
Contractor Programming

Gilles Chabert1 and Luc Jaulin2

1 Ecole des Mines de Nantes LINA CNRS UMR 6241,
4, rue Alfred Kastler 44300 Nantes, France

gilles.chabert@emn.fr
2 ENSIETA, 2, rue Fran cois Verny 29806 Brest Cedex 9, France

luc.jaulin@ensieta.fr

Abstract. This paper describes a solver programming method, called
contractor programming, that copes with two issues related to constraint
processing over the reals. First, continuous constraints involve an in-
evitable step of solver design. Existing softwares provide an insufficient
answer by restricting users to choose among a list of fixed strategies.
Our first contribution is to give more freedom in solver design by in-
troducing programming concepts where only configuration parameters
were previously available. Programming consists in applying operators
(intersection, composition, etc.) on algorithms called contractors that are
somehow similar to propagators.

Second, many problems with real variables cannot be cast as the search
for vectors simultaneously satisfying the set of constraints, but a large
variety of different outputs may be demanded from a set of constraints
(e.g., a paving with boxes inside and outside of the solution set). These
outputs can actually be viewed as the result of different contractors work-
ing concurrently on the same search space, with a bisection procedure
intervening in case of deadlock. Such algorithms (which are not strictly
speaking solvers) will be made easy to build thanks to a new branch &
prune system, called paver.

Thus, this paper gives a way to deal harmoniously with a larger set of
problems while giving a fine control on the solving mechanisms. The
contractor formalism and the paver system are the two contributions.
The approach is motivated and justified through different cases of study.
An implementation of this framework named Quimper is also presented.

1 Introduction

Constraint programming is a simple and efficient paradigm to handle a large
class of combinatorial problems [40, 10, 44]. In the presence of real-valued vari-
ables, constraint propagation algorithms combined with interval analysis [16, 22,
27, 19, 9] are also particularly well-suited, included for real-world applications
(see, e.g., [33, 21]). We shall refer to this interval variant of constraint program-
ming as interval programming. Even then, interval programming has had only

moderate success. In our opinion, the reason is a lack of clear and unified for-
malism describing how solvers and derived programs are built. This paper is an
attempt to fill this gap.

We propose a framework that allows one to build a continuous solver with a
few lines, in a high-level syntax. More than just another tuning language, a
programming framework is proposed.

Motivation

Three reasons justify the introduction of a solver programming framework in
presence of real variables.

1. Constraint programming is a declarative paradigm which means that a pro-
grammer should spend most of the effort in modeling conveniently the prob-
lem. This effort may involve breaking symmetries, introducing global or soft
constraints, etc.. All these concepts are related to modeling and represent,
by the way, very active fields of research. In theory, the solver is a black box
of which a programmer could ignore the details.
Despite of this, there is always a need at some point to control the solver, as
it is with all declarative languages (consider for instance Prolog cuts that
allow ruling out choices in the search). We can say that the overall efficiency
one gets is the combined result of efforts made on both aspects: modeling
and solver control.
With real variables, modeling languages are limited1. Constraints can usually
be nothing but equations which means that mathematics is de facto the
ultimate modeling language2. The consequence is that solver control becomes
an inevitable step if one is to improve efficiency.

2. Continuous solvers have a two-layered structure, namely interval analysis
and constraint programming, The lower layer includes interval arithmetics
and interval numerical algorithms (e.g., an interval variant of the Newton
iteration) with round-off considerations. The upper layer includes branch
& prune algorithms for describing sets of reals defined by constraints (or
optimizing a criterion under constraints). Since these layers correspond to
quite different scientific communities, there is a need more than ever for
an interface between them. In concrete words, it would be useful to give a

1 This limitation holds for numerical systems involving analytic expressions, which
cover most of the mathematical models of physics problems. But modeling languages
as such are not limited with real variables any more than with discrete ones (one
may introduce table of constraints, piecewise constraints, etc.).

2 There is still a notable exception: geometrical constraints. Geometry represents a
semantic level above algebra; as an example, the “intersection of three spheres” can
be introduced as a global constraints instead of three equivalent distance equations
[1]. But, except in such cases, no improvement has to be expected from the modeling
side.

