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Abstract. This paper describes a solver programming method, called
contractor programming , that copes with two issues related to constraint
processing over the reals. First, continuous constraints involve an in-
evitable step of solver design. Existing softwares provide an insu�cient
answer by restricting users to choose among a list of �xed strategies.
Our �rst contribution is to give more freedom in solver desig n by in-
troducing programming concepts where only con�guration pa rameters
were previously available. Programming consists in applyi ng operators
(intersection, composition, etc.) on algorithms called contractors that are
somehow similar to propagators.
Second, many problems with real variables cannot be cast as the search
for vectors simultaneously satisfying the set of constrain ts, but a large
variety of di�erent outputs may be demanded from a set of cons traints
(e.g., a paving with boxes inside and outside of the solution set). These
outputs can actually be viewed as the result of di�erent contractors work-
ing concurrently on the same search space, with a bisection procedure
intervening in case of deadlock. Such algorithms (which are not strictly
speaking solvers) will be made easy to build thanks to a new branch &
prune system, called paver.
Thus, this paper gives a way to deal harmoniously with a large r set of
problems while giving a �ne control on the solving mechanism s. The
contractor formalism and the paver system are the two contri butions.
The approach is motivated and justi�ed through di�erent cas es of study.
An implementation of this framework named Quimper is also presented.

1 Introduction

Constraint programming is a simple and e�cient paradigm to h andle a large
class of combinatorial problems [40, 10, 44]. In the presence of real-valued vari-
ables, constraint propagation algorithms combined with interval analysis [16, 22,
27, 19, 9] are also particularly well-suited, included for real-world applications
(see, e.g., [33, 21]). We shall refer to this interval variant of constraint program-
ming as interval programming. Even then, interval programming has had only



moderate success. In our opinion, the reason is a lack of clear and uni�ed for-
malism describing how solvers and derived programs are built. This paper is an
attempt to �ll this gap.

We propose a framework that allows one to build a continuous solver with a
few lines, in a high-level syntax. More than just another tuning language, a
programming framework is proposed.

Motivation

Three reasons justify the introduction of a solver programming framework in
presence of real variables.

1. Constraint programming is a declarative paradigm which means that a pro-
grammer should spend most of the e�ort in modeling conveniently the prob-
lem. This e�ort may involve breaking symmetries, introduci ng global or soft
constraints, etc.. All these concepts are related to modeling and represent,
by the way, very active �elds of research. In theory, the solver is a black box
of which a programmer could ignore the details.
Despite of this, there is always a need at some point to control the solver, as
it is with all declarative languages (consider for instanceProlog cuts that
allow ruling out choices in the search). We can say that the overall e�ciency
one gets is the combined result of e�orts made on both aspects: modeling
and solver control.
With real variables, modeling languages are limited1. Constraints can usually
be nothing but equations which means that mathematics is de facto the
ultimate modeling language2. The consequence is that solver control becomes
an inevitable step if one is to improve e�ciency.

2. Continuous solvers have a two-layered structure, namelyinterval analysis
and constraint programming, The lower layer includes interval arithmetics
and interval numerical algorithms (e.g., an interval variant of the Newton
iteration) with round-o� considerations. The upper layer i ncludes branch
& prune algorithms for describing sets of reals de�ned by constraints (or
optimizing a criterion under constraints). Since these layers correspond to
quite di�erent scienti�c communities, there is a need more than ever for
an interface between them. In concrete words, it would be useful to give a

1 This limitation holds for numerical systems involving anal ytic expressions, which
cover most of the mathematical models of physics problems. But modeling languages
as such are not limited with real variables any more than with discrete ones (one
may introduce table of constraints, piecewise constraints, etc.).

2 There is still a notable exception: geometrical constraint s. Geometry represents a
semantic level above algebra; as an example, the \intersection of three spheres" can
be introduced as a global constraints instead of three equivalent distance equations
[1]. But, except in such cases, no improvement has to be expected from the modeling
side.

2



constraint programmer the ability to develop a continuous solver without
digging into details of interval analysis.

3. The last and possibly main point is related to the output of constraint solvers.
With discrete domains, the output is always the set of solutions (or a subset
optimizing some criteria). But in continuous domains, there may be a large
variety of di�erent outputs. First, one may look for a sub-pa ving (a set
of boxes) encompassing the solutions and this is precisely what most of
the existing solvers provide. They act asroot �nders . Next, in case of a
solution set with a non-null volume, several sub-pavings are expected, each
satisfying a di�erent property, basically: \may contain a s olution", \does
contain a solution" or \contains only solutions". Such solvers rather act
as set describers. Actually, we will see through the examples of Section 2
that the semantics behind the sub-pavings may completely change from one
problem to the other3. As we will show, neither a root �nder nor a set
describer is adapted for solving these problems. Of course, ad-hoc solutions
always exist, but the purpose is precisely to avoid a multiplicity of programs
where a single one would be enough. In practice, when people are facing a
speci�c constraint problem that requires a speci�c algorithm, they have to
reverse-engineer the code of an existing solver. Often, they redevelop it from
scratch.

Contribution

We propose a formalism and an algorithm, calledpaver.

In the formalism, the di�erent interval routines (evaluati ons, projections, ex-
istence tests, etc.) are all wrapped in the very same object called contractor
(see Section 3). Of course, the concept ofcontractor is not a novelty on its own.
Our (�rst) contribution is to rede�ne various constraint pr ogramming techniques
(propagation, shaving, parameter splitting, etc.) as operations over contractors
that yield new contractors (Section 4). Syntactically, the contractor is then the
unique atom, whence a certain simplicity. A solver can then be programed, rather
than con�gured, by combining di�erent contractors (exampl es are given inx4.2,
x4.3, x5.1 and x5.5).

The paver algorithm is a generic solver. It takes a list of contractors, an initial
box and follows a classical recursion: the contractors are successively called on
the current box until either it gets empty or no more contract ion could be done.
In the latter case, the box is bisected and contractors are called back again.

The fact that di�erent contractors work concurrently allow s solving problems of
quite di�erent nature (see next section). This is our secondcontribution.

3 We can say that no modeling language dedicated to the output exists so far, and this
is another important distinction with discrete problems wh ere this modeling aspect
is not as ubiquitous (solvers using explanations are counter-examples).
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Hence, contractor programming consists in two distinct steps: contractor design
and paver design. The former refers to the design of the most possible e�cient
contractor for a given set (constraint) and shall be discussed in Section 4. The
latter refers to the selection of contractors that yield the desired output, regard-
less of e�ciency.

This framework is already supported by a real system namedQuimper that will
be introduced in Section 6.

Thinking of contractor programming as an extension of constraint programming
is valid to the extent that contractors help in modeling the output of a problem.
But, fundamentally, there is not such an extension since constraints basically
tell the \what" whereas contractors tell the \how".

Note that branching will not be covered in this paper but one has to keep in
mind that this part of the paver should be customizable as well. Only plain
bisection will be used in the examples (variable are selected with a round-robin
heuristic).

Power of Contractor programming

As for every programming language, the power of contractor programming, i.e.,
the class of problems that can be solved using this paradigm would require the
setting of computability theory to be described formally. Pavings obtained in our
framework are the results of algorithms that recursively contract boxes to smaller
boxes and this general de�nition does not even involve the concept of constraint.
It can also �t well, e.g., in the context of computer graphics to draw fractals.
This means that some pavings generated by our system cannot be characterized
by constraints.

However, one may wonder which problems contractor programming is the most
aimed at. The contractor paradigm is mostly aimed at building set computation
tools over the reals. These tools typically calculate disjunction of equidimensional
sets and sets are usually described by constraints. There are however very few
restriction on their form: constraints can be �rst-order lo gic formulas involving
numerical equations or inequalities and quanti�ed parameters. They can also be
handled implicitly by their associated contractor.

The main point is that the representation of the sets and the way it is calculated
are both entirely controllable.

