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Abstract.  This paper describes a solver programming method, called
contractor programming , that copes with two issues related to constraint
processing over the reals. First, continuous constraints involve an in-
evitable step of solver design. Existing softwares provide an insu cient
answer by restricting users to choose among a list of xed strategies.
Our rst contribution is to give more freedom in solver desig n by in-
troducing programming concepts where only con guration pa rameters
were previously available. Programming consists in applyi ng operators
(intersection, composition, etc.) on algorithms called contractors that are
somehow similar to propagators.

Second, many problems with real variables cannot be cast as he search
for vectors simultaneously satisfying the set of constraints, but a large
variety of di erent outputs may be demanded from a set of cons traints
(e.g., a paving with boxes inside and outside of the solution set). These
outputs can actually be viewed as the result of di erent contractors work-
ing concurrently on the same search space, with a bisection pocedure
intervening in case of deadlock. Such algorithms (which are not strictly
speaking solvers) will be made easy to build thanks to a new branch &
prune system, called paver.

Thus, this paper gives a way to deal harmoniously with a larger set of
problems while giving a ne control on the solving mechanism s. The
contractor formalism and the paver system are the two contri butions.
The approach is motivated and justi ed through di erent cas es of study.
An implementation of this framework named Quimperis also presented.

1 Introduction

Constraint programming is a simple and e cient paradigm to h andle a large
class of combinatorial problems [40, 10, 44]. In the preseecof real-valued vari-
ables, constraint propagation algorithms combined with irterval analysis [16, 22,
27,19,9] are also particularly well-suited, included for eal-world applications
(see, e.g., [33,21]). We shall refer to this interval variahof constraint program-
ming as interval programming. Even then, interval programming has had only



moderate success. In our opinion, the reason is a lack of cleand unied for-
malism describing how solvers and derived programs are buil This paper is an
attempt to |l this gap.

We propose a framework that allows one to build a continuous slver with a
few lines, in a high-level syntax. More than just another tuning language, a
programming framework is proposed.

Motivation

Three reasons justify the introduction of a solver programming framework in
presence of real variables.

1. Constraint programming is a declarative paradigm which means that a pro-
grammer should spend most of the e ort in modeling convenietly the prob-
lem. This e ort may involve breaking symmetries, introduci ng global or soft
constraints, etc.. All these concepts are related to modefig and represent,
by the way, very active elds of research. In theory, the soler is a black box
of which a programmer could ignore the details.

Despite of this, there is always a need at some point to contrdathe solver, as
it is with all declarative languages (consider for instanceProlog cuts that
allow ruling out choices in the search). We can say that the oerall e ciency
one gets is the combined result of e orts made on both aspectsmodeling
and solver control.

With real variables, modeling languages are limited. Constraints can usually
be nothing but equations which means that mathematics is de dcto the
ultimate modeling languagé€’. The consequence is that solver control becomes
an inevitable step if one is to improve e ciency.

2. Continuous solvers have a two-layered structure, namelyinterval analysis
and constraint programming, The lower layer includes interval arithmetics
and interval numerical algorithms (e.g., an interval variant of the Newton
iteration) with round-o considerations. The upper layer i ncludes branch
& prune algorithms for describing sets of reals de ned by costraints (or
optimizing a criterion under constraints). Since these lagrs correspond to
quite di erent scientic communities, there is a need more than ever for
an interface between them. In concrete words, it would be udel to give a

! This limitation holds for numerical systems involving anal ytic expressions, which
cover most of the mathematical models of physics problems. But modeling languages
as such are not limited with real variables any more than with discrete ones (one
may introduce table of constraints, piecewise constraints, etc.).

2 There is still a notable exception: geometrical constraint s. Geometry represents a
semantic level above algebra; as an example, the \intersecfon of three spheres” can
be introduced as a global constraints instead of three equivalent distance equations
[1]. But, except in such cases, no improvement has to be expeted from the modeling
side.



constraint programmer the ability to develop a continuous lver without
digging into details of interval analysis.

3. The last and possibly main point is related to the output of constraint solvers.
With discrete domains, the output is always the set of solutons (or a subset
optimizing some criteria). But in continuous domains, there may be a large
variety of dierent outputs. First, one may look for a sub-paving (a set
of boxes) encompassing the solutions and this is precisely hat most of
the existing solvers provide. They act asroot nders. Next, in case of a
solution set with a non-null volume, several sub-pavings a& expected, each
satisfying a di erent property, basically: \may contain a s olution”, \does
contain a solution" or \contains only solutions". Such solvers rather act
as set describers Actually, we will see through the examples of Section 2
that the semantics behind the sub-pavings may completely cange from one
problem to the other®. As we will show, neither aroot nder nor a set
describeris adapted for solving these problems. Of course, ad-hoc adions
always exist, but the purpose is precisely to avoid a multipicity of programs
where a single one would be enough. In practice, when peopleeafacing a
speci ¢ constraint problem that requires a speci ¢ algorithm, they have to
reverse-engineer the code of an existing solver. Often, thgedevelop it from
scratch.

Contribution

We propose a formalism and an algorithm, calledpaver.

In the formalism, the di erent interval routines (evaluati ons, projections, ex-
istence tests, etc.) are all wrapped in the very same objectalled contractor

(see Section 3). Of course, the concept afontractor is not a novelty on its own.

Our ( rst) contribution is to rede ne various constraint pr ogramming techniques
(propagation, shaving, parameter splitting, etc.) as opeations over contractors
that yield new contractors (Section 4). Syntactically, the contractor is then the

unigue atom, whence a certain simplicity. A solver can then ke programed, rather
than con gured, by combining di erent contractors (exampl es are given inx4.2,
x4.3,x5.1 and x5.5).

The paver algorithm is a generic solver. It takes a list of cotractors, an initial
box and follows a classical recursion: the contractors areuscessively called on
the current box until either it gets empty or no more contraction could be done.
In the latter case, the box is bisected and contractors are dé&d back again.

The fact that di erent contractors work concurrently allow s solving problems of
quite di erent nature (see next section). This is our secondcontribution.

% We can say that no modeling language dedicated to the output exists so far, and this
is another important distinction with discrete problems wh ere this modeling aspect
is not as ubiquitous (solvers using explanations are counter-examples).



Hence, contractor programming consists in two distinct stes: contractor design
and paver design The former refers to the design of the most possible e cient
contractor for a given set (constraint) and shall be discused in Section 4. The
latter refers to the selection of contractors that yield the desired output, regard-
less of e ciency.

This framework is already supported by a real system nameduimperthat will
be introduced in Section 6.

Thinking of contractor programming as an extension of constaint programming
is valid to the extent that contractors help in modeling the output of a problem.
But, fundamentally, there is not such an extension since costraints basically
tell the \what" whereas contractors tell the \how".

Note that branching will not be covered in this paper but one has to keep in
mind that this part of the paver should be customizable as wel Only plain
bisection will be used in the examples (variable are selectewith a round-robin
heuristic).

Power of Contractor programming

As for every programming language, the power of contractor ppgramming, i.e.,
the class of problems that can be solved using this paradigm eawld require the
setting of computability theory to be described formally. Pavings obtained in our
framework are the results of algorithms that recursively catract boxes to smaller
boxes and this general de nition does not even involve the cocept of constraint.

It can also t well, e.g., in the context of computer graphics to draw fractals.

This means that some pavings generated by our system cannotebcharacterized
by constraints.