2

constraint programmer the ability to develop a continuous solver without
digging into details of interval analysis.

3. The last and possibly main point is related to the output of constraint solvers.
With discrete domains, the output is always the set of solutions (or a subset
optimizing some criteria). But in continuous domains, there may be a large
variety of different outputs. First, one may look for a sub-paving (a set
of boxes) encompassing the solutions and this is precisely what most of
the existing solvers provide. They act as root finders. Next, in case of a
solution set with a non-null volume, several sub-pavings are expected, each
satisfying a different property, basically: “may contain a solution”, “does
contain a solution” or “contains only solutions”. Such solvers rather act
as set describers. Actually, we will see through the examples of Section 2
that the semantics behind the sub-pavings may completely change from one
problem to the other3. As we will show, neither a root finder nor a set
describer is adapted for solving these problems. Of course, ad-hoc solutions
always exist, but the purpose is precisely to avoid a multiplicity of programs
where a single one would be enough. In practice, when people are facing a
specific constraint problem that requires a specific algorithm, they have to
reverse-engineer the code of an existing solver. Often, they redevelop it from
scratch.

Contribution

We propose a formalism and an algorithm, called paver.

In the formalism, the different interval routines (evaluations, projections, ex-
istence tests, etc.) are all wrapped in the very same object called contractor
(see Section 3). Of course, the concept of contractor is not a novelty on its own.
Our (first) contribution is to redefine various constraint programming techniques
(propagation, shaving, parameter splitting, etc.) as operations over contractors
that yield new contractors (Section 4). Syntactically, the contractor is then the
unique atom, whence a certain simplicity. A solver can then be programed, rather
than configured, by combining different contractors (examples are given in §4.2,
§4.3, §5.1 and §5.5).

The paver algorithm is a generic solver. It takes a list of contractors, an initial
box and follows a classical recursion: the contractors are successively called on
the current box until either it gets empty or no more contraction could be done.
In the latter case, the box is bisected and contractors are called back again.

The fact that different contractors work concurrently allows solving problems of
quite different nature (see next section). This is our second contribution.

3 We can say that no modeling language dedicated to the output exists so far, and this
is another important distinction with discrete problems where this modeling aspect
is not as ubiquitous (solvers using explanations are counter-examples).

3

Hence, contractor programming consists in two distinct steps: contractor design
and paver design. The former refers to the design of the most possible efficient
contractor for a given set (constraint) and shall be discussed in Section 4. The
latter refers to the selection of contractors that yield the desired output, regard-
less of efficiency.

This framework is already supported by a real system named Quimper that will
be introduced in Section 6.

Thinking of contractor programming as an extension of constraint programming
is valid to the extent that contractors help in modeling the output of a problem.
But, fundamentally, there is not such an extension since constraints basically
tell the “what” whereas contractors tell the “how”.

Note that branching will not be covered in this paper but one has to keep in
mind that this part of the paver should be customizable as well. Only plain
bisection will be used in the examples (variable are selected with a round-robin
heuristic).

Power of Contractor programming

As for every programming language, the power of contractor programming, i.e.,
the class of problems that can be solved using this paradigm would require the
setting of computability theory to be described formally. Pavings obtained in our
framework are the results of algorithms that recursively contract boxes to smaller
boxes and this general definition does not even involve the concept of constraint.
It can also fit well, e.g., in the context of computer graphics to draw fractals.
This means that some pavings generated by our system cannot be characterized
by constraints.

However, one may wonder which problems contractor programming is the most
aimed at. The contractor paradigm is mostly aimed at building set computation
tools over the reals. These tools typically calculate disjunction of equidimensional
sets and sets are usually described by constraints. There are however very few
restriction on their form: constraints can be first-order logic formulas involving
numerical equations or inequalities and quantified parameters. They can also be
handled implicitly by their associated contractor.

The main point is that the representation of the sets and the way it is calculated
are both entirely controllable.

Related works

In discrete constraint programming, existing tools already give control mecha-
nisms with sometimes an associated formalism. In constrained-based local search,
the COMET system [46] offers a language allowing one to give his own definition

4

of moves and neighborhoods, the incremental computation of the impact after a
move being done automatically.