Related works

In discrete constraint programming, existing tools already give control mecha-
nisms with sometimes an associated formalism. In constrained-based local search,
the COMETsystem [46] o�ers a language allowing one to give his own de�nition

4



of moves and neighborhoods, the incremental computation ofthe impact after a
move being done automatically.

In branch & prune systems, choice points and propagation canusually be con-
trolled. The Choco [25], ILOG Solver [20] and Gecode[43] libraries allow to
specify the instantiation order for both variables and values. It can also be de-
cided how to split domains (either instantiate or bisect domains, etc.).

Propagation has given rise to more sophisticated concepts.The aforementioned
libraries allow the programmer to associate his own propagator, or �ltering al-
gorithm, to a constraint. In Gecode, propagators can be automatically gener-
ated from a formula. It is possible with Chocoto control when propagators are
launched thanks to a system of events (e.g.,a bound is reduced, the variable is
instantiated, etc.). This allows, as a side e�ect, to schedule constraints in the
propagation loop (some costly propagators may ignore events of minor impor-
tance). Events handling have to be implemented by the propagators in Gecode,
albeit recent works aboutadvisors[29] facilitate this task. These mechanisms are
all related to modeling (a propagator is associated to a constraint), preserving
declarativity. As far as we know, there is not a way to build new propagators,
say, by composing di�erent propagators, at the modeling phase. Only program-
mers with a good knowledge of the target library are able to doso. This is a
di�erence with contractor programming that aims at building solvers rather than
operational constraints.

In contrast, e�ciency has always taken precedence over 
exibility in continuous
constraint programming. Perhaps because of the prevailingnumerical culture,
solvers are indeed usually compared on a performance basis.As a consequence,
none of the di�erent existing implementations (Numerica [47], RealPaver [15],
Alias [32], Rsolver [38], GlobSol [26], Baron [41], etc.) supply a good level of
openness or extensibility. These libraries contain solvers or global optimization
algorithms with a very high-level interface, basically restricting users to enter a
system of equations, set up some parameters and press enter.Of course, there
may be many parameters. For instance, it can be decided whetherAlias has
to resort to the computation of the Hessian matrix or to ask RealPaver for the
global consistency instead of a solution set. But there is noway to venture o�
the beaten tracks.

A side contribution of this paper is a new representation for solution spaces
with non-empty interiors. More suitable representations have been proposed in
[42] usingquadtrees/octreesor in [48] usingextreme vertices. However, quadtrees
consist in discretizing constraints and reasoning using this auxiliary representa-
tion. This otherwise appealing method is therefore quite distant from interval
programming. Results of this paper are unlikely to be applicable in the context
of quadtrees.

Computing extreme vertices can be viewed as an independent operation to ob-
tain a compact representation of a set of boxes. The dissertation [48] contains
also smart branching heuristics and a concept ofactive variablesto preserve the
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alignment of small boxes. All these concepts are fully compatible with our frame-
work and somehow orthogonal tocontractors since they are related to branching
issues. They can be viewed as complementary to ours.

1.1 Notations and vocabulary

The set of all intervals is denoted byIR.

A Cartesian product of intervals is called a box. Intervals and boxes will be sur-
rounded by brackets, e.g., [x]. The symbol [x] will always denote an-dimensional
box, except otherwise stated. If [x] is a box, x �

i and x+
i will stand for the lower

and upper bound of [x]i respectively.

The width of a box [x] is the largest diameter of its components. The smallest
box enclosing a setS in denoted by � S.

A sub-paving of [x] is a set of non-overlapping boxes included in [x]. A sub-
paving will either be considered as a collection of boxesf [x](1) ; : : : ; g or as a
union [x](1) [ : : : depending on the context. Hence, a sub-paving can either be
viewed as a discrete subset ofIRn or as a compact subset ofRn .

A paving of [x] is a collection of sub-pavingsK1; : : : ; KN such that

[x] =
[

1� k � N

[

[b]2 K k

[b]:

Finally, we will temporarily adopt the following de�nition . Let c be a constraint
on the reals, i.e. c(x) is either true or false. A contractor for c is a function
C : IR n ! IRn , usually given by a polynomial-time algorithm, such that:

8[b] 2 IR n ;
�

C([b]) � [b] and
8x 2 [b]nC([b]) c(x) is not satis�ed.

Note that the concept of contractor will be generalized in our formalism (see
Section 3). Thanks to interval arithmetics, many contractors can be built with
respect to an equationf (x) = 0, where f : Rn ! Rm .

Example 1. Considerf : R2 ! R with f (x) = x1 � exp(x2) and de�ne C : IR 2 !
IR2 as follows:C([x]) := ([ x1] \ exp([x2]); [x2] \ log[x1]). C is a contractor with
respect to f (x) = 0.

Contractor versus propagator. In spite of appearance,contractor is not
just a new name forpropagator. A propagator is associated to a constraint and
destined to be called in a propagation loop. As we will see, a contractor is
not necessarily associated to a constraint and may have nothing to do with
propagation. Furthermore, we will add a continuity condition in the de�nition
of a contractor (seex3.2) that does not exist for propagators. Finally, the term
�ltering was not chosen because of a con
ict with the everyday meaningof
�ltering in many areas dealing with continuous systems (e.g.,Kalman �ltering ).

6



1.2 The ABC of interval programming

Let us end this introduction with a short description of what interval program-
ming is all about.

The basic algorithm of interval programming is the root �nder . Consider a system
of equationsf (x) = 0, where x is a variable in Rn and f a mapping from Rn to
Rm . A root �nder wraps solutions into boxes of any desired precision (leaving
aside 
oating-point considerations) by using a branch & prune process, where
the prune operation is performed by a contractor.

Here is the sketch of the algorithm. Note that a stack is used for the depth-�rst
search and that the precision criterion chosen here is width[x] < " .

algorithm root-finder (function f, box [ x](0) )
output: a sub-paving

push [x](0) on the stack
while the stack is not empty
j pop [x] from the stack
j [x]0  C([x]) where C is a contractor w.r.t. f (x) = 0
j if [x]0 is not empty
j j if width [ x]0 < "
j j j insert [x]0 into the output sub-paving
j j else
j j j bisect [x]0 into two subboxes [x](1) and [x](2)

j j j push [x](1) and [x](2) on the stack

Of course, the existing implementations are much more sophisticated. But this
simpli�ed description is enough from a language perspective. In the ideal case
of a square system (m = n) without singularity, solutions are punctual (and
certi�cation can be demanded). In the general case, an � m dimensional surface
is described. This is illustrated in Figure 1.

Consider nowf : Rn ! Rm , and [x] � [y] 2 Rn + m . We may look for the following
set inverse:

f � 1([y]) \ [x] := f x 2 [x] j 9y 2 [y] y = f (x)g:

Note that set inversion is a particular subclass of quanti�ed constraints (see,
e.g., [12, 39]). Theroot-finder algorithm will split the whole solution set into
small boxes, as depicted in Figure 2.a.

In this case (i.e., when the solution set has a non-nulln-dimensional volume) we
might expect the solver to dissociate boxes that may containsolutions (boundary
boxes) from boxes that only contain solutions (inner boxes). Clearly, precision is
only required for boundary boxes, splitting an inner box being useless and even
counter-productive.

A more appropriate output is given in Figure 2.b. Hence, an enhanced algorithm
set-describer can be derived from root-finder by inserting an inner test
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Fig. 1. An enclosure of f x 2 [� 0:5; 2:5]� [� 2:5; 0:5]; f (x) = 0 g with f (x) = exp( x1x2)�
sin(x1 � x2).

before the call to the contractor. The design of inner tests has been a matter of
study in several publications (see, e.g., [13, 18, 14]).

2 Motivating examples

The purpose of this section is to present �ve di�erent problems tractable by
interval programming and to show that neither root-finder nor set-describer
are appropriate. Once again, we do not claim that no algorithm exists for these
problems. We just claim that no algorithm exist that solves them all. Note that
root-finder and set-describer will not be two di�erent algorithms in our
formalism.