However, one may wonder which problems contractor programnmg is the most
aimed at. The contractor paradigm is mostly aimed at building set computation
tools over the reals. These tools typically calculate disjunctian of equidimensional
sets and sets are usually described by constraints. There arhowever very few
restriction on their form: constraints can be rst-order lo gic formulas involving

numerical equations or inequalities and quanti ed parametrs. They can also be
handled implicitly by their associated contractor.

The main point is that the representation of the sets and the way it is calculated
are both entirely controllable.

Related works

In discrete constraint programming, existing tools alread/ give control mecha-
nisms with sometimes an associated formalism. In constraied-based local search,
the COME3ystem [46] o ers a language allowing one to give his own de ition



of moves and neighborhoods, the incremental computation othe impact after a
move being done automatically.

In branch & prune systems, choice points and propagation carusually be con-
trolled. The Choco[25], ILOG Solver [20] and Gecode[43] libraries allow to

specify the instantiation order for both variables and values. It can also be de-
cided how to split domains (either instantiate or bisect domains, etc.).

Propagation has given rise to more sophisticated conceptsThe aforementioned
libraries allow the programmer to associate his own propag®ar, or Itering al-
gorithm, to a constraint. In Gecode propagators can be automatically gener-
ated from a formula. It is possible with Chocoto control when propagators are
launched thanks to a system of events (e.g.a bound is reducedthe variable is
instantiated, etc.). This allows, as a side e ect, to schedule constrairg in the
propagation loop (some costly propagators may ignore evestof minor impor-
tance). Events handling have to be implemented by the propagtors in Gecode
albeit recent works aboutadvisors[29] facilitate this task. These mechanisms are
all related to modeling (a propagator is associated to a cortgaint), preserving
declarativity. As far as we know, there is not a way to build new propagators,
say, by composing di erent propagators, at the modeling phae. Only program-
mers with a good knowledge of the target library are able to doso. This is a
di erence with contractor programming that aims at building solvers rather than
operational constraints.

In contrast, e ciency has always taken precedence over exbility in continuous
constraint programming. Perhaps because of the prevailingiumerical culture,
solvers are indeed usually compared on a performance basiss a consequence,
none of the dierent existing implementations (Numerica [47], RealPaver [15],
Alias [32], Rsolver [38], GlobSol [26], Baron [41], etc.) quply a good level of
openness or extensibility. These libraries contain solveyr or global optimization
algorithms with a very high-level interface, basically regricting users to enter a
system of equations, set up some parameters and press ent&f course, there
may be many parameters. For instance, it can be decided whetherlias has
to resort to the computation of the Hessian matrix or to ask RealPaver for the
global consistency instead of a solution set. But there is navay to venture o
the beaten tracks.

A side contribution of this paper is a new representation for solution spaces
with non-empty interiors. More suitable representations have been proposed in
[42] usingquadtrees/octreesor in [48] using extreme vertices However, quadtrees
consist in discretizing constraints and reasoning using tis auxiliary representa-
tion. This otherwise appealing method is therefore quite dstant from interval

programming. Results of this paper are unlikely to be applicable in the catext

of quadtrees

Computing extreme vertices can be viewed as an independentperation to ob-
tain a compact representation of a set of boxes. The dissertin [48] contains
also smart branching heuristics and a concept ofctive variablesto preserve the



alignment of small boxes. All these concepts are fully compible with our frame-
work and somehow orthogonal tocontractors since they are related to branching
issues. They can be viewed as complementary to ours.

1.1 Notations and vocabulary

The set of all intervals is denoted byIR.

A Cartesian product of intervals is called abox Intervals and boxes will be sur-
rounded by brackets, e.g., X]. The symbol [x] will always denote an-dimensional
box, except otherwise stated. If k] is a box,x; and x; will stand for the lower
and upper bound of k]; respectively.

The width of a box [x] is the largest diameter of its components. The smallest
box enclosing a setS in denoted by S.

A sub-pavingof [x] is a set of non-overlapping boxes included inX]. A sub-

union [x]® [ ::: depending on the context. Hence, a sub-paving can either be
viewed as a discrete subset ofR" or as a compact subset oR".

[ [
[x] = [b:

1 k N [b2K

Finally, we will temporarily adopt the following de nition . Let c be a constraint
on the reals, i.e.c(x) is either true or false. A contractor for ¢ is a function
C:IR" ! IR", usually given by a polynomial-time algorithm, such that:

n. C((b)) [band
BIBI2 IR™: gy 2 [nC((h]) o(x) is not satis ed.

Note that the concept of contractor will be generalized in our formalism (see
Section 3). Thanks to interval arithmetics, many contractors can be built with
respect to an equationf (x) =0, where f : R" ! R™.

Example 1. Considerf : R*! Rwith f (x) = x; exp(xz) and dene C : IR? !
IR? as follows: C([x]) := ([ x1]\ exp([xz]);[x2]\ log[x1]). C is a contractor with
respect tof (x) = 0.

Contractor versus propagator. In spite of appearance,contractor is not
just a new name for propagator. A propagator is associated to a constraint and
destined to be called in a propagation loop. As we will see, aantractor is
not necessarily associated to a constraint and may have nothg to do with
propagation. Furthermore, we will add a continuity condition in the de nition
of a contractor (seex3.2) that does not exist for propagators. Finally, the term
ltering was not chosen because of a conict with the everyday meaningf
Itering in many areas dealing with continuous systems (e.gKalman Itering ).



1.2 The ABC of interval programming

Let us end this introduction with a short description of what interval program-
ming is all about.

The basic algorithm of interval programming is the root nder . Consider a system
of equationsf (x) = 0, where x is a variable in R" and f a mapping from R" to
R™. A root nder wraps solutions into boxes of any desired precsion (leaving
aside oating-point considerations) by using a branch & prune process, where
the prune operation is performed by a contractor.

Here is the sketch of the algorithm. Note that a stack is used dr the depth- rst
search and that the precision criterion chosen here is widtfx] <" .

algorithm root-finder  (function f, box [x]©)
output: a sub-paving

push K]© on the stack

while the stack is not empty
j pop [x] from the stack
i [XI° C([x]) where C is a contractor w.r.t. f (x) =0
j if [x]°%is not empty
jjif width [x]°<™
j jj insert[x]°into the output sub-paving
j ] else
j jj bisect x]°into two subboxes k] and [x]©®
i jj push x]® and [x]® on the stack
Of course, the existing implementations are much more sopkticated. But this
simpli ed description is enough from a language perspectig. In the ideal case
of a square system ifn = n) without singularity, solutions are punctual (and
certi cation can be demanded). In the general case, a m dimensional surface
is described. This is illustrated in Figure 1.

Consider nowf :R" ! R™,and [x] [y]2 R""™. We may look for the following
set inverse
fA D\ X:= fx2 [x]1j9y 2 [yly = f (x)g:

Note that set inversion is a particular subclass of quanti ed constraints (see,
e.g., [12,39]). Theroot-finder  algorithm will split the whole solution set into
small boxes, as depicted in Figure 2.a.

In this case (i.e., when the solution set has a non-nulh-dimensional volume) we
might expect the solver to dissociate boxes that may contairsolutions (boundary
boxe$ from boxes that only contain solutions (inner boxeg. Clearly, precision is
only required for boundary boxes, splitting an inner box beng useless and even
counter-productive.

A more appropriate output is given in Figure 2.b. Hence, an emanced algorithm
set-describer can be derived fromroot-finder by inserting an inner test
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Fig.1. Anenclosure offx 2 [ 0:5;2:5] [ 2:5;0:5]; f (x) =0gwith f (x)=exp(x1X2)
sin(xl Xz).

before the call to the contractor. The design of inner tests las been a matter of
study in several publications (see, e.g., [13,18, 14]).