In branch & prune systems, choice points and propagation can usually be con-
trolled. The Choco [25], ILOG Solver [20] and Gecode [43] libraries allow to
specify the instantiation order for both variables and values. It can also be de-
cided how to split domains (either instantiate or bisect domains, etc.).

Propagation has given rise to more sophisticated concepts. The aforementioned
libraries allow the programmer to associate his own propagator, or filtering al-
gorithm, to a constraint. In Gecode, propagators can be automatically gener-
ated from a formula. It is possible with Choco to control when propagators are
launched thanks to a system of events (e.g., a bound is reduced, the variable is
instantiated, etc.). This allows, as a side effect, to schedule constraints in the
propagation loop (some costly propagators may ignore events of minor impor-
tance). Events handling have to be implemented by the propagators in Gecode,
albeit recent works about advisors [29] facilitate this task. These mechanisms are
all related to modeling (a propagator is associated to a constraint), preserving
declarativity. As far as we know, there is not a way to build new propagators,
say, by composing different propagators, at the modeling phase. Only program-
mers with a good knowledge of the target library are able to do so. This is a
difference with contractor programming that aims at building solvers rather than
operational constraints.

In contrast, efficiency has always taken precedence over flexibility in continuous
constraint programming. Perhaps because of the prevailing numerical culture,
solvers are indeed usually compared on a performance basis. As a consequence,
none of the different existing implementations (Numerica [47], RealPaver [15],
Alias [32], Rsolver [38], GlobSol [26], Baron [41], etc.) supply a good level of
openness or extensibility. These libraries contain solvers or global optimization
algorithms with a very high-level interface, basically restricting users to enter a
system of equations, set up some parameters and press enter. Of course, there
may be many parameters. For instance, it can be decided whether Alias has
to resort to the computation of the Hessian matrix or to ask RealPaver for the
global consistency instead of a solution set. But there is no way to venture off
the beaten tracks.

A side contribution of this paper is a new representation for solution spaces
with non-empty interiors. More suitable representations have been proposed in
[42] using quadtrees/octrees or in [48] using extreme vertices. However, quadtrees
consist in discretizing constraints and reasoning using this auxiliary representa-
tion. This otherwise appealing method is therefore quite distant from interval
programming. Results of this paper are unlikely to be applicable in the context
of quadtrees.

Computing extreme vertices can be viewed as an independent operation to ob-
tain a compact representation of a set of boxes. The dissertation [48] contains
also smart branching heuristics and a concept of active variables to preserve the

5

alignment of small boxes. All these concepts are fully compatible with our frame-
work and somehow orthogonal to contractors since they are related to branching
issues. They can be viewed as complementary to ours.

1.1 Notations and vocabulary

The set of all intervals is denoted by IR.

A Cartesian product of intervals is called a box. Intervals and boxes will be sur-
rounded by brackets, e.g., [x]. The symbol [x] will always denote a n-dimensional
box, except otherwise stated. If [x] is a box, x−

i and x+
i will stand for the lower

and upper bound of [x]i respectively.

The width of a box [x] is the largest diameter of its components. The smallest
box enclosing a set S in denoted by �S.

A sub-paving of [x] is a set of non-overlapping boxes included in [x]. A sub-
paving will either be considered as a collection of boxes {[x](1), . . . , } or as a
union [x](1) ∪ . . . depending on the context. Hence, a sub-paving can either be
viewed as a discrete subset of IR

n or as a compact subset of R
n.

A paving of [x] is a collection of sub-pavings K1, . . . , KN such that

[x] =
⋃

1≤k≤N

⋃

[b]∈Kk

[b].

Finally, we will temporarily adopt the following definition. Let c be a constraint
on the reals, i.e. c(x) is either true or false. A contractor for c is a function
C : IR

n → IR
n, usually given by a polynomial-time algorithm, such that:

∀[b] ∈ IR
n,

{

C([b]) ⊆ [b] and
∀x ∈ [b]\C([b]) c(x) is not satisfied.

Note that the concept of contractor will be generalized in our formalism (see
Section 3). Thanks to interval arithmetics, many contractors can be built with
respect to an equation f(x) = 0, where f : R

n → R
m.