2.1 A decomposable problem

In several applications, systems are su�ciently sparse to be decomposed by equa-
tional or geometric techniques [24, 36, 6]. Consider for example the following sys-
tem of distance constraints in two dimensions. There are 5 points connected by
6 distance equations. PointsA and B are �xed and the three others are the
unknowns. Instead of directly solving the 6x6 overall system, we can process
progressively in three steps. We can solve the �rst trianglef A; B; C g, which is
a 2 � 2 system. Because of rigidity, there is only a �nite number of solutions
(two 
ips). Then, for each solution, the second triangle f B; C; D g can be solved
becauseC is �xed. Finally, the triangle f C; D; E g can be solved in turn onceC
and D are �xed.

8



(a) (b)

Fig. 2.
A set inversion problem f (x) 2 [y] with f (x) =

p
x2

1 + x2
2 and [y] = [3 ; 6] in

[x] = [ � 7; 7] � [� 7; 7]. (a) The output of the set inversion problem as de�ned in x2.1
(i.e., small boxes enclosing all the solutions). (b) A more adapted output for the same
set inversion problem, including inner test.

In general, solving the decomposed problem (here, seven 2� 2 systems including

ips) is faster than solving the global problem (here, one 6� 6 system). No
standard root �nder supports the implementation of such strategies. The state
of the art in decomposition-based solving methods relies ondedicated algorithms.

2.2 Enhanced description of the ring

Let us consider again the set inversion problem introduced in x1.2. We mentioned
that an inner test was necessary (whence theset-describer algorithm) but an
inner contractor could also be introduced in this case and would actually be
much more adapted.

Indeed, the set inversion problem can be easily formulated as a conjunction of
two inequalities. It has been shown (see [8, 2]) in the case ofinequalities that,
by a negation trick, the problem can be reversed so that any contracted region
of the reversed problem lies inside the feasible region of the original one.

Remember that [y] 2 IR. We have

c(x) () f (x) 2 [y] () y� � f (x) and f (x) � y+

Hence, a point is unfeasible if

y� > f (x) or f (x) > y + :

9
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C
D

E

A

Fig. 3. A decomposable system .

Now, we can contract a box [x] with respect to y� > f (x) and f (x) > y + . If
[x](1) and [x](2) are the two resulting boxes, then [x]n([x(1) ] [ [x(2) ]) is inside the
solution set f x 2 [x] j c(x)g. In such situation, it would be fruitful to replace the
current search space [x] by [x(1) ][ [x(2) ] and to memorize that the complementary
space is inner. Theset-describer algorithm is therefore not really appropriate.

2.3 Level surfaces

Level surfacesis a generalization of the previous problem, and can be stated as
follows. Consider f : Rn ! R and N decreasing valuesy1 > : : : > y N . The goal
is to classify all the points of an initial domain [x] according to the constraints:

f (x) � y1

or f (x) � y2
...

or f (x) � yN ;

(1)

with a priority corresponding to the intuitive idea that we are more interested
in the highest values: the surface levely1, i.e., the number of points satisfying
f (x) � y1 must be maximized �rst. Then, the surface levely2 must be maximized
and so on. Figure 4.a shows an example of 4 surface levels. Note that this problem
could be easily generalized to a MAX-SAT problem.

Let us now focus on input/output. Of course, using directly (1) as an input
constraint makes no sense, since (1) is equivalent tof (x) � yN . One could rather
solve N times the set inversion problemf (x) 2 [yk ; yk+1 ] and superimpose the
di�erent outputs (see Figure 4.b). However, this is not satisfactory for at least
two reasons.

First, the boundaries around each level surface (the littlewhite boxes in Figure
4.b) should not appear, except for the lowest one. This undesirable boundaries
will be cleared o� in Figure 11. One could circumvent this e�ect by slightly
enlarging the intervals [yk ; yk+1 ] before computing the inversions, making level
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(a) (b)

Fig. 4. Surfaces levels f (x) � yi . (a) An example with y1 = 0 :8, y2 = 0 :6, y3 = 0 :4,
y4 = 0 :2 and f (x) = sin( x2

1 + x2
2)=(exp(x1) + x2

2), in [ x] = [ � 2; 2] � [� 2; 2]. Darkness
increases with f . (b) The same example decomposed into set inversion problems.

surfaces overlap. Another trick would simply be to move the boundary sub-
paving of the kth surface level into the inner sub-paving of the (k � 1)th level
surface. However, in both cases, we \cheat" and lose reliability of the result.

Second, the decomposition of the input problem intoN sub-problems and the
aggregation of the intermediate results requires extra andundesirable manipu-
lations from the user.

2.4 Set inclusion

Given two sets de�ned by constraintsc1 and c2, the set inclusionproblem consists
in proving or refuting that one set is included in the other. This is illustrated in
Figure 5.a.

We shall denote by set(c) the set associated to a constraint:

set(c) = f x 2 Rn j c(x) is trueg:

Using the conjunction of c1 and c2 as an input in algorithm set-describer may
address the problem in the following situations: if no solution is found, then no
set can be included in the other since these sets do not intersect at all. In the
other way around, if the whole initial box is included in the i nner sub-paving
then the two sets coincide. Except in these extreme cases, nothing can be said.

As before, one may solve separatelyc1 and c2, and check for the inclusion of both
the inner & boundary sub-pavings ofc1 into the inner sub-paving of c2 (see Figure
5.b). Again, this requires undesirable manipulations by the user; but, worse, this

11



(a) (b)

Fig. 5. Set inclusion . (a). Two subsets of [x] = [ � 3; 1]� [� 1; 3] de�ned by constraints:
c1(x) () exp(x1x2) � sin(x2 � x1) 2 [� 0:1; 0:1] (in dark gray) and c2(x) ()
exp(x1 � x2) � sin(x1x2) 2 [� 0:1; 0:1] (in light gray). We have set( c1) � set(c2). (b)
The same set inclusion problem decomposed into set inversion problems.

process is extremely ine�cient. Assume that a box B in Figure 5.b is detected
as inner in the paving of set(c2) and recursively bisected and contracted in the
paving of set(c1) until either boundary or inner boxes are found. All this work
could be spare since the inclusion set(c1) \ B � set(c2) \ B is already established.
Hence, this decomposition involves a huge number of uselesscomputations.

Of course, one could legitimately object that in the examplegiven in Figure 5,
c1 can be reversed as inx2.2 to �c1 so that running a standard solver with �c1 and
c2 will do the job as expected. Indeed, if no solution is found, no point satisfy
c2 and �c1, i.e., set(c2) � set(c1). However, in general, a constraint cannot be
reversed while an inner test is still possible. As an example, a constraint c1(x)
of the following form:

c1(x) () 9 y 2 [0; 1]
�

f(x,y)=0
g(x,y)=0

cannot be reversed ify has multiple occurrences while testing for an inner box
is possible (an algorithm is given in [12]).

2.5 Bounded-error Parameter estimation

This last example is rather devoted to solver design: the problem is not new in
terms of input/output but requires a speci�c strategy.

Consider the following model of a real-time system [23]:

f (p; t) = 20 exp( � p1t) � 8 exp(� p2t)

12



wherep1 and p2 are two unknown parameters. Assume that a vector of 10 mea-
surements y1; : : : ; y10 is available, these measurements corresponding to times
t1; : : : ; t10 respectively.

The question is to compute a rigorous enclosure of all the feasible p1 and p2

from the experimental data, taking into account uncertaint ies on bothyi and t i .
Hence, given intervals [t i ] and [yi ], we have to describe the following set:

f (p1; p2) j 8i 2 [1::10]; 9yi 2 [yi ]; 9t i 2 [t i ] yi = f (p; ti )g:

(a) (b)

Fig. 6. The parameter estimation problem. (a) The set of feasible points (p1 ; p2).
(b) The result using a standard contraction and inner test wi thout splitting the domains
of t i (bisection precision is 0.01). First, a very few of inner box es could be found. Second,
the outer enclosure is not sharp at all.