2 Motivating examples

The purpose of this section is to present ve dierent problems tractable by
interval programming and to show that neither root-finder  nor set-describer
are appropriate. Once again, we do not claim that no algoritim exists for these
problems. We just claim that no algorithm exist that solves them all. Note that
root-finder  and set-describer  will not be two di erent algorithms in our
formalism.

2.1 A decomposable problem

In several applications, systems are su ciently sparse to ke decomposed by equa-
tional or geometric techniques [24, 36, 6]. Consider for exaple the following sys-
tem of distance constraints in two dimensions. There are 5 piots connected by
6 distance equations. PointsA and B are xed and the three others are the
unknowns. Instead of directly solving the 6x6 overall systen, we can process
progressively in three steps. We can solve the rst trianglef A; B; C g, which is
a 2 2 system. Because of rigidity, there is only a nite number of solutions
(two ips). Then, for each solution, the second triangle f B; C; D g can be solved
becauseC is xed. Finally, the triangle fC;D;E g can be solved in turn onceC
and D are xed.
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Fig. 2.
A set inversion problem f(x) 2 [y] with f(x) = P X2+ x3 and [y] = [3;6] in
XI1=[ 7:71 [ 7;7]. (@ The output of the set inversion problem as de ned in x2.1
(i.e., small boxes enclosing all the solutions). (b) A more adapted output for the same
set inversion problem, including inner test.

In general, solving the decomposed problem (here, seven 2 systems including
ips) is faster than solving the global problem (here, one 6 6 system). No
standard root nder supports the implementation of such strategies. The state
of the art in decomposition-based solving methods relies odedicated algorithms.

2.2 Enhanced description of the ring

Let us consider again the set inversion problem introducedri x1.2. We mentioned
that an inner test was necessary (whence theet-describer algorithm) but an
inner contractor could also be introduced in this case and would actually be
much more adapted.

Indeed, the set inversion problem can be easily formulated @a conjunction of
two inequalities. It has been shown (see [8,2]) in the case dfiequalities that,
by a negation trick, the problem can be reversed so that any cotracted region
of the reversed problem lies inside the feasible region of éhoriginal one.

Remember that [y] 2 IR. We have
cx) 0 f)2l1 0 y f(x)andf(x) y*
Hence, a point is unfeasible if

y >f (x)orf(x)>y*:



Fig. 3. A decomposable system

Now, we can contract a box k] with respecttoy >f (x)and f(x) >y*. If
X]® and [x]® are the two resulting boxes, then k]n([x® ][ [x©@]) is inside the
solution setfx 2 [x]j ¢(x)g. In such situation, it would be fruitful to replace the

current search spacex] by [xM ][ [x® ] and to memorize that the complementary
space is inner. Theset-describer algorithm is therefore not really appropriate.

2.3 Level surfaces

Level surfacesis a generalization of the previous problem, and can be statkas
follows. Considerf : R" ! R and N decreasing valuesy; > ::: >y . The goal
is to classify all the points of an initial domain [x] according to the constraints:

FO v
orf(X) v o
orf(x) N

with a priority corresponding to the intuitive idea that we are more interesed
in the highestvalues: the surface levely,, i.e., the number of points satisfying
f(x) yi mustbe maximized rst. Then, the surface levely, must be maximized
and so on. Figure 4.a shows an example of 4 surface levels. ldhat this problem
could be easily generalized to a MAX-SAT problem.

Let us now focus on input/output. Of course, using directly (1) as an input
constraint makes no sense, since (1) is equivalent tb(x)  yn . One could rather
solve N times the set inversion problemf (x) 2 [yx;Yk+1 ] and superimpose the
di erent outputs (see Figure 4.b). However, this is not satisfactory for at least
two reasons.

First, the boundaries around each level surface (the littlewhite boxes in Figure
4.b) should not appear, except for the lowest one. This undéeable boundaries
will be cleared o in Figure 11. One could circumvent this e ect by slightly

enlarging the intervals [yx;yx+1 ] before computing the inversions, making level

10
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Fig. 4. Surfaces levels f(x) vi. (a) An example with y1 =0:8,y, =0:6, y3 =0:4,
ya = 0:2 and f (x) = sin( x3 + x3)=(exp(x1) + x3), in [x]=[ 2;2] [ 2;2]. Darkness
increases with f . (b) The same example decomposed into set inversion problens.

surfaces overlap. Another trick would simply be to move the tbundary sub-
paving of the k™ surface level into the inner sub-paving of the k 1) level
surface. However, in both cases, we \cheat" and lose relialiy of the result.

Second, the decomposition of the input problem intoN sub-problems and the
aggregation of the intermediate results requires extra andundesirable manipu-
lations from the user.

2.4 Set inclusion

Given two sets de ned by constraintsc; and ¢y, the set inclusion problem consists
in proving or refuting that one set is included in the other. This is illustrated in
Figure 5.a.

We shall denote by set€) the set associated to a constraint:
set(c) = fx 2 R" j ¢(x) is trueg:

Using the conjunction of ¢; and ¢, as an input in algorithm set-describer may
address the problem in the following situations: if no soluton is found, then no
set can be included in the other since these sets do not inteest at all. In the
other way around, if the whole initial box is included in the inner sub-paving
then the two sets coincide. Except in these extreme cases, tiong can be said.

As before, one may solve separatelg; and c,, and check for the inclusion of both
the inner & boundary sub-pavings ofc; into the inner sub-paving of ¢, (see Figure
5.b). Again, this requires undesirable manipulations by the user; but, worse, this

11
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Fig. 5. Setinclusion . (a). Two subsets of [x]=[ 3;1] [ 1;3]de ned by constraints:
ca(x) exp(xiX2) sin(xz x1) 2 [ 0:1;0:1] (in dark gray) and c2(x) (
exp(X1 X2) sin(xixz) 2 [ 0:1;0:1] (in light gray). We have set( ¢1)  set(c2). (b)
The same set inclusion problem decomposed into set inversim problems.

process is extremely ine cient. Assume that a box B in Figure 5.b is detected
as inner in the paving of set;) and recursively bisected and contracted in the
paving of set(c;) until either boundary or inner boxes are found. All this work
could be spare since the inclusion setf)\ B  set(c;)\ B is already established.
Hence, this decomposition involves a huge number of uselessmputations.

Of course, one could legitimately object that in the examplegiven in Figure 5,

c1 can be reversed as ix2.2 to ¢; so that running a standard solver with ¢; and

c; will do the job as expected. Indeed, if no solution is found, B point satisfy

c; and ¢, i.e., set(c;)  set(ci). However, in general, a constraint cannot be
reversed while an inner test is still possible. As an examplea constraint c;(x)

of the following form:

f(x,y)=0
g(x,y)=0

cannot be reversed ify has multiple occurrences while testing for an inner box
is possible (an algorithm is given in [12]).

a(x) 09 y2[01]

2.5 Bounded-error Parameter estimation

This last example is rather devoted to solver design: the prblem is not new in
terms of input/output but requires a speci c strategy.