Example 1. Consider f : R
2 → R with f(x) = x1−exp(x2) and define C : IR

2 →
IR

2 as follows: C([x]) := ([x1] ∩ exp([x2]), [x2] ∩ log[x1]). C is a contractor with
respect to f(x) = 0.

Contractor versus propagator. In spite of appearance, contractor is not
just a new name for propagator. A propagator is associated to a constraint and
destined to be called in a propagation loop. As we will see, a contractor is
not necessarily associated to a constraint and may have nothing to do with
propagation. Furthermore, we will add a continuity condition in the definition
of a contractor (see §3.2) that does not exist for propagators. Finally, the term
filtering was not chosen because of a conflict with the everyday meaning of
filtering in many areas dealing with continuous systems (e.g., Kalman filtering).

6

1.2 The ABC of interval programming

Let us end this introduction with a short description of what interval program-
ming is all about.

The basic algorithm of interval programming is the root finder. Consider a system
of equations f(x) = 0, where x is a variable in R

n and f a mapping from R
n to

R
m. A root finder wraps solutions into boxes of any desired precision (leaving

aside floating-point considerations) by using a branch & prune process, where
the prune operation is performed by a contractor.

Here is the sketch of the algorithm. Note that a stack is used for the depth-first
search and that the precision criterion chosen here is width[x] < ε.

algorithm root-finder(function f, box [x](0))
output: a sub-paving
push [x](0) on the stack
while the stack is not empty
| pop [x] from the stack
| [x]′ ← C([x]) where C is a contractor w.r.t. f(x) = 0
| if [x]′ is not empty
| | if width [x]′ < ε

| | | insert [x]′ into the output sub-paving
| | else
| | | bisect [x]′ into two subboxes [x](1) and [x](2)

| | | push [x](1) and [x](2) on the stack

Of course, the existing implementations are much more sophisticated. But this
simplified description is enough from a language perspective. In the ideal case
of a square system (m = n) without singularity, solutions are punctual (and
certification can be demanded). In the general case, a n−m dimensional surface
is described. This is illustrated in Figure 1.

Consider now f : R
n → R

m, and [x]× [y] ∈ R
n+m. We may look for the following

set inverse:
f−1([y]) ∩ [x] := {x ∈ [x] | ∃y ∈ [y] y = f(x)}.

Note that set inversion is a particular subclass of quantified constraints (see,
e.g., [12, 39]). The root-finder algorithm will split the whole solution set into
small boxes, as depicted in Figure 2.a.

In this case (i.e., when the solution set has a non-null n-dimensional volume) we
might expect the solver to dissociate boxes that may contain solutions (boundary
boxes) from boxes that only contain solutions (inner boxes). Clearly, precision is
only required for boundary boxes, splitting an inner box being useless and even
counter-productive.

A more appropriate output is given in Figure 2.b. Hence, an enhanced algorithm
set-describer can be derived from root-finder by inserting an inner test

7

Fig. 1. An enclosure of {x ∈ [−0.5, 2.5]×[−2.5, 0.5], f(x) = 0} with f(x) = exp(x1x2)−
sin(x1 − x2).

before the call to the contractor. The design of inner tests has been a matter of
study in several publications (see, e.g., [13, 18, 14]).

2 Motivating examples

The purpose of this section is to present five different problems tractable by
interval programming and to show that neither root-finder nor set-describer
are appropriate. Once again, we do not claim that no algorithm exists for these
problems. We just claim that no algorithm exist that solves them all. Note that
root-finder and set-describer will not be two different algorithms in our
formalism.

2.1 A decomposable problem

In several applications, systems are sufficiently sparse to be decomposed by equa-
tional or geometric techniques [24, 36, 6]. Consider for example the following sys-
tem of distance constraints in two dimensions. There are 5 points connected by
6 distance equations. Points A and B are fixed and the three others are the
unknowns. Instead of directly solving the 6x6 overall system, we can process
progressively in three steps. We can solve the first triangle {A, B, C}, which is
a 2 × 2 system. Because of rigidity, there is only a finite number of solutions
(two flips). Then, for each solution, the second triangle {B, C, D} can be solved
because C is fixed. Finally, the triangle {C, D, E} can be solved in turn once C

and D are fixed.