If we restrict ourselves to a single measurement (instead of10), the problem
boils down to a simple set inversion, with athick constant [t i ]. Hence, the set to
be computed seems to be nothing but the intersection of 10 setinversions. The
set-describer algorithm seems to suit well.

In fact, the multi-incidence of t in the expression off makes this strategy in-
e�cient. Indeed, whatever is the underlying method used for the contractor or
the inner test, the domain of t has to be small for the resulting operator to be
sharp. Hence, the domain oft has to be split by the solver. This is illustrated in
Figure 6.

Second, introducing the vectort as variables makes the search space dimension
jumps from 2 to 12 unless one wants to solve the 10 problems separately. This
leads to a combinatorial explosion.
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In conclusion, there is a need for splitting the componentt i (and only this
one) inside the contractor and inner test associated to thei th measure. To our
knowledge, no available solver is generic enough to be tunedin this way.

3 A new formalism

We show now that the di�erent examples of Section 2 can be solved as suggested
by the very same algorithm, a generic solver calledpaver, when expressed in the
contractor formalism.

We describe the paver and the formalism in this section. We will provide concrete
examples of contractors in Section 4 and subsequently revisit the problems of
Section 2.

3.1 The \contract and classify" paver

To help intuition, let us consider the problem in x2.3. It turns out from this exam-
ple that several sets have to be described simultaneously, each set corresponding
to a di�erent constraint.

Let us assume that sets are disjoint. We will see below how to circumvent the
case of overlapping sets.

Each point of the initial space has to be classi�ed with respect to these sets. For
a given point x, this means that the membership ofx to the di�erent sets can
be tested successively. If one test succeeds, thenx can be marked as treated and
associated to the corresponding set.

A generic interval solver can directly be derived from this \test and classify"
principle. Remember �rst that a contractor C can be easily built from any con-
straint c. The contractor C has the following property: if C([x]) = [ y] (i.e., [y]
is the contraction of [x]) then every eliminated point in [y]n[x] does not satisfy
c. Thus, with a simple negation trick, a contractor �C such that all eliminated
points satisfy c is as easy to build.

Example 2. Consider the set inversion problem, inx2.2. A point inside the ring
satis�es f (x) 2 [y]. Consider a contractor �C built from f (x) 62[y]. If �C([x]) = [ y]
then [x]n[y] is inside the ring.

Given a box [x] and a constraint c, if the complementary contractor �C reduces
[x] to [y], then [x]n[y] can be classi�ed, i.e., mark as \insidec". Then, the paver
proceeds as follows (the algorithm is detailed below). The solver takes as input
a list of contractors and an initial box [x](0) . The �rst contractor is enforced on
[x] := [ x](0) . If the contraction is e�ective, a smaller box [x]0 is returned and the
di�erence4 [x]n[x]0 is stored in a sub-paving associated to the �rst contractor.
4 Note that resorting to a simple tree structure avoids to expl icitly describe the dif-

ference between [x] and [x]0: the latter simply becomes a subnode of the former.

14



Only [x]0 is left to be treated, and the second contractor is called. When all
the contractors become ine�ective on a box [x], we can say that the common
�xpoint of all contractors is reached and [x] is bisected. The whole process is
then repeated until the list of boxes becomes empty. We will see in the next
section how the termination of the algorithm can be guaranteed.

algorithm paver (contractors C1, . . . , Ck , box [x](0) )
output: a paving of [x](0)

create k empty subpavingsK1; : : : ; Kk

push [x](0) on the stack
while the stack is not empty
j pop [x] from the stack
j do
j j �xpoint  true
j j i  1
j j while [x] 6= ; and i� k
j j j [x]0  Ci ([x])
j j j if [x]0 6= [ x]
j j j j K i  K i [ ([x]n[x]0)
j j j j �xpoint  false
j j j j [x]  [x]0

j j j i  i + 1
j while [x] 6= ; and �xpoint=false
j if [x] 6= ;
j j bisect [x] into two subboxes [x](1) and [x](2)

j j push [x](1) and [x](2) on the stack

Note that paver is not an AC3-like algorithm, for essentially two reasons. First,
contractors given to the paver algorithm usually involve all the variables merely
because they all correspond to sets (or more generally, to sub-pavings) which
have the same dimension as the initial box. This is not a rule but a \user advice".
One can put di�erent constraints at this level in order to tra ce their contraction
power. But, the paver level is intended to deal with sets while all the constraints
related to a given set should be encapsulated in the sameouter or inner con-
tractor, as explained further. Second, because the semantics of contractors goes
beyond that of constraints, the order in which they are called may have an in-

uence on the quality of the result (the number of boxes in a subpaving). For
instance, a contractor designed to detect a very weak condition should preferably
be called on last resort (we might lose boxes satisfying a stronger condition).
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3.2 Contractors

De�nition 1 (Contractor). A contractor is a mapping C from IRn to IR n

such that

(i) 8[x] 2 IRn ; C([x]) � [x] (contraction)
(ii) (x 2 [x]; C(f xg) = f xg) ) x 2 C([x]) (consistency)
(iii) C(f xg) = ; , (9" > 0; 8[x] � B (x; " ) ; C([x]) = ; ) (continuity)

where B (x; " ) is the ball centered onx with radius " .

A box [x] is said to beinsensitive to C if C([x]) = [ x] and sensitiveotherwise. By
extension, a point x is said to be sensitive or insensitive whetherf xg is sensitive
or not. Property ( i ) states that a box can only be reduced by a contractor.
Property ( ii ) states that no insensitive points can be removed. Finally,property
(iii ) is required for properties on the paver as we will explain further.

The set associated to a contractorC is the union of all of its insensitive points:

set(C) = f x 2 Rn ; C(x) = xg:

The continuity property of C implies that set(C) is closed.

If C is a contractor for a constraint c, in the classical sense of the word (see
x1.1), then set(C) � set(c). An important novelty in our formalism is to consider
sets associated to contractors rather than to constraints.This allows a rigorous
description of the output of our paver (see Proposition 2). A contractor is not
only an algorithm, it can also be interpreted as a subset ofRn , and all the
standard operations on sets can be extended to contractors.We de�ne:

(C1 \ C2)([x]) := C1([x]) \ C2([x]) (intersection)

(C1 [ C2)([x]) := �
�

C1([x]) [ C2([x])
�

(union)

(C1 � C2)([x]) := C1(C2([x])) (composition)
C1

1 := C1 � C1 � C1 � : : : (iterated composition)
C1 u C2 := ( C1 \ C2)1 (iterated intersection)
C1 t C2 := ( C1 [ C2)1 (iterated union) :

(2)

All these operations arestable, i.e., they only yield contractors.

We also introduce the following de�nition:

De�nition 2. Let C1; : : : ; Ck be a collection of contractors.

C1; : : : ; Ck are complementary if set(C1) \ : : : \ set(Ck ) = ; ,
C1; : : : ; Ck are independent if 8i 6= j , set(Ci )C \ set(Cj )C = ; .

Additional properties of contractors play a signi�cant rol e:

C is monotonous if [x] � [y] ) C([x]) � C([y]),
C is minimal if 8[x] 2 IRn ; C([x]) = � ([x] \ set(C)),
C is idempotent if 8[x] 2 IRn ; C(C([x])) = C([x]).