Consider the following model of a real-time system [23]:

f(p;t)=20exp( pit) 8exp( pzt)

12



where p; and p, are two unknown parameters. Assume that a vector of 10 mea-

The question is to compute a rigorous enclosure of all the fesble p; and p;
from the experimental data, taking into account uncertainties on bothy; and t;.
Hence, given intervals {i] and [y;], we have to describe the following set:

f(p1;p2) j 8i 2 [1::10] 9yi 2 [yi]; 9t 2 [ti]yi = f(p;ti)g:

(a) (b)

Fig. 6. The parameter estimation problem. (a) The set of feasible points (p1; p2).
(b) The result using a standard contraction and inner test wi thout splitting the domains
of t; (bisection precision is 0.01). First, a very few of inner box es could be found. Second,
the outer enclosure is not sharp at all.

If we restrict ourselves to a single measurement (instead 010), the problem
boils down to a simple set inversion, with athick constant [t;]. Hence, the set to
be computed seems to be nothing but the intersection of 10 sdhversions. The
set-describer algorithm seems to suit well.

In fact, the multi-incidence of t in the expression off makes this strategy in-
e cient. Indeed, whatever is the underlying method used for the contractor or
the inner test, the domain of t has to be small for the resulting operator to be
sharp. Hence, the domain ot has to be split by the solver. This is illustrated in
Figure 6.

Second, introducing the vectort as variables makes the search space dimension
jumps from 2 to 12 unless one wants to solve the 10 problems saately. This
leads to a combinatorial explosion.

13



In conclusion, there is a need for splitting the componentt; (and only this
one) inside the contractor and inner test associated to theé™ measure. To our
knowledge, no available solver is generic enough to be tuned this way.

3 A new formalism

We show now that the di erent examples of Section 2 can be soled as suggested
by the very same algorithm, a generic solver calleghaver, when expressed in the
contractor formalism.

We describe the paver and the formalism in this section. We wi provide concrete
examples of contractors in Section 4 and subsequently revisthe problems of
Section 2.

3.1 The \contract and classify" paver

To help intuition, let us consider the problem in x2.3. It turns out from this exam-
ple that several sets have to be described simultaneouslyaeh set corresponding
to a di erent constraint.

Let us assume that sets are disjoint. We will see below how toircumvent the
case of overlapping sets.

Each point of the initial space has to be classi ed with respet to these sets. For
a given point x, this means that the membership ofx to the di erent sets can
be tested successively. If one test succeeds, thencan be marked as treated and
associated to the corresponding set.

A generic interval solver can directly be derived from this \test and classify"
principle. Remember rst that a contractor C can be easily built from any con-
straint c. The contractor C has the following property: if C([x]) =[] (i.e., [y]
is the contraction of [x]) then every eliminated point in [y]n[x] does not satisfy
c. Thus, with a simple negation trick, a contractor C such that all eliminated
points satisfy c is as easy to build.

Example 2. Consider the set inversion problem, inx2.2. A point inside the ring
satis es f (x) 2 [y]. Consider a contractor C built from f (x) 62y]. If C([x]) = [y]
then [x]n[y] is inside the ring.

Given a box [x] and a constraint c, if the complementary contractor C reduces
[X] to [y], then [x]n[y] can be classi ed, i.e., mark as \insidec". Then, the paver
proceeds as follows (the algorithm is detailed below). The alver takes as input
a list of contractors and an initial box [x]© . The rst contractor is enforced on
[x] :=[x]© . If the contraction is e ective, a smaller box [x]%is returned and the
di erence* [x]n[x]° is stored in a sub-paving associated to the rst contractor.

4 Note that resorting to a simple tree structure avoids to expl icitly describe the dif-
ference between k] and [x]% the latter simply becomes a subnode of the former.
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Only [x]°is left to be treated, and the second contractor is called. Wien all
the contractors become ine ective on a box k], we can say that the common
xpoint of all contractors is reached and [x] is bisected. The whole process is
then repeated until the list of boxes becomes empty. We will se in the next
section how the termination of the algorithm can be guaranted.

algorithm paver (contractors Cy, ..., Cx, box [x]©)
output: a paving of x]©@

push [x]© on the stack
while the stack is not empty
pop [x] from the stack

do

j Xpoint true
ji 1

j while [x]6 ; andi k
i XI° Ci([x)

it [x°8[x]

jii K Ki[([IxInx]9
jj] xpoint false

j
I

i Ixe

ji i+l

while [x] & ; and xpoint=false
if [x]6 ;

j bisect [x] into two subboxes k] and [x]©®

j
J
j
j
j
j
J
j
j
j
j
j
J
j
i j push K]® and [x]® on the stack

Note that paver is not an AC3-like algorithm, for essentially two reasons. Frst,
contractors given to the paver algorithm usually involve all the variables merely
because they all correspond to sets (or more generally, to bugpavings) which
have the same dimension as the initial box. This is not a rule Int a \user advice".
One can put di erent constraints at this level in order to tra ce their contraction
power. But, the paver level is intended to deal with sets whik all the constraints
related to a given set should be encapsulated in the sameuter or inner con-
tractor, as explained further. Second, because the semart of contractors goes
beyond that of constraints, the order in which they are called may have an in-
uence on the quality of the result (the number of boxes in a stbpaving). For
instance, a contractor designed to detect a very weak condibn should preferably
be called on last resort (we might lose boxes satisfying a sbnger condition).
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3.2 Contractors

De nition 1 (Contractor). A contractor is a mapping C from IR" to IR"
such that

@ 8[x]12 IR™; C(x]) [X] (contraction)

(i) (x2[x;Cfxg)= fxg)) x2C(x]) (consistency)

(i) C(fxg)=:, (9"> 0;8[x] B (x;");A[x]) = ;) (continuity)

where B (x;") is the ball centered onx with radius ".

A box [x] is said to beinsensitive to C if C([x]) = [ X] and sensitive otherwise. By
extension, a pointx is said to be sensitive or insensitive whethef xg is sensitive
or not. Property (i) states that a box can only be reduced by a contractor.
Property (ii) states that no insensitive points can be removed. Finally,property

(iii ) is required for properties on the paver as we will explain futher.

The set associated to a contractorC is the union of all of its insensitive points:
set(C)= fx 2 R";C(x) = xg:
The continuity property of C implies that set(C) is closed.

If C is a contractor for a constraint c, in the classical sense of the word (see
x1.1), then set(C) set(c). An important novelty in our formalism is to consider
sets associated to contractors rather than to constraints.This allows a rigorous
description of the output of our paver (see Proposition 2). A contractor is not
only an algorithm, it can also be interpreted as a subset ofR", and all the
standard operations on sets can be extended to contractordVe de ne:

(C1\ C)([X]) = Ca(IxD N\ Ca2([xD (intersection)
(Ca[ Co)([x]) : Ca(Ix]) [ Ca([x]) (union)

(C1 C)([X]) = Ca(Ca(Ix]) (composition) @)
Ci =C C C; ::: (iterated composition)
CiuCy:=(Ci\ Cy)? (iterated intersection)
Cit Co:=(Cy[ Cy)?t (iterated union):

All these operations arestable i.e., they only yield contractors.

We also introduce the following de nition:

De nition 2. Let Cq;:::;Ck be a collection of contractors.