8

(a) (b)

Fig. 2.

A set inversion problem f(x) ∈ [y] with f(x) =
p

x2
1 + x2

2 and [y] = [3, 6] in
[x] = [−7, 7] × [−7, 7]. (a) The output of the set inversion problem as defined in §2.1
(i.e., small boxes enclosing all the solutions). (b) A more adapted output for the same
set inversion problem, including inner test.

In general, solving the decomposed problem (here, seven 2×2 systems including
flips) is faster than solving the global problem (here, one 6 × 6 system). No
standard root finder supports the implementation of such strategies. The state
of the art in decomposition-based solving methods relies on dedicated algorithms.

2.2 Enhanced description of the ring

Let us consider again the set inversion problem introduced in §1.2. We mentioned
that an inner test was necessary (whence the set-describer algorithm) but an
inner contractor could also be introduced in this case and would actually be
much more adapted.

Indeed, the set inversion problem can be easily formulated as a conjunction of
two inequalities. It has been shown (see [8, 2]) in the case of inequalities that,
by a negation trick, the problem can be reversed so that any contracted region
of the reversed problem lies inside the feasible region of the original one.

Remember that [y] ∈ IR. We have

c(x) ⇐⇒ f(x) ∈ [y] ⇐⇒ y− ≤ f(x) and f(x) ≤ y+

Hence, a point is unfeasible if

y− > f(x) or f(x) > y+.

9

B

C
D

E

A

Fig. 3. A decomposable system.

Now, we can contract a box [x] with respect to y− > f(x) and f(x) > y+. If
[x](1) and [x](2) are the two resulting boxes, then [x]\([x(1)]∪ [x(2)]) is inside the
solution set {x ∈ [x] | c(x)}. In such situation, it would be fruitful to replace the
current search space [x] by [x(1)]∪[x(2)] and to memorize that the complementary
space is inner. The set-describer algorithm is therefore not really appropriate.

2.3 Level surfaces

Level surfaces is a generalization of the previous problem, and can be stated as
follows. Consider f : R

n → R and N decreasing values y1 > . . . > yN . The goal
is to classify all the points of an initial domain [x] according to the constraints:

f(x) ≥ y1

or f(x) ≥ y2

...
or f(x) ≥ yN ,

(1)

with a priority corresponding to the intuitive idea that we are more interested
in the highest values: the surface level y1, i.e., the number of points satisfying
f(x) ≥ y1 must be maximized first. Then, the surface level y2 must be maximized
and so on. Figure 4.a shows an example of 4 surface levels. Note that this problem
could be easily generalized to a MAX-SAT problem.

Let us now focus on input/output. Of course, using directly (1) as an input
constraint makes no sense, since (1) is equivalent to f(x) ≥ yN . One could rather
solve N times the set inversion problem f(x) ∈ [yk, yk+1] and superimpose the
different outputs (see Figure 4.b). However, this is not satisfactory for at least
two reasons.

First, the boundaries around each level surface (the little white boxes in Figure
4.b) should not appear, except for the lowest one. This undesirable boundaries
will be cleared off in Figure 11. One could circumvent this effect by slightly
enlarging the intervals [yk, yk+1] before computing the inversions, making level

10

(a) (b)

Fig. 4. Surfaces levels f(x) ≥ yi. (a) An example with y1 = 0.8, y2 = 0.6, y3 = 0.4,
y4 = 0.2 and f(x) = sin(x2

1 + x2
2)/(exp(x1) + x2

2), in [x] = [−2, 2] × [−2, 2]. Darkness
increases with f . (b) The same example decomposed into set inversion problems.

surfaces overlap. Another trick would simply be to move the boundary sub-
paving of the kth surface level into the inner sub-paving of the (k − 1)th level
surface. However, in both cases, we “cheat” and lose reliability of the result.

Second, the decomposition of the input problem into N sub-problems and the
aggregation of the intermediate results requires extra and undesirable manipu-
lations from the user.

2.4 Set inclusion

Given two sets defined by constraints c1 and c2, the set inclusion problem consists
in proving or refuting that one set is included in the other. This is illustrated in
Figure 5.a.