(3)
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Given a contractor C on Rn � Rm , we also de�ne the two following contractors
on Rn :

C [ [y ]([x]) :=
S

y2 [y ] � x (C([x]; y)
C \ [y ]([x]) :=

T
y2 [y ] � x (C([x]; y)

with � x ([x]; [y]) := [ x]. The �rst operation is called proj-union and the second
proj-intersection . Once again, these operations are stable in the set of contrac-
tors. We have:

set(C [ [y ]) = f x; 9y 2 [y]; (x; y) 2 set(C)g;
set(C \ [y ]) = f x; 8y 2 [y]; (x; y) 2 set(C)g:

Fig. 7. Proj-Union. We consider a contractor C on IR 2 with S := set( C). (a) Repre-
sentation of C [ [y] when [y] is degenerated (a realy). The contraction on [ x] results in
an enclosure off x 2 [x] j (x; y ) 2 Sg. Since C is continuous, when both [x] and [y] are
degenerated, the enclosure is minimal, i.e.,C [ y (x) = f xg i� ( x; y ) 2 S. (b) Principle of
an implementation resorting to parameter splitting and uni on of sub-contractions (the
interval [ y] is decomposed as �nely as possible). (c) Result of the proj-intersection in
practice: only an outer approximation of set( C [ [y ]) is obtained, after numerous repeti-
tions of the splitting operation presented in (b).

This result being rather intuitive, the proof is not given (s ee Figures 7 and
8). In practice, these operators are implemented as follows. For the proj-union ,
[y] is split into a sequence of small subintervals [y]i . Then, the contractor C is
enforced on each sub-domain [x] � [yi ] and the hull of the results is returned. For
the proj-intersection , a sequence of pointsyi are sampled from [y], C is enforce
on [x] � f yi g and the intersection of the results is returned.

Although examples of contractors will be the topic of Section 4, we shall in-
troduce right here the precision contractor C" that has a special status. This
contractor is aimed at controlling the precision of the paver or scheduling con-
tractors (see x5.1 and x5.3) and will be implicitly referred to in the subsequent
propositions.
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Fig. 8. Proj-intersection. (a) In a similar way as in Figure 8, given a �xed interval
[y], C \ [y ] allows to constrain x 2 R with 8y 2 [y]; (x; y ) 2 S. (b) Principle of an
implementation resorting to parameter splitting and inter section. (c) Result of the
proj-intersection in practice: only an outer approximatio n of set(C \ [y ]) is obtained.

De�nition 3 (Precision contractor). Given � > 0, the precision contractor
C" is de�ned as follows:

C" ([x]) :=
�

[x] if width([ x]) > �
; otherwise:

Many properties could be stated on contractors. As an example, the set of idem-
potent and monotonous contractors is a complete lattice forthe inclusion. Listing
these properties would be out of the scope of this paper, which is rather aimed
at introducing the concepts. However, the fundamental properties of the paver
given in the previous section are based on the properties of contractors and we
are now in position for proving them.

3.3 Paver properties

Proposition 1 (Termination). Let f C1; : : : ; Ck g be a list of complementary
contractors. The paver terminates for any initial box [x](0) .

Proof. Assume by contradiction that paver does not terminate. Hence, there is
a sequence of non-empty boxes [x]( i ) and ~x 2 [x](0) such that for all i > 0:

(i ) [x]( i ) � [x]( i � 1) (strict inclusion, i.e., [x]( i ) 6= [ x]( i +1) )
(ii ) C1([x]( i ) ) = : : : = Ck ([x]( i ) ) = [ x]( i )

(iii ) ~x 2 [x]( i )

Indeed, (i ) is a direct consequence of the properties of contractors and bisections
and (ii ) is due to the �xpoint postcondition of the inner while loop inside the
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paver algorithm. Finally, for all i , pick a point ~x( i ) 2 [x]( i ) (which is nonempty).
The sequence is bounded so it admits at least one accumulation point ~x. Since
for all i , [x]( i ) is a closed set that contains the whole subsequence (~x( j ) ) j � i , it
also contains this accumulation point ~x. Hence, (iii ) holds.

Now, each box [x]( i ) can be identi�ed to a 2n-tuple u( i ) of its vertices coordi-
nates. This identi�cation can be made isometric with appropriate distances (the
Hausdor� distance on IRn and its counterpart on R2n ). For all component j ,
1 � j � 2n, the sequenceu( i )

j is either increasing or decreasing, and bounded by
a component of ~x. Hence, it converges to a point �uj . By the inverse isometry,
it follows that the sequence of boxes [x]( i ) converges then to a box �[x]. Further-
more, the width of this box is necessarily null (i.e., �[x] is a degenerated boxf �xg)
since

8i � 0; rad([x]( i + n ) ) �
1
2

rad([x]( i ) ):

Next, we have set(C1)\ : : :\ set(Ck ) = ; which means that at least one contractor
Cl satis�es �x 62set(Cl ). By applying the continuity property of Cl (see De�nition
1) we obtain that there exists � and i such that [x]( i ) � B (�x; � ) and Cl ([x]( i ) ) = ; ,
i.e., a contradiction. �

To ensure the complementarity between contractors, we usually resort to the
precision contractor because set(C" ) = ; .

Informally, the following proposition states that, up to a g iven precision � , the
sub-paving associated to a contractor matches the intersection of the other con-
tractors sets. Since the set of a contractor usually approximates the set related
to an initial constraint, we have now a clear semantics for the paver .

Proposition 2 (Sub-pavings characterization). Let f C1; : : : ; Ck g be a list
of independent contractors andC" such that set(C" ) = ; . Let us denote by
K1; : : : ; K k and K � the sub-paving returned bypaver for C1; : : : ; Ck and C" re-
spectively. We have:

8i; 1 � i � k;
\

j 6= i

set(Cj )nK i � K � :

Proof. First of all, paver terminates thanks to the previous proposition. Let i be
an index, 1 � i � k. For all j 6= i we have by hypothesis set(Ci )C \ set(Cj )C = ;
hence set(Ci )C � set(Cj ) which implies set(Ci )C � \ j 6= i set(Cj ). Since8[x] 2 K i

we have [x] � set(Ci )c (by applying the consistencyof Ci ), then K i � set(Ci )C �
\ j 6= i set(Cj ). The two last inclusions are strict because set(Ci )C is open while
the other sets are closed. It follows that

T
j 6= i set(Cj )nK i is nonempty.

Take [x] in this set and assume [x] 62K � . The box [x] has been removed from the
search byCl with 1 � l � k, i.e. [x] � set(Cl )C . Since [x] 2

T
j 6= i set(Cj ) then

l = i which leads to a contradiction since [x] 62K i . �
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4 Contractor design

In this section, we present some contractors and operationsthat do not help
in modeling problems but in improving the e�ciency of a paver . We basically
explain how to manage a constraintc, i.e., the di�erent ways to build a contrac-
tor C satisfying set(C) = set(c). Likewise, all the operations op will preserve
associated sets. E.g., an unary operatorop will satisfy for all contractor C,
set(op(C)) = set(C).

Hence, contractors and operations in this section will not have an in
uence on
the result, in terms of sub-paving characterization. On theother hand, they may
decrease the time complexity or the space complexity (i.e.,the number of boxes
in a sub-paving).

We will overlook technical details on purpose here, sticking to generalities. The
interested reader may refer to Section 6 where important implementation choices
we made for our own system are disclosed.

We shall distinguish numerical contractors, those which are directly built from
a numerical constraint, and those which are the result of an operation (such as
composition) between other contractors.

Numerical contractors can be related to equations, inequalities or systems of
equations. The point is that a large part of interval analysis routines can be
wrapped into these contractors. As announced above, a good separation can
then be obtained between numerical skills (the design of numerical contractors)
and constraint programming skills (the design of compound contractors).

In this layered framework, constraint propagation will be generalized to con-
tractor propagation. A possible implementation of the corresponding operator
(propag) will be described in detail in x6.3.

4.1 Numerical contractors

Several contractors can be associated to an equationf (x) = 0.

The simplest one consists in evaluating with interval arithmetics f ([x]) and
checking whether 0 belongs to the image range or not. If 062f ([x]) then [x]
can be contracted to the empty set. Otherwise, it is left unchanged. This con-
tractor can therefore be quali�ed as binary (in the sense that it keeps all or
nothing). This test can be easily extended to inequalities.This contractor can
be given many variants, based on various symbolic or numerical processing as
the two following examples show.

