.3) takes place. Let a 0 ∈ H 1 (Ω 2R ) where R > R 0 such that a 0 = 0 on ∂Ω, a 0 = u ∞ on ∂B 2R , div a 0 = 0 in Ω 2R . We set that a = u ∞ in B 2R and a = a 0 in Ω 2R . Then, we have au ∞ ∈ W 1,2 0 (Ω) with compact support and div a = 0. As V(Ω) is dense in V 2 (Ω) (cf. [START_REF] Alliot | On the regularity and decay of the weak solutions to the steady-state Navier-Stokes equations in exterior domains[END_REF]), there exists a sequence (ψ i ) ∈ V(Ω) with (ψ i ) va + u ∞ in V 2 (Ω) with compact support. Since v ∈ L 3 (Ω) then we deduce va + u ∞ ∈ L 3 (Ω). Testing (3.1) with (ψ i ), we obtain

ν Ω ∇v.∇ψ i dx + λ < ∂v ∂x 1 , ψ i > W -1,2 0 (Ω)× • W 1, 2 0 (Ω) + < v.∇v, ψ i > W -1,2 0 (Ω)× • W 1, 2 0 (Ω) = < f, ψ i > W -1,2 0 (Ω)× • W 1, 2 0 (Ω)
.

When i → ∞, we deduce that 

ν Ω |∇v | 2 dx -ν Ω ∇v.∇a dx + λ < ∂v ∂x 1 , v + u ∞ -a > W -1,2 0 × • W 1, 2 0 + < v.∇v, v + u ∞ -a > W -1,2 0 × • W 1, 2 0 = < f, v -a + u ∞ > W -1,2 0 × • W 1, 2 0 . ( 5 
+ Ω v.∇v.(v + u ∞ -a) dx = Ω f.(v -a + u ∞ ) dx.
(5.20)

2 < p < 3 ,

 23 we obtain (3.6) and (3.7). ii) Thanks to the Sobolev embedding theorem, since f ∈ L p (Ω) where 3 we can deduce that f ∈ W -1,p * 0 (Ω) with p * = 3p 3-p and p * > 3. From Theorem 3.1, we have (3.2) and (3.3) but p * plays a role as p in Theorem 3.1. From
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 4112 Let Ω ⊂ R 3 be a Lipschitz exterior domain. Assume that z satisfies (4.1), u * = 0 and let f ∈ W -1,2 0 (Ω). Then Problem (4.2) has a solution(w, θ) ∈ • (Ω) × L 2loc (Ω). We have the following corollary.

Corollary 4 . 2 .

 42 With the same hypothesis as in Lemma 4.1, we can deduce that θ ∈ L 2 (Ω). Moreover, we have w ∈ L 4 (Ω),

Lemma 4 . 3 .

 43 Let Ω ⊂ R 3 be a Lipschitz exterior domain. Assume that z satisfies (4.1), u * = 0 and let f ∈ W -1,2 0

Lemma 4 . 4 .

 44 Let Ω ⊂ R 3 be a Lipschitz exterior domain. Assume that z satisfies (4.1), u * ∈ H 1/2 (Γ) and let f ∈ W -1,2 0

4 3 :

 3 Thanks to Theorem 1.10[START_REF] Amrouche | The stationary three-dimensional Navier-Stokes Equations with a non-zero constant velocity at infinity[END_REF], there exists w ∈ Y 1,p 0 (R 3 ) and α ∈ L p (R 3 ) such that -∆w + ∂w ∂x 1 + ∇α = h and div w = 0 in R 3 .

L 4 (Ω) and ∂v ∂x 1 ∈

 41 3, then (v, π) verify (3.2), (3.3), (3.6), (3.7) and in particular, v ∈ L 4/3 (Ω). Let ε > 0, ρ > 0 and v k = a k + b k be a sequence as z k in Lemma 5.1. Since v k ∈ L 3 (Ω) and div v k = 0, from Lemma 4.4, there exists a unique solution

  i.e., (w , θ) ∈ Z 12/11 (Ω) × W 1,12/11 0 (Ω). On the other hand, from (5.3), we can show (v , π) ∈ Z 6/5 (Ω) × W 1,6/5 0 (Ω). Thanks to Corollary 4.11, we have (w , θ) = (v , π). Then, we obtain v ∈ L 12/5 (Ω)∩L12/7 (Ω), ∇v ∈ L 4/3 (Ω)∩L12/7 (Ω), ∇ 2 v, and ∂v ∂x 1 belong to L 12/11 (Ω), π ∈ W 1,12/11 0

Theorem 5 . 6 .

 56 Let 4 3 < p < 2 and f ∈ L 6/5 (Ω) ∩ L 3/2 (Ω) ∩ W -1,p 0 (Ω). Then each weak solution (u, π) to the problem (N S) satisfies (5.3). Besides, we have π ∈ L p (Ω) and ∂v ∂x 1 ∈ W -1,s 0 (Ω) for any s ≥ p. (5.14)

  By applying Theorem 4.6 and Corollary 4.8, we have (5.14) and (5.15).

Remark 5 . 7 .

 57 Because of the compatibility condition (4.10), the above problem is open for the case 1 < p ≤ 4 3 .

Proposition 5 . 8 . 3 .