We shall denote by set(c) the set associated to a constraint:

set(c) = {x ∈ R
n | c(x) is true}.

Using the conjunction of c1 and c2 as an input in algorithm set-describer may
address the problem in the following situations: if no solution is found, then no
set can be included in the other since these sets do not intersect at all. In the
other way around, if the whole initial box is included in the inner sub-paving
then the two sets coincide. Except in these extreme cases, nothing can be said.

As before, one may solve separately c1 and c2, and check for the inclusion of both
the inner & boundary sub-pavings of c1 into the inner sub-paving of c2 (see Figure
5.b). Again, this requires undesirable manipulations by the user; but, worse, this

11

(a) (b)

Fig. 5. Set inclusion. (a). Two subsets of [x] = [−3, 1]×[−1, 3] defined by constraints:
c1(x) ⇐⇒ exp(x1x2) − sin(x2 − x1) ∈ [−0.1, 0.1] (in dark gray) and c2(x) ⇐⇒
exp(x1 − x2) × sin(x1x2) ∈ [−0.1, 0.1] (in light gray). We have set(c1) ⊆ set(c2). (b)
The same set inclusion problem decomposed into set inversion problems.

process is extremely inefficient. Assume that a box B in Figure 5.b is detected
as inner in the paving of set(c2) and recursively bisected and contracted in the
paving of set(c1) until either boundary or inner boxes are found. All this work
could be spare since the inclusion set(c1)∩B ⊆ set(c2)∩B is already established.
Hence, this decomposition involves a huge number of useless computations.

Of course, one could legitimately object that in the example given in Figure 5,
c1 can be reversed as in §2.2 to c̄1 so that running a standard solver with c̄1 and
c2 will do the job as expected. Indeed, if no solution is found, no point satisfy
c2 and c̄1, i.e., set(c2) ⊆ set(c1). However, in general, a constraint cannot be
reversed while an inner test is still possible. As an example, a constraint c1(x)
of the following form:

c1(x) ⇐⇒ ∃y ∈ [0, 1]

{

f(x,y)=0
g(x,y)=0

cannot be reversed if y has multiple occurrences while testing for an inner box
is possible (an algorithm is given in [12]).

2.5 Bounded-error Parameter estimation

This last example is rather devoted to solver design: the problem is not new in
terms of input/output but requires a specific strategy.

Consider the following model of a real-time system [23]:

f(p, t) = 20 exp(−p1t)− 8 exp(−p2t)

12

where p1 and p2 are two unknown parameters. Assume that a vector of 10 mea-
surements y1, . . . , y10 is available, these measurements corresponding to times
t1, . . . , t10 respectively.

The question is to compute a rigorous enclosure of all the feasible p1 and p2

from the experimental data, taking into account uncertainties on both yi and ti.
Hence, given intervals [ti] and [yi], we have to describe the following set:

{(p1, p2) | ∀i ∈ [1..10], ∃yi ∈ [yi], ∃ti ∈ [ti] yi = f(p, ti)}.

(a) (b)

Fig. 6. The parameter estimation problem. (a) The set of feasible points (p1, p2).
(b) The result using a standard contraction and inner test without splitting the domains
of ti (bisection precision is 0.01). First, a very few of inner boxes could be found. Second,
the outer enclosure is not sharp at all.

If we restrict ourselves to a single measurement (instead of 10), the problem
boils down to a simple set inversion, with a thick constant [ti]. Hence, the set to
be computed seems to be nothing but the intersection of 10 set inversions. The
set-describer algorithm seems to suit well.

In fact, the multi-incidence of t in the expression of f makes this strategy in-
efficient. Indeed, whatever is the underlying method used for the contractor or
the inner test, the domain of t has to be small for the resulting operator to be
sharp. Hence, the domain of t has to be split by the solver. This is illustrated in
Figure 6.

Second, introducing the vector t as variables makes the search space dimension
jumps from 2 to 12 unless one wants to solve the 10 problems separately. This
leads to a combinatorial explosion.

13

In conclusion, there is a need for splitting the component ti (and only this
one) inside the contractor and inner test associated to the ith measure. To our
knowledge, no available solver is generic enough to be tuned in this way.