Example 3. Assume that there exist several equivalent expressions forf , say
f 1; : : : ; f k , each of them minimizing the multi-incidence of a di�erent variable.
Since the overestimation of interval evaluation grows withthe multi-incidence of
variables (see [34]), we get to sharper results by computingf 1([x]) \ : : : \ f k ([x])
instead of f ([x]), whence a more accurate (but slower) test.
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Example 4. On the numerical side, we can resort to the centered form, i.e.,
compute f (x0) + f 0([x])([x] � x0) instead of f ([x]) where x0 is an arbitrary
point inside [x]. Higher-order Taylor formulas may also be payfull. One mayalso
introduce intermediate monotonicity tests. Consider a two-dimensional vectorx.
If @f

@x1
([x]) turns to be a positive interval then f is increasing with respect to

x1 so that f ([x]) can be replaced by [f (f x �
1 g � [x2]); f (f x+

1 g � [x2])], a smaller
interval.

More sophisticated contractors associated to a constraintc (equation or inequal-
ity) compute an outer estimation of the feasible set, i.e.,C([x]) is a nontrivial
superset of f x 2 [x] j c(x)g. Three important techniques can be found in the
literature:

1. Forward-backward traversals of the syntax tree with intermediate interval
computations, such asHC4Revise[3].

2. Univariate interval Newton iterations (as performed by the narrowing oper-
ator of box consistency [47]).

3. Linear relaxations (see [30] and references therein). Insuch techniques, a
nonlinear constraint is cast into a linear program which feasible region en-
compasses the original solution set.

Given an equation f (x) = 0, we will denote by Cf in the sequel an arbitrary
contractor among those above.

Of course, numerical techniques can also handle several equations simultane-
ously, i.e., a system of equations. Many of them are derived from a multivariate
interval Newton, one famous variant being the Hansen-Sengupta algorithm [17].
In case of linear equalities, many dedicated algorithms also exist (see [35] or
[37]). One can be easily convinced that all these algorithmsact as contractors.

4.2 Propagation

The propagation operator allows the implementation of interval variants of the
classicalAC3algorithm such ashull consistency(see, e.g., [3, 11]) but also many
more algorithms. This operator illustrates by itself the potential of our frame-
work, in terms of contractor design. The key idea is to propagate contractors
instead of constraints.

Given a list of contractors, the principle is to obtain the �x point of their com-
position, i.e., (C1 � � � � � Cm )1 at a lower computation price. We shall denote by
propag our operator. We have:

set(propag(C1; : : : ; Cm )) = set(( C1 � � � � � Cm )1 )

which means that propag is a pure e�ciency contractor (it has no impact on the
output).
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An implementation of this operator will be proposed in x6.3.

Let us now recall that the hull consistencyenforces bound consistency for each
equation. In practice, only a relaxation of bound-consistency is calculated via
the HC4Revisealgorithm. The resulting propagation algorithm is called HC4. In
our framework, given a list of constraintsc1; : : : ; cm , the HC4algorithm is simply
reimplemented as follows

HC4(c1; : : : ; cm )  propag(HC4Revise(c1), . . . , HC4Revise(cm ))

A more interesting direct application is a multi-level propagation. Sometimes,
we would like to group constraints we know to have strong \dependencies". For
instance, one may �nd relevant to perform an intermediate �x point with con-
straints that strictly share the same variables. Consider three sets of constraints
f c1; c2; c3g; f c4g and f c5; c6g. The following contractor will ensure that a con-
straint in a subset (say, c4) will not be wakened between constraints of other
subsets (say,c1 and c2).

propag(propag( c1; c2; c3), c4,propag( c5; c6))

4.3 Shaving

The purpose of this section is to show that other operators exist besidespropag.

Shaving is an operation that allows implementing refutation techniques, similar
to SAC [5] with discrete domains. With continuous domains, refutation is used
to shrink endpoints only (instead of any value inside the domains) so that the
structure of interval is always maintained (whence the fancy name shaving).

Detailing the algorithm here would take too much room. We shall only give a
rough description.

A shaving operator shave takes a contractor C. Given a box [x], the resulting
contractor shave(C) contracts \slices" with C, i.e., subboxes obtained from [x]
by restricting the domain [x]k of one component to a small subinterval [x �

k ; x �
k + � ]

or [x+
k � �; x +

k ]. When the result of the subcontraction is an empty set, the slice is
removed. Otherwise, contraction is tried on a smaller slice. This recursion leads
to consistent endpoints. More formally, the resulting box [y] := ( shave(C))([x])
satis�es 8k = 1 ; : : : ; n

C([y]1 � � � � � [y]k � 1 � f y�
k g � [y]k+1 � � � � � [y]n ) 6= ;

and
C([y]1 � � � � � [y]k � 1 � f y+

k g � [y]k+1 � � � � � [y]n ) 6= ; :

The shaving operator can also be given many variants mainly because of the
slicing which can either be optimistic (\try large slices �rst") or pessimistic
(\check consistency of endpoints �rst").
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Given m constraints c1; : : : ; cm , a box consistency operator (see [4, 45, 47]) can
be reimplemented in our framework as follows:

propag(shave(univNewton(c1)),. . . ,shave(UnivNewton(cm )))

where UnivNewton is an univariate interval Newton contractor (see x4.1). The
3B consistency de�ned in [31] can be reimplemented as follows:

shave(HC4(c1; : : : ; cm )).

5 Revisiting examples

We now revisit all the examples in our framework. By convention, the sub-paving
of the precision contractor will always be represented in white in the pictures.
As a preliminary example, consider the system of equations in Figure 1 page 8
and remember that the goal is to enclose the solution set intoa sub-paving. By
a direct application of our formalism, we then need two contractors:

1. A contractor Cf , to remove unfeasible points.
2. The precision contractor C" .

The desired output is given in Figure 9. This time, the result of the outer con-
traction appears as a sub-paving with only unfeasible points. The roots are all
in the sub-paving of the precision contractor.

Fig. 9. System of equations, with an outer and precision contractor . The sub-paving
of the outer contractor is in light gray.
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5.1 A decomposable problem

Assume that each subsystem (calledblock) has to be solved by a combination
of propagation and interval Newton. Of course, a multivariate interval Newton
(denoted by newton henceforth) requires a square system. When one variable
is �xed (e.g., xC and yC when the second triangle is to be solved), it must not
be considered as a variable bynewton but rather as an interval constant. Such
information typically enters as a \static" parameter (see x6.1). For that reason,
the newton contractor takes two arguments: the set of constraints and the set
of variables. Similarly, let us re�ne the behaviour of the precision contractor C"

(seex4). This contractor will also take here a subsetS of variables in parameter.
A box [x] is emptied by C" (S) if and only if the domains of the components in
S all have a diameter lower than " .

In the sequel,dP Q denotes the distance constraint between two pointsP and Q.

For each block (here: a triangle), the solving strategy is implemented thanks to
the following operator block contractor :

block contractor (f c1; : : : ; ck g; f x1; : : : ; xk g)  
HC4(c1,. . . ,ck ) \ newton(f c1; : : : ; ck g; f x1; : : : ; xk g)

For instance, a paver run with block contractor (f dBD ; dCD g; f xD ; yD g) (and
C" ) with xC and yC �xed (i.e., their domains have a diameter less than") will
solve the second triangle in the required manner, i.e., using propagation and
Newton.

The step-by-step solving method proposed inx2.1 can then be directly imple-
mented with the following contractor:

block contractor (f dAC ; dBC g,f xC ; yC g)
\ ( C" (f xC ; yC g)

[ ( block contractor (f dBD ; dCD g; f xD ; yD g)
\ ( C" (f xC ; yC ; xD ; yD g)

[ block contractor (f dDE ; dCE g; f xE ; yE g)))

provided that variables are bisected block after block. In more details, the vari-
ables of the �rst block f xC ; yC g must be bisected (say, in a round-robin fashion)
until precision is achieved for both of them. The bisection procedure must then
proceed to the second block, and so on. Branching proceduresare not covered
in this paper but this mechanism is orthogonal to contractors and one should be
easily convinced that a block-wise bisection is easy to set up.