Additional properties of contractors play a signi cant rol e:

C is monotonousif [X] [y]) C(x]) C(y),
C is minimal if 8[x] 2 IR"; C([x]) = ([x]\ set(C)), 3)
C isidempotent if 8[x] 2 IR"; C(C([x])) = C(x]).
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Given a contractor C on R" R™, we also de ne the two following contractors
onR": S
Tyzy <(COTY)

yary; x(CUXTy)
with  x([x];[y]) := [x]. The rst operation is called proj-union and the second

proj-intersection. Once again, these operations are stable in the set of contea
tors. We have:

cl [y]([x]) :
CMI([x)) :

set(CL D) = fx; 9y 2 [y]; (x;y) 2 set(C)g;

)
set(C' M) = fx; 8y 2 [y]; (x;y) 2 set(C)g:

Fig. 7. Proj-Union. We consider a contractor C on IR? with S := set(C). (a) Repre-
sentation of C! [y] when [y] is degenerated (a realy). The contraction on [ x] results in
an enclosure offx 2 [x] j (x;y) 2 Sg. Since C is continuous, when both [x] and [y] are
degenerated, the enclosure is minimal, i.e.,C!Y(x) = fxgi ( x;y) 2 S. (b) Principle of
an implementation resorting to parameter splitting and uni on of sub-contractions (the
interval [y] is decomposed as nely as possible). (c) Result of the proj-intersection in
practice: only an outer approximation of set( C! 1) is obtained, after numerous repeti-
tions of the splitting operation presented in (b).

This result being rather intuitive, the proof is not given (see Figures 7 and
8). In practice, these operators are implemented as follows-or the proj-union,

[y] is split into a sequence of small subintervalsyf]i. Then, the contractor C is

enforced on each sub-domainq] [yi] and the hull of the results is returned. For
the proj-intersection, a sequence of pointg; are sampled from ], C is enforce
on [x] f y;gand the intersection of the results is returned.

Although examples of contractors will be the topic of Sectio 4, we shall in-
troduce right here the precision contractor C- that has a special status. This
contractor is aimed at controlling the precision of the pave or scheduling con-
tractors (seex5.1 and x5.3) and will be implicitly referred to in the subsequent
propositions.
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Fig. 8. Proj-intersection. (@) In a similar way as in Figure 8, given a xed interval
[yl, C' P! allows to constrain x 2 R with 8y 2 [y]; (x;y) 2 S. (b) Principle of an
implementation resorting to parameter splitting and inter section. (¢) Result of the
proj-intersection in practice: only an outer approximatio n of set(C' ) is obtained.

De nition 3 (Precision contractor). Given > 0, the precision contractor
C- is de ned as follows:

_  [x]if width([x]) >
C(IxD = . otherwise

Many properties could be stated on contractors. As an examm, the set of idem-
potent and monotonous contractors is a complete lattice fothe inclusion. Listing
these properties would be out of the scope of this paper, whicis rather aimed
at introducing the concepts. However, the fundamental properties of the paver
given in the previous section are based on the properties ofontractors and we
are now in position for proving them.

3.3 Paver properties

Proposition 1 (Termination). Let fCy;:::;Ckg be a list of complementary
contractors. The paver terminates for any initial box [x]© .

Proof. Assume by contradiction that paver does not terminate. Hence, there is
a sequence of non-empty boxex](") and x 2 [x]® such that for all i > 0:

(i) [x]ID  [x]¢ Y (strict inclusion, i.e., [x]® 6[x](*D)
(i) Ci([X]V) = :::= C(XIM) = [x]©)
(iii ) % 2 [x]®

Indeed, (i) is a direct consequence of the properties of contractors ahbisections
and (ii ) is due to the xpoint postcondition of the inner while loop inside the
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paver algorithm. Finally, for all i, pick a point %¥() 2 [x]() (which is nonempty).
The sequence is bounded so it admits at least one accumulatiopoint *. Since
for all i, [x]1) is a closed set that contains the whole subsequenca({?); i, it
also contains this accumulation point x- Hence, {ii ) holds.

Now, each box k]) can be identied to a 2n-tuple u(® of its vertices coordi-
nates. This identi cation can be made isometric with appropriate distances (the
Hausdor distance on IR" and its counterpart on R?"). For all component j,

1 j 2n,the sequenceuj(') is either increasing or decreasing, and bounded by
a component ofx: Hence, it converges to a pointu; . By the inverse isometry,
it follows that the sequence of boxes®]!") converges then to a boxx]. Further-
more, the width of this box is necessarily null (i.e.,[x] is a degenerated boX xg)

since
8i 0 rad([x]""") %rad([x]“’):

Next, we have setCj)\ :::\ set(Cy) = ; which means that at least one contractor
C, satis es x 6%et(C,). By applying the continuity property of C, (see De nition

1) we obtain that there exists andi suchthat [x]) B(x; )and C/([x]!)) = ;,

i.e., a contradiction.

To ensure the complementarity between contractors, we usuly resort to the
precision contractor because sefg-) = ;.

Informally, the following proposition states that, up to a given precision , the
sub-paving associated to a contractor matches the interseion of the other con-
tractors sets. Since the set of a contractor usually approxnates the set related
to an initial constraint, we have now a clear semantics for tre paver.

spectively. We have:

\
8i; 1 i Kk set(C;)nK; K :
isi

Proof. First of all, paver terminates thanks to the previous proposition. Leti be
anindex,1 i k.Forallj 6 i we have by hypothesis setCi)° \ set(C;)¢ = ;

hence setCi)¢  set(Cj) which implies set(Ci)¢ \ jei set(Cj). Since8[x] 2 K;

we have k]  set(C;)° (by applying the consistencyof C;), then K;  set(C;)¢

\ jsi Set(Cj). The two last inclusions are-strict because setC;)¢ is open while
the other sets are closed. It follows that ¢; set(Cj)nK; is nonempty.

Take [x] in this set and assume X] 62K . The box [x] has beenremoved from the
search byC; with 1 | Kk, ie. [x] set(C))C. Since K] 2 i6i set(C;) then
| = i which leads to a contradiction since k] 62K;.
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4 Contractor design

In this section, we present some contractors and operationshat do not help
in modeling problems but in improving the e ciency of a paver. We basically
explain how to manage a constraintc, i.e., the di erent ways to build a contrac-
tor C satisfying set(C) = set(c). Likewise, all the operations op will preserve
associated sets. E.g., an unary operatoop will satisfy for all contractor C,
set(op(C)) = set(C).

Hence, contractors and operations in this section will not fave an in uence on
the result, in terms of sub-paving characterization. On theother hand, they may
decrease the time complexity or the space complexity (i.e.the number of boxes
in a sub-paving).

We will overlook technical details on purpose here, stickig to generalities. The
interested reader may refer to Section 6 where important imfementation choices
we made for our own system are disclosed.

We shall distinguish numerical contractors, those which are directly built from
a numerical constraint, and those which are the result of an peration (such as
composition) between other contractors.

Numerical contractors can be related to equations, inequdties or systems of
equations. The point is that a large part of interval analysis routines can be
wrapped into these contractors. As announced above, a goodeparation can
then be obtained between numerical skills (the design of numrical contractors)
and constraint programming skills (the design of compound ontractors).

In this layered framework, constraint propagation will be generalized to con-
tractor propagation. A possible implementation of the corresponding operator
(propag) will be described in detail in x6.3.

4.1 Numerical contractors

Several contractors can be associated to an equatioin(x) = 0.

The simplest one consists in evaluating with interval arithmetics f ([x]) and

checking whether 0 belongs to the image range or not. If ®2f ([x]) then [x]

can be contracted to the empty set. Otherwise, it is left unchanged. This con-
tractor can therefore be quali ed as binary (in the sense that it keeps all or
nothing). This test can be easily extended to inequalities.This contractor can

be given many variants, based on various symbolic or numera processing as
the two following examples show.