 583 Given r > 4 Assume that f ∈ L p (Ω) ∩ W -1,r 0 (Ω) for all p ∈ (1, 3/2].Then each weak solution (u, π) to (N S) satisfies (5.12) and ∂v ∂x 1 ∈ W -1,s 0 (Ω) for any s ≥ r. L t (Ω) for all r ≤ t ≤ 3.(5.16)

4r 4 -

 4 r (Ω) ∩ L 3r 3-r (Ω), ∇v ∈ L r (Ω), ∂v ∂x 1 ∈ W -1,r0

Theorem 5 . 10 .

 510 Let f ∈ L 6/5 (Ω) ∩ L 3/2 (Ω) and (u, π) be a weak solution of (N S). Then we have the energy identityν Ω | ∇v | 2 dx -λ Γ T.n dσ = Ω f.v dx.

  Thanks to Theorem 5.26[START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF], we have|| w k || L 3 (Ω) + || ∇w k || L 12/7 (Ω) + || L 6/5 (Ω) + || ∇ 2 w k || L 6/5 (Ω) + || θ k || W 1,6/5 || L 6/5(Ω) + || v k .∇w k || L 6/5 (Ω) + || u ∞ || W 7/6,5/6 (Γ)), ≥ 0 depends only on λ, ν and Ω. Note now that by construction of the sequence b k , we have |b k | ≤ v k almost everywhere in Ω, we have|| v k .∇w k || L 6/5 (Ω) ≤ || a k || L 4 (Ω) || ∇w k || L 12/7 (Ω) + || b k || L 6 (Ωρ) || ∇w k || L 3/2 (Ωρ) ≤ ε|| ∇w k || L 12/7 (Ω) + || v || L 6 (Ω) || ∇w k || L 3/2 (Ωρ)(5.6)But there existsC 1 ∈ R such that ∀k ∈ N * , || ∇w k || L 3/2 (Ωρ) ≤ C 1 (|| f || L 6/5 (Ω) + || u ∞ || W 7/6,5/6 (Γ) ). (5.7) Contradicting (5.7) means that there exists a sequence (k m ) m∈N * such that, for all m ∈ N * , ||∇w km || L 3/2 (Ωρ) = 1, || -ν∆w km + λ ∂w km ∂x 1 + v km .∇w km + ∇θ km || L 6/5 (Ω) + ||w km || W 7/6,5/6 (Γ) ≤ || w km || L 3 (Ω) + || ∇w km || L 12/7 (Ω) + || ∇ 2 w km || L 6/5 (Ω) (Ω), (w km ) m is bounded in L 3 (Ω) and (θ km ) m is bounded in W Thus, there exist subsequences, again denoted by (w km ) m and (θ km ) m , such that

	where C 1 m	.
									(5.8)
	Then we deduce from (5.5), (5.6) and (5.8) that
			+||	∂w km ∂x 1	|| L 6/5 (Ω) + || θ km || W 1,6/5 0	(Ω) ≤ C.
	Therefore (w km ) m is bounded in W 0 2,6/5	(Ω) ∩ W 0 1,12/7	(Ω),	∂w km ∂x 1 m	is bounded
	in L 6/5 1,6/5 0	(Ω).
	w km	w in W 0 2,6/5	(Ω) ∩ W 0 1,12/7	(Ω),	∂w km ∂x 1	∂w ∂x 1	in L 6/5 (Ω), w km	w in
	L 3 (Ω), and θ km	θ in W	1,6/5 0	
		+ ||	∂w k ∂x 1						0	(Ω)	(5.5)

≤ C(|| f

  and v.∇v are in L 3/2 (Ω). Then, we can rewrite (5.19) as followsν Ω |∇v | 2 dx -ν Ω ∇v.∇a dx + λ Ω ∂v ∂x 1 .(v + u ∞ -a) dx

		.19)
	From (5.3),	∂v ∂x 1

of degree ≤ k. If k is strictly negative integer, we set by convention P k = {0}. We introduce the following space of polynomials:

Observe that N 0 = R 3 × {0} and N 1 = P 1 × R 3 where P 1 is the space of polynomials of degree less than or equal to one not depending on x 1 .

We now introduce the space Z p (Ω) as follows:

Define that

We can characterize the kernel A + p (Ω) (see [START_REF] Amrouche | On the Oseen problem in threedimensional exterior domains[END_REF]), as follows: Lemma 4.9. Let Ω be an exterior domain with a C 1,1 boundary.

is the unique solution of the problem (4.9). iii) If p ≥ 4, then

is the unique solution of the problem (4.9).

The next lemma characterizes the kernel A p,q (Ω) of the exterior Oseen system:

Lemma 4.10. Let Ω be an exterior domain with a C 1,1 boundary and

is the unique solution of the problem (4.9). iii) If p ≥ 4, then A p,q (Ω) = { (λ c -c, µ c -η); (c, η) ∈ N 1 }, where

is the unique solution of the problem (4.9).

Next, we multiply (3.1) with u ∞ -a ∈ W 1,2 0 (Ω) having compact support. Integrating on Ω and using integration by parts, we get (5.21)

It is easy to see that Ω v.∇v.v = 0 and Ω ∂v ∂x 1 .v = 0 ( cf. [START_REF] Farwig | The stationary Navier-Stokes equations in a 3D-exterior domain, Recent topics on mathematical theory of viscous incompressible fluid[END_REF]). From (5.20) and (5.21), we have (5.18).