5.2 Enhanced description of the ring

In the set inversion problem, we need to characterizef x j f (x) 2 [y]g. This means
that two sets have to be described by contractors:f x j f (x) 2 [y]g (the ring)
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Fig. 10. A description of the ring involving outer and inner contract ors.

and f x j f (x) 62int ([y])g (the complementary of the ring). Put [y] = [ y� ; y+ ]
and g(x) := f (x) � y.

To deal with unfeasible points, we need an outer contractor.This contractor,
denoted by Cf 2 [y ], can be simply de�ned as follows:

Cf 2 [y ] := [ x] 7! � x (Cg([x]; [y])) :

The points inside the ring have to be classi�ed with an inner contractor . As
explained in x2.2, the latter comes naturally with the negation of the problem.
We have

c(x) () f (x) 2 [y] () y� � f (x) and f (x) � y+

() f (x) 2 [y� ; + 1 ) and f (x) 2 (�1 ; y+ ]:

Hence,
�c(x) () f (x) 2 (�1 ; y� ) or f (x) 2 (y+ ; + 1 )

=) f (x) 2 (�1 ; y� ] or f (x) 2 [y+ ; + 1 )

Therefore, the contractor

Cf 62[y ]([x]) := [ x] 7! � x (Cg([x]; (�1 ; y� ])) [ � x (Cg([x]; [y+ ; + 1 )))

only removes unfeasible points for �c, i.e., feasible points forc.

Now, set(Cf 2 [y ]) \ set(Cf 62[y ]) is the boundary of the ring, which is non empty.
Hence, we have to add a precision contractor to ensure the termination of the al-
gorithm. The result is depicted in Figure 10. SinceCf 2 [y ] and Cf 62[y ] are indepen-
dent, the ring represented on the �gure can be interpreted asan approximation
of the set to be described (see proposition 2).
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Fig. 11. An appropriate paving, with smooth boundaries between surf ace levels.

5.3 Level surfaces

First of all, the contractor Cf 2 [y i ;+ 1 ) (as de�ned in the previous paragraph)
could be associated to thei th level surfacef f � yi g. Of course, in this way, the
contractor of the lowest surface level would preempt most ofthe boxes, leading
to a bad result (independence does not hold).

Introducing a priority between the di�erent contractors (i n addition to indepen-
dence) does not require any extra concept. We just need to adapt the contractors
to their actual semantics: a (su�ciently small) box [ x] must be classi�ed with
the contractor of the i th surface level only if

[x] is inside the i th surface level
and [x] does not intersect the (i � 1)th surface level

or [x] has a small width (lower than ")

The desired contractorCi is then obtained by simply rewriting these conditions
in terms of sub-contractors:

Ci := Cf 62[y i ;+ 1 ) [
�

Cf 2 [y i � 1 ;+ 1 ) \ C"

�

or, using a sub-distributivity rule:

Ci := Cf 62[y i � 1 ;+ 1 ] \
�

Cf 2 [y i ;+ 1 ) [ C"

�
:

Finally, we need as before an outer contractor for all the surface levels, namely,
Cn +1 := Cf 2 ( �1 ;y n ]. Moreover, the intersection ofC1 \ : : : \ Cn +1 is f x j f (x) =
yn g and, as usual, this set can be treated by a precision contractor C" . Figure
11 shows the desired output.
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5.4 Set inclusion

Fig. 12. The set inclusion problem solved by a more adapted algorithm . Boxes in dark
gray does not belong to set(c1). Boxes in light gray are inside set( c2). We resort to
splitting only in regions where boundaries of set( c1) and set(c2) are close.

The set inclusion problem can be solved e�ciently in our formalism by using the
following simple reasoning.

A box [x] can be discarded from the search either if it does not belongto set(c1)
or if it is included in set( c2). Indeed, in both cases, [x] cannot compromise the
assertion to be proven since8x 2 [x] we havec1(x) =) c2(x).

Hence, an inner contractorC1 for c1 and an outer contractor C2 for c2 can be
used jointly. Only the box that both (possibly) contain poin ts inside set(c1) and
outside set(c2) are bisected. The result is depicted in Figure 12.

No precision need to be introduced ifint (set(c1)) � set(c2) (where int stands for
interior) since the algorithm will end in this case (we have set(C1) \ set(C2) = ; ).
But we still need a precision contractor C" in case of non inclusion.

5.5 Bounded-Error Parameter estimation

As we evoked above, modeling this problem causes no di�culty. The overall
inner contractor is the union of the inner contractors related to each measure,
say, Cgi 62[y i ] with gi (p) := f (p; ti ) and t i 2 [t i ]. Here, the interval extension ofgi

is a thick function since an interval constant [t i ] substitutes for the variable t i .

Likewise, the intersection of the outer contractorsCgi 2 [y i ] de�nes an outer con-
tractor for the whole problem.
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Fig. 13. Parameter estimation solved with inner and outer contracto rs based on proj-
union and proj-intersection. The precision of the paver is s till 0.01.

For e�ciency, we have to split t i inside the i th outer and inner contractor. Con-
sider �rst outer contraction: ( p1; p2) is feasible if at least one value in [t i ] satis�es
f (p; ti ) 2 [yi ]. Hence, if a point (p; ti ) 2 R3 is insensitive to Cf 2 [y i ] then p must
be insensitive to the outer contractor. The proj-union de�ned in x4 exactly �ts
this requirement. We de�ne:

Couter := C [ [t 1 ]
f (p;t 1 )2 [y1 ] \ : : : \ C [ [t 10 ]

f (p;t 10 )2 [y10 ]

Similarly, the proj-intersection �ts the requirement for the inner contraction.
Indeed, a point (p; ti ) 2 R3 sensitive to Cf 62[y i ] must be discarded by the inner
contractor. We de�ne:

Cinner := C \ [t 1 ]
f (p;t 1 )62[y1 ] [ : : : [ C \ [t 10 ]

f (p;t 10 )) 62[y10 ]

A paving resulting from the combination of these contractors is shown in Figure
13.

6 The Quimper System

Besides theoretical investigations, contractor programming has given rise to a
real system namedQuimper (QU ick I nterval M odeling and Programming in a
bounded-ER ror context). This system includes today three di�erent pro grams:
qPave(a graphical tool for paving sets in 2D),qSolve (a tool for listing numerical
results, typically in high dimension) and qTraj (a graphical tool tailored to
constraint problems derived from di�erential equations).

These are light-weight programs that only manage input/ouput, i.e., the lan-
guage for writing contractors (the \Quimper language") and the interface for
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con�guring, running the paver and handling generated pavings. They are linked
to a C++ library called Ibex (I nterval-BasedExplorer) that implements a con-
tractor programming framework.

Ibex is based itself on theProfil/Bias library [28] for the low-level interval
arithmetics. However, part of this library has been wrappedinto functions that
manage all the borderline cases (in�nite bounds, values outof de�nition domains,
empty sets, etc.) so that arithmetic operations are always exception-free. This
explains why a modi�ed release ofProfil/Bias is included in the Ibex package.

All these software components are under GPL licence and can be downloaded
online [7]. A user guide for Quimper (including the grammar of the Quimper
language), as well as a complete documentation ofIbex classes are available
on the same site. An archive containing all the examples of this paper in the
Quimper syntax is also provided.

Ibex / Quimper has been developed by the �rst author but this software should
be considered as a prototype since a real collaborative open-source project con-
tinuing this work is about to be launched. This new project will take advantage
of the existing code.

The purpose of this section is to give some insight into theIbex system. For
convenience, we shall adopt some object-oriented coding notations. A contrac-
tor C is a class with the main function beingcontract , i.e., for a box [x]

C.contract ([x])

contracts [x] with C.

Generalizing constraint propagation to contractor propagation required letting
the interface of contractors inherit from constraints. Fir st, we can ask a con-
tractor whether the domain of a given variable can impact the result of the
contraction or not. This notion simply generalizes the incidence graph of a con-
straint network.