Example 3. Assume that there exist several equivalent expressions fof, say
Since the overestimation of interval evaluation grows withthe multi-incidence of

variables (see [34]), we get to sharper results by computing1 ([x])\ :::\ fx([x])
instead of f ([x]), whence a more accurate (but slower) test.
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Example 4. On the numerical side, we can resort to the centered form, i.e
compute f (xo) + fYX])([X] Xo) instead of f ([x]) where xo is an arbitrary
point inside [x]. Higher-order Taylor formulas may also be payfull. One mayalso
introduce intermediate monotonicity tests. Consider a two-dimensional vectoix.
If %([x]) turns to be a positive interval then f is increasing with respect to
X1 so that f ([x]) can be replaced by f (fx; g [x2]);f (fx7g [x2])], a smaller
interval.

More sophisticated contractors associated to a constraint (equation or inequal-
ity) compute an outer estimation of the feasible set, i.e.,C([x]) is a nontrivial
superset offx 2 [x] j ¢(x)g. Three important techniques can be found in the
literature:

1. Forward-backward traversals of the syntax tree with intermediate interval
computations, such asHC4Revise[3].

2. Univariate interval Newton iterations (as performed by the narrowing oper-
ator of box consistency [47]).

3. Linear relaxations (see [30] and references therein). Isuch techniques, a
nonlinear constraint is cast into a linear program which feasible region en-
compasses the original solution set.

Given an equation f (x) = 0, we will denote by C; in the sequel an arbitrary
contractor among those above.

Of course, numerical techniques can also handle several egfions simultane-
ously, i.e., a system of equations. Many of them are derivedrém a multivariate
interval Newton, one famous variant being the Hansen-Senguta algorithm [17].
In case of linear equalities, many dedicated algorithms als exist (see [35] or
[37]). One can be easily convinced that all these algorithmsict as contractors.

4.2 Propagation

The propagation operator allows the implementation of interval variants of the
classicalAC3algorithm such ashull consistency(see, e.g., [3, 11]) but also many
more algorithms. This operator illustrates by itself the potential of our frame-
work, in terms of contractor design. The key idea is to propagte contractors
instead of constraints.

Given a list of contractors, the principle is to obtain the x point of their com-
position, i.e., (Cy Cm)! at alower computation price. We shall denote by
propag our operator. We have:

set(propag(Ci;:::;Cn)) = set(( C1 Cm)l )

which means that propag is a pure e ciency contractor (it has no impact on the
output).
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An implementation of this operator will be proposed in x6.3.

Let us now recall that the hull consistencyenforces bound consistency for each
equation. In practice, only a relaxation of bound-consistacy is calculated via
the HC4Revisealgorithm. The resulting propagation algorithm is called HC4 In

HC4c,;:::;¢cm)  propag(HC4Revisdcy), ..., HC4Revisdcy))

A more interesting direct application is a multi-level propagation. Sometimes,
we would like to group constraints we know to have strong \dependencies". For
instance, one may nd relevant to perform an intermediate x point with con-

straints that strictly share the same variables. Consider hree sets of constraints
fc; ¢;c30;fcag and fcs; cgg. The following contractor will ensure that a con-

straint in a subset (say, ¢4) will not be wakened between constraints of other
subsets (say,c; and c;).

propag(propag( Ci; Cz; C3), Ca,propag( Cs; Cs))

4.3 Shaving

The purpose of this section is to show that other operators eist besidespropag.

Shaving is an operation that allows implementing refutation techniques, similar
to SAC [5] with discrete domains. With continuous domains, refutation is used
to shrink endpoints only (instead of any value inside the domains) so that the
structure of interval is always maintained (whence the fangy name shaving.

Detailing the algorithm here would take too much room. We shdl only give a
rough description.

A shaving operator shave takes a contractor C. Given a box [x], the resulting
contractor shave(C) contracts \slices" with C, i.e., subboxes obtained from %]
by restricting the domain [x]x of one component to a small subintervalX, ;x, + ]
or[xg ;Xy ] When the result of the subcontraction is an empty set, the $ice is
removed. Otherwise, contraction is tried on a smaller sliceThis recursion leads
to consistent endpoints. More formally, the resulting box fy] := ( shave(C))([x])

C(lyl Wk 1 v [ka [Vln) 6 ;

and
C(yl Wk 1 f yg9 [yl yln) 6 ;:

The shaving operator can also be given many variants mainly bcause of the
slicing which can either be optimistic (\try large slices rst") or pessimistic
(\check consistency of endpoints rst").
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be reimplemented in our framework as follows:

propag(shave(univNewton(c)),. . ., shave(UnivNewton(cny)))

where UnivNewton is an univariate interval Newton contractor (see x4.1). The
3B consistency de ned in [31] can be reimplemented as follosv

5 Reuvisiting examples

We now revisit all the examples in our framework. By conventbn, the sub-paving
of the precision contractor will always be represented in wite in the pictures.

As a preliminary example, consider the system of equationsni Figure 1 page 8
and remember that the goal is to enclose the solution set int@a sub-paving. By
a direct application of our formalism, we then need two contactors:

1. A contractor C;, to remove unfeasible points.
2. The precision contractor C-.

The desired output is given in Figure 9. This time, the result of the outer con-
traction appears as a sub-paving with only unfeasible poins. The roots are all
in the sub-paving of the precision contractor.

-1.90—

-2.20—

-2.50—

X
fogsills eoloanl opelong Fopslonn Fopalan olicysil X1
-0.50-0.20 0.10 0.40 0.70 1.00 1.30 1.60 1.90 2.20 2.50

Fig.9. System of equations, with an outer and precision contractor. The sub-paving
of the outer contractor is in light gray.
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5.1 A decomposable problem

Assume that each subsystem (calledblock has to be solved by a combination
of propagation and interval Newton. Of course, a multivariate interval Newton
(denoted by newton henceforth) requires a square system. When one variable
is xed (e.g., Xxc and yc when the second triangle is to be solved), it must not
be considered as a variable bynewton but rather as an interval constant. Such
information typically enters as a \static" parameter (see x6.1). For that reason,
the newton contractor takes two arguments: the set of constraints and he set
of variables. Similarly, let us re ne the behaviour of the precision contractor C-
(seex4). This contractor will also take here a subsetS of variables in parameter.
A box [x] is emptied by C.(S) if and only if the domains of the components in
S all have a diameter lower than".

In the sequel,dpg denotes the distance constraint between two point® and Q.

For each block (here: a triangle), the solving strategy is inplemented thanks to
the following operator block _contractor

For instance, a paver run with block _contractor (fdsp ;dcp g;fXp ;Yo g) (and
C-) with x¢c and yc xed (i.e., their domains have a diameter less than") will
solve the second triangle in the required manner, i.e., usip propagation and
Newton.

The step-by-step solving method proposed inx2.1 can then be directly imple-
mented with the following contractor:

block _contractor (fdac ; dsc 0,FXc;yc Q)
\ (C(fxciyc9)
[ ( block _contractor (fdgp ;dcp G;fXp ;Yo Q)
\ (C(fXc;Yc;Xp;Yp Q)
[ block contractor (fdpe ;dce g; f Xe; Ve 9)))

provided that variables are bisected block after block. In nore details, the vari-

ables of the rst block fx¢;yc g must be bisected (say, in a round-robin fashion)
until precision is achieved for both of them. The bisection pocedure must then

proceed to the second block, and so on. Branching procedurese not covered
in this paper but this mechanism is orthogonal to contractors and one should be
easily convinced that a block-wise bisection is easy to setp

5.2 Enhanced description of the ring

In the set inversion problem, we need to characterizéx j f (x) 2 [y]g. This means
that two sets have to be described by contractorsfx j f (x) 2 [ylg (the ring)
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Fig.10. A description of the ring involving outer and inner contract ors.

and fx j f (x) 62int ([y])g (the complementary of the ring). Put [y] = [y ;y*]
and g(x) = f(x) .