A contractor C, as a class, therefore implements a Boolean functioninvolves
that takes in argument the index j of a variable, i.e.,

C.involves(j)

returns false or true . Note that, by default, a contractor always returns true .
In the parlance of object-oriented programming, this function needs not neces-
sarily be overridden.

Second, we also added a few parameters to thecontract function above, besides
the box to be contracted, as explained in the next section.
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6.1 Indicators

Every contractor has its own set ofspeci�c parameters. For instance, the precision
contractor C" (maxdiamGTin the Quimper syntax) takes a parameter " . The
interval Newton also needs a parameter for controlling the termination of the
iteration: when a step does not reduce any interval by more than a given ratio, the
procedure stops. This ratio can be set externally. These parameters are related
to the semantics speci�c to contractors (e.g., the precision contractor has by
de�nition a threshold) or their implementations. They are u sually set once for
all (as constructor parameters). We shall not consider this type of parameters
any further.

There is another type of parameters required by constraint programming algo-
rithms for e�ciency reasons, called indicators. The purpose of these parameters
is to notify contractors during the search about the context in which they are
called. For instance, we may inform a contractor that only a contraction on a
given variable is actually expected (any other contraction being super
uous).
If the time complexity of the contractor depends on the number of variables,
some work is spared. We may also inform the contractor that only the domain
of a given variable has been modi�ed since the last call. Again, if the contractor
works incrementally, this will speed up contraction.

Two indicators have been integrated into our system, corresponding precisely
to the examples just given. The �rst is named scopeand contains the subset of
variables to be treated. The second is namedimpacted and contains the subset
of variables whose domain has been impacted.

The semantics of indicators is constrained by one single fundamental property:
they can be ignored by a called contractor without spoiling soundness (i.e., losing
solutions), whence their name. If one develops a contractorthat ignores the scope
indicator, this contractor can still be passed as argument to an operator, should
the latter be based on the communicability of this information (e.g., propagate
below). The consequence is only a loss of e�ciency.

Hence, only two indicators are proposed today but the nice point with indicators
is that new ones can be invented at any time and integrated progressively in the
subsequent implementations of contractors. In other words, backward compati-
bility is complete. We just had to put all the indicators in a d ictionary structure.
The real signature of the contract function is:

contract(box [x], dictionary indicators).

As an example, one can ask a contractorC to focus on the two �rst variables
only in the following way:

C.contract ([x], f scope= f 0; 1gg).
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6.2 Numerical Contractors

There is nothing particular in the implementation of numeri cal contractors in
Quimper, except that indicators have to be managed.

{ The binary test 0 2 f ([x]) is actually not proposed in Quimper, but such a
contractor would necessarily ignore all the indicators.

{ HC4Reviseis implemented. The complexity of this contractor is linear in the
length of the constraint expression. Hence, contracting for a single variable
amounts to contracting for all the variables (up to a small constant factor).
In Quimper, HC4Reviseignores thescopeindicator.

{ The univariate interval Newton is implemented. As contrary to HC4Revise,
this contractor deals with one particular variable at a time. Setting the scope
indicator to a single variable divides the contraction time by the number of
variables.

{ Linear relaxations are not yet implemented. Now, since a linear program-
ming solver is called iteratively to reduce the bounds of each initial variable,
the scopeindicator would have to be taken into account as with univariate
Newton.

The multivariate interval Newton is also implemented and ignores thescopeand
impacted indicators.

6.3 Propagation

Here is how the propagation operator is implemented inQuimper.

Our convention for indices is to usei and j for contractors and variables respec-
tively. When a couple (i; j ) is revised, the i th contractor has to work on the j th

variable. If the revision succeeds (a signi�cant part of thei th domain is removed)
then the agenda is updated with the following classical procedure:

update agenda(integer i , integer j , subset scope)
j forall i 0 6= i such that Ci 0.involves (j )
j j forall j 0 such that Ci 0.involves (j 0)
j j j if j 0 2 scopenf j g then add (i 0; j 0) in the agenda

Now, if a revision (i; j ) fails, there still may be a residual contraction. Further-
more, some subcontractors may not take into account thescopeindicator so that
unsolicited contractions can appear as the propagation loop goes along. At some
point, the accumulation of these small contractions on a variable j can add up to
a signi�cant contraction. The agenda must be updated in consequence. In this
case, thej th variable is the source but there is not a particular contractor. The
agenda must then be updated with all the couples (i; j ), i describing the set of
contractors. This is what the next procedure does.
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update agenda(integer j , subset scope)
j forall i such that Ci .involves (j )
j j forall j 0 such that Ci .involves (j 0)
j j j if j 0 2 scopethen add (i; j 0) in the agenda

Now, let us give the main procedure. Two local boxes are de�ned, the �rst is
used to measure the result of eachrevision (the contraction of Ci over x j ) while
the latter measure the contractions collected since the last time x j triggered an
update.

contract (box [x], subset scope, subset impacted)
box [xrev ]  [x] // keeps track of domains before last revision
box [xupd ]  [x] // keeps track of domains before last update
forall j 0 2 impacted
j update agenda(j 0,scope)
integer last i  � 1 // keeps track of the last contractor called
while the agenda is not empty
j pop (i; j ) from the agenda
j j subset scope' f j g; // we want to revise the jth variable only
j j subset impacted'  fg ; // no domain has been touched ...
j j if (i 6= last i) // ... unless we popped a di�erent contractor
j j j impacted'  f all variables g; // so that all may have been impacted
j j j forall j 0 such that Ci .involves (j 0) // and all the constraint variables
j j j j [xrev ]j 0  [x]j 0 // are now potentially impactable.
j j j last i  i; // i becomes the last contractor called
j j Ci .contract ([x], scope', impacted')
j j if [xupd ]j n[x]j is su�ciently small // check accumulated contraction
j j j if [xrev ]j n[x]j is su�ciently small // check last revision
j j j j update agenda(i ,j ,scope) // �ne propagation
j j j else
j j j j update agenda(j ,scope) // coarse propagation
j j j j [x]upd

j  [x]j

6.4 Some performance results

All the examples in this paper have been executed almost instantaneously (less
than 0.1 second) when the precision was not high (this corresponds to the �gures
with apparent boxes).

Figure 4.(a) was obtained by setting the precision ofC� to � := 0 :01. The paving
contains 17768 boxes and was generated in� 1:2s.

Figure 5.(a) was obtained with two natural contractors corresponding to the
constraints c1(x) and ( �c1(x) ^ c2), with a precision set to � := 0 :005. The paving
contains 40844 boxes and was generated in� 2:2s.

Figure 6.(a) was obtained with � := 0 :001 and by splitting 10 times the parameter
domain inside the contractors C [ and C \ . Computation time was 26 seconds
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in this case, mainly because of the parameter splitting process which occurs
systematically. The paving includes 18249 boxes.

7 Conclusion

We have presented a new framework for interval programming.The bene�ts of
this framework are twofold. First, a large class of constraint-based problems can
now be addressed with a unique simple algorithm, calledpaver. Second, a full
control on the solving process is at hand, including the coreof the propagation
loop.

This framework is entirely built on the concept of contractor: inputs are con-
tractors instead of constraints. Similarly, outputs are related to contractor sets
instead of constraints sets. As just said, this {apparentlysmall{ change in mod-
eling can lead to signi�cant improvements in the design of new solvers but also
in a declarative way. In a sense, theimperative aspect of solvers is now sub-
sumed in thedeclarative one: the end user write constraints while the constraint
programmer write contractors.

This approach is supported by a real system calledQuimperwhich solves quickly
all the di�erent problems mentioned in this paper.

There are plenty of possible extensions for this work. The �rst one is perhaps to
deal with global optimization. This extension would probably resort to dynamic
contractors, i.e., contractors parameterized by a value that can be updated dur-
ing the solving process. Orthogonally tocontractors that potentially remove all
unfeasible points,local �nders that �nd peculiar feasible points seem to be a key
feature as well.
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