To deal with unfeasible points, we need an outer contractor.This contractor,
denoted by C » [y}, can be simply de ned as follows:

Ciopy = [X170 x(Co([X]; [yD):

The points inside the ring have to be classi ed with an inner contractor. As
explained in x2.2, the latter comes naturally with the negation of the problem.
We have

)0 fx)2 0 y f(x)andf(x) y*
0 f()2[y ;+1)andf(x)2(1 ;y"]

Hence,

cx) 0 f()2(1 jy)orf(x)2(y";+1)
=) f(x)2(1 5y Jorf(x)2[y";+1)

Therefore, the contractor

Croay) (XD =[X] 7! x(Co([XL: (1 5y D[ x(CoIxLly";+1))

only removes unfeasible points forc, i.e., feasible points forc.

Now, set(Cs 2py7) \ set(Cy 63y7) is the boundary of the ring, which is non empty.
Hence, we have to add a precision contractor to ensure the temination of the al-
gorithm. The resultis depicted in Figure 10. SinceC; ,[y; and Cs g3, are indepen-
dent, the ring represented on the gure can be interpreted asan approximation
of the set to be described (see proposition 2).
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Fig.11. An appropriate paving, with smooth boundaries between surf ace levels.

5.3 Level surfaces

First of all, the contractor Cs,y,.+1) (as dened in the previous paragraph)
could be associated to the'" level surfaceff y;g. Of course, in this way, the
contractor of the lowest surface level would preempt most othe boxes, leading
to a bad result (independence does not hold).

Introducing a priority between the di erent contractors (i n addition to indepen-
dence) does not require any extra concept. We just need to aqd the contractors
to their actual semantics: a (su ciently small) box [ x] must be classi ed with
the contractor of the i™ surface level only if

[x] is inside the i surface level
and [x] does not intersect the { 1) surface level
or [x] has a small width (lower than ")

The desired contractor C; is then obtained by simply rewriting these conditions
in terms of sub-contractors:

Ci=Crozyivr) [ Cropy v1)\ ©
or, using a sub-distributivity rule:

Ci=Crezy 1v11) Cropivn) [ C

Finally, we need as before an outer contractor for all the suface levels, namely,
Ch+1 := Ci2(1 1,1 Moreover, the intersection of C1\ :::\ Cpyg isfxjf(x) =
Yng and, as usual, this set can be treated by a precision contraor C-. Figure
11 shows the desired output.
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5.4 Set inclusion

Fig. 12. The set inclusion problem solved by a more adapted algorithm. Boxes in dark
gray does not belong to set(c:). Boxes in light gray are inside set(c;). We resort to
splitting only in regions where boundaries of set(c;) and set(c;) are close.

The set inclusion problem can be solved e ciently in our formalism by using the
following simple reasoning.

A box [x] can be discarded from the search either if it does not belontp set(c;)
or if it is included in set(c;). Indeed, in both cases, X] cannot compromise the
assertion to be proven since8x 2 [x] we havec;(x)=) ca(X).

Hence, an inner contractorC; for ¢; and an outer contractor C, for ¢, can be
used jointly. Only the box that both (possibly) contain poin ts inside set(c;) and
outside set(c,) are bisected. The result is depicted in Figure 12.

No precision need to be introduced ifint (set(c;))  set(cz) (where int stands for
interior) since the algorithm will end in this case (we have £t(C;)\ set(C,) = ;).
But we still need a precision contractor C- in case of non inclusion.

5.5 Bounded-Error Parameter estimation

As we evoked above, modeling this problem causes no diculty The overall
inner contractor is the union of the inner contractors related to each measure,
say, Cqg 62y;] With gi(p) := f(p;t;) and t; 2 [t;]. Here, the interval extension ofg
is a thick function since an interval constant [tj] substitutes for the variable t;.

Likewise, the intersection of the outer contractorsCgy ,[y,; de nes an outer con-
tractor for the whole problem.
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Fig. 13. Parameter estimation solved with inner and outer contracto rs based on proj-
union and proj-intersection. The precision of the paver is still 0.01.

For e ciency, we have to split t; inside the i™ outer and inner contractor. Con-
sider rst outer contraction: ( p1; p2) is feasible if at least one value infj] satis es
f (p;t) 2 [yi]. Hence, if a point (p;t;) 2 R® is insensitive to Cs 21y,1 then p must
be insensitive to the outer contractor. The proj-union de ned in x4 exactly ts
this requirement. We de ne:

— L Ita] [ [tio]
Couter = Cf (pit1)2[y1] Vo Cf (Pit10)2[y10]

Similarly, the proj-intersection ts the requirement for the inner contraction.
Indeed, a point (p;t;) 2 R® sensitive to C; 62y;] Must be discarded by the inner
contractor. We de ne:

) — o\t . \ [tio]
Cinner = Cf (p?t1)61)’1] [l Cf (p;ltolo ) 62y10]

A paving resulting from the combination of these contractors is shown in Figure
13.

6 The Quimper System

Besides theoretical investigations, contractor programning has given rise to a
real system namedQuimper (QU ick Interval M odeling and Programming in a
boundedER ror context). This system includes today three di erent pro grams:
gPave(a graphical tool for paving sets in 2D), gSolve (atool for listing numerical

results, typically in high dimension) and qTraj (a graphical tool tailored to

constraint problems derived from di erential equations).

These are light-weight programs that only manage input/ouput, i.e., the lan-
guage for writing contractors (the \Quimper language") and the interface for
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con guring, running the paver and handling generated pavings. They are linked
to a C++ library called Ibex (I nterval-BasedExplorer) that implements a con-
tractor programming framework.

Ibex is based itself on theProfil/Bias library [28] for the low-level interval
arithmetics. However, part of this library has been wrappedinto functions that
manage all the borderline cases (in nite bounds, values oubf de nition domains,
empty sets, etc.) so that arithmetic operations are always &ception-free. This
explains why a modi ed release ofProfil/Bias is included in the Ibex package.

All these software components are under GPL licence and canédownloaded
online [7]. A user guide for Quimper (including the grammar of the Quimper

language), as well as a complete documentation ofbex classes are available
on the same site. An archive containing all the examples of tis paper in the

Quimper syntax is also provided.

Ibex / Quimper has been developed by the rst author but this software shoutl
be considered as a prototype since a real collaborative opesource project con-
tinuing this work is about to be launched. This new project will take advantage
of the existing code.

The purpose of this section is to give some insight into thelbex system. For
convenience, we shall adopt some object-oriented coding tagions. A contrac-
tor C is a class with the main function beingcontract , i.e., for a box [x]

C.contract ([x])
contracts [x] with C.

Generalizing constraint propagation to contractor propagation required letting

the interface of contractors inherit from constraints. First, we can ask a con-
tractor whether the domain of a given variable can impact the result of the

contraction or not. This notion simply generalizes the incidence graph of a con-
straint network.

A contractor C, as a class, therefore implements a Boolean functiomvolves
that takes in argument the index j of a variable, i.e.,

C.involves())

returns false or true . Note that, by default, a contractor always returns true .
In the parlance of object-oriented programming, this functon needs not neces-
sarily be overridden.

Second, we also added a few parameters to theontract function above, besides
the box to be contracted, as explained in the next section.
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6.1 Indicators

Every contractor has its own set ofspeci ¢ parameters. For instance, the precision
contractor C- (maxdiamGTin the Quimper syntax) takes a parameter"”. The
interval Newton also needs a parameter for controlling the ermination of the
iteration: when a step does not reduce any interval by more tlan a given ratio, the
procedure stops. This ratio can be set externally. These pameters are related
to the semantics specic to contractors (e.g., the precisim contractor has by
de nition a threshold) or their implementations. They are u sually set once for
all (as constructor parameters). We shall not consider this type of parameters
any further.

There is another type of parameters required by constraint pogramming algo-
rithms for e ciency reasons, called indicators. The purpose of these parameters
is to notify contractors during the search about the context in which they are
called. For instance, we may inform a contractor that only a cntraction on a
given variable is actually expected (any other contraction being super uous).
If the time complexity of the contractor depends on the numbe of variables,
some work is spared. We may also inform the contractor that oty the domain
of a given variable has been modi ed since the last call. Agad, if the contractor
works incrementally, this will speed up contraction.

Two indicators have been integrated into our system, corregonding precisely
to the examples just given. The rst is named scopeand contains the subset of
variables to be treated. The second is hamedmpacted and contains the subset
of variables whose domain has been impacted.

The semantics of indicators is constrained by one single futamental property:
they can be ignored by a called contractor without spoiling ®undness (i.e., losing
solutions), whence their name. If one develops a contractahat ignores the scope
indicator, this contractor can still be passed as argument b an operator, should
the latter be based on the communicability of this information (e.g., propagate
below). The consequence is only a loss of e ciency.

Hence, only two indicators are proposed today but the nice pimt with indicators
is that new ones can be invented at any time and integrated prgressively in the
subsequent implementations of contractors. In other words backward compati-
bility is complete. We just had to put all the indicators in a d ictionary structure.
The real signature of the contract function is:

contract(box [x], dictionary indicators).

As an example, one can ask a contractoC to focus on the two rst variables
only in the following way:

C.contract ([x], f scope= fO0;1gg).
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6.2 Numerical Contractors

There is nothing particular in the implementation of numeri cal contractors in
Quimper, except that indicators have to be managed.

{ The binary test 0 2 f ([x]) is actually not proposed in Quimper, but such a
contractor would necessarily ignore all the indicators.

{ HC4Reviseis implemented. The complexity of this contractor is linear in the
length of the constraint expression. Hence, contracting fo a single variable
amounts to contracting for all the variables (up to a small constant factor).
In Quimper, HC4Reviseignores the scopeindicator.

{ The univariate interval Newton is implemented. As contrary to HC4Revise
this contractor deals with one particular variable at a time. Setting the scope
indicator to a single variable divides the contraction time by the number of
variables.

{ Linear relaxations are not yet implemented. Now, since a lirar program-
ming solver is called iteratively to reduce the bounds of edt initial variable,
the scopeindicator would have to be taken into account as with univariate
Newton.

The multivariate interval Newton is also implemented and ignores thescopeand
impacted indicators.

6.3 Propagation

Here is how the propagation operator is implemented inQuimper.

Our convention for indices is to usei and j for contractors and variables respec-
tively. When a couple (i; ) is revised the i contractor has to work on the j
variable. If the revision succeeds (a signi cant part of thei™ domain is removed)
then the agenda is updated with the following classical proedure:

update _agend&integer i, integer j, subset scope)

j forall i°6 i such that Cjo.involves (j)

j j forall jOsuch that Cjo.involves (j9

jjjif j°2 scopefjgthen add (i%j9 in the agenda

Now, if a revision (i;j ) fails, there still may be a residual contraction. Further-

more, some subcontractors may not take into account thescopeindicator so that

unsolicited contractions can appear as the propagation lop goes along. At some
point, the accumulation of these small contractions on a varable j can add up to

a signi cant contraction. The agenda must be updated in congquence. In this
case, thej " variable is the source but there is not a particular contractor. The

agenda must then be updated with all the couplesi(j ), i describing the set of
contractors. This is what the next procedure does.
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update _agenda(integer j, subset scope)

j forall i such that C;.involves (j)

j j forall jOsuch that C;.involves (j9

jjj if j°2 scopethen add (i;j 9 in the agenda

Now, let us give the main procedure. Two local boxes are de né, the rst is
used to measure the result of eaclevision (the contraction of C; over x;) while
the latter measure the contractions collected since the lastime x; triggered an
update.

contract (box [x], subset scope, subset impacted)
box [x"™V] [X] Il keeps track of domains before last revision
box [x“P9]  [X] Il keeps track of domains before last update
forall j°2 impacted
j update _agenda(j °scope)
integer last.i 1 Il keeps track of the last contractor called
while the agenda is not empty
j pop (i;j) from the agenda
j J subset scope' f jg; /I we want to revise the jth variable only
j J] subsetimpacted fg ; /I no domain has been touched ...
j jif (i 6 last.i) /I ... unless we popped a di erent contractor
j ] ] impacted' f all variablesg; /I so that all may have been impacted
j jj forall jOsuch that C;j.involves (j9 // and all the constraint variables
Jidd X [X)jo /I are now potentially impactable.
jjj lasti i /I i becomes the last contractor called
j J Cj.contract ([x], scope', impacted')
jj if [xY9n[x] is suciently small  // check accumulated contraction
j it [xX"™]n[x] is suciently small // check last revision
i ] 1 update_agenddi,j,scope) /I ne propagation
jjj else
j J ] update_agenddj,scope) /I coarse propagation
NN Sy

6.4 Some performance results

All the examples in this paper have been executed almost insintaneously (less
than 0.1 second) when the precision was not high (this corrggonds to the gures
with apparent boxes).

Figure 4.(a) was obtained by setting the precision ofC to :=0:01. The paving
contains 17768 boxes and was generated in 1:2s.

Figure 5.(a) was obtained with two natural contractors corresponding to the
constraints c¢;(x) and (ci1(x) " ¢2), with a precision set to :=0:005. The paving
contains 40844 boxes and was generated in 2:2s.

Figure 6.(a) was obtained with :=0:001 and by splitting 10 times the parameter
domain inside the contractors Cl and C' . Computation time was 26 seconds
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in this case, mainly because of the parameter splitting proess which occurs
systematically. The paving includes 18249 boxes.

7 Conclusion

We have presented a new framework for interval programmingThe bene ts of
this framework are twofold. First, a large class of constrait-based problems can
now be addressed with a unique simple algorithm, callegpaver. Second, a full
control on the solving process is at hand, including the coreof the propagation
loop.

This framework is entirely built on the concept of contractor: inputs are con-

tractors instead of constraints. Similarly, outputs are related to contractor sets

instead of constraints sets. As just said, this {apparently small{ change in mod-

eling can lead to signi cant improvements in the design of nev solvers but also

in a declarative way. In a sense, theimperative aspect of solvers is how sub-
sumed in the declarative one: the end user write constraints while the constraint
programmer write contractors.

This approach is supported by a real system calle@Quimperwhich solves quickly
all the di erent problems mentioned in this paper.

There are plenty of possible extensions for this work. The st one is perhaps to
deal with global optimization. This extension would probably resort to dynamic
contractors, i.e., contractors parameterized by a value ttat can be updated dur-
ing the solving process. Orthogonally tocontractors that potentially remove all
unfeasible points,local nders that nd peculiar feasible points seem to be a key
feature as well.
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