3 A new formalism

We show now that the different examples of Section 2 can be solved as suggested
by the very same algorithm, a generic solver called paver, when expressed in the
contractor formalism.

We describe the paver and the formalism in this section. We will provide concrete
examples of contractors in Section 4 and subsequently revisit the problems of
Section 2.

3.1 The “contract and classify” paver

To help intuition, let us consider the problem in §2.3. It turns out from this exam-
ple that several sets have to be described simultaneously, each set corresponding
to a different constraint.

Let us assume that sets are disjoint. We will see below how to circumvent the
case of overlapping sets.

Each point of the initial space has to be classified with respect to these sets. For
a given point x, this means that the membership of x to the different sets can
be tested successively. If one test succeeds, then x can be marked as treated and
associated to the corresponding set.

A generic interval solver can directly be derived from this “test and classify”
principle. Remember first that a contractor C can be easily built from any con-
straint c. The contractor C has the following property: if C([x]) = [y] (i.e., [y]
is the contraction of [x]) then every eliminated point in [y]\[x] does not satisfy
c. Thus, with a simple negation trick, a contractor C̄ such that all eliminated
points satisfy c is as easy to build.

Example 2. Consider the set inversion problem, in §2.2. A point inside the ring
satisfies f(x) ∈ [y]. Consider a contractor C̄ built from f(x) 6∈ [y]. If C̄([x]) = [y]
then [x]\[y] is inside the ring.

Given a box [x] and a constraint c, if the complementary contractor C̄ reduces
[x] to [y], then [x]\[y] can be classified, i.e., mark as “inside c”. Then, the paver
proceeds as follows (the algorithm is detailed below). The solver takes as input
a list of contractors and an initial box [x](0). The first contractor is enforced on
[x] := [x](0). If the contraction is effective, a smaller box [x]′ is returned and the
difference4 [x]\[x]′ is stored in a sub-paving associated to the first contractor.

4 Note that resorting to a simple tree structure avoids to explicitly describe the dif-
ference between [x] and [x]′: the latter simply becomes a subnode of the former.

14

Only [x]′ is left to be treated, and the second contractor is called. When all
the contractors become ineffective on a box [x], we can say that the common
fixpoint of all contractors is reached and [x] is bisected. The whole process is
then repeated until the list of boxes becomes empty. We will see in the next
section how the termination of the algorithm can be guaranteed.

algorithm paver(contractors C1, . . . , Ck, box [x](0))
output: a paving of [x](0)

create k empty subpavings K1, . . . , Kk

push [x](0) on the stack
while the stack is not empty
| pop [x] from the stack
| do
| | fixpoint ← true
| | i ← 1
| | while [x] 6= ∅ and i≤k
| | | [x]′ ← Ci([x])
| | | if [x]′ 6= [x]
| | | | Ki ← Ki ∪([x]\[x]′)
| | | | fixpoint ← false
| | | | [x]← [x]′

| | | i← i + 1
| while [x] 6= ∅ and fixpoint=false
| if [x] 6= ∅
| | bisect [x] into two subboxes [x](1) and [x](2)

| | push [x](1) and [x](2) on the stack

Note that paver is not an AC3-like algorithm, for essentially two reasons. First,
contractors given to the paver algorithm usually involve all the variables merely
because they all correspond to sets (or more generally, to sub-pavings) which
have the same dimension as the initial box. This is not a rule but a “user advice”.
One can put different constraints at this level in order to trace their contraction
power. But, the paver level is intended to deal with sets while all the constraints
related to a given set should be encapsulated in the same outer or inner con-
tractor, as explained further. Second, because the semantics of contractors goes
beyond that of constraints, the order in which they are called may have an in-
fluence on the quality of the result (the number of boxes in a subpaving). For
instance, a contractor designed to detect a very weak condition should preferably
be called on last resort (we might lose boxes satisfying a stronger condition).

15

3.2 Contractors

Definition 1 (Contractor). A contractor is a mapping C from IR
n to IR

n

such that

(i) ∀[x] ∈ IR
n, C([x]) ⊆ [x] (contraction)

(ii) (x ∈ [x], C({x}) = {x})⇒ x ∈ C([x]) (consistency)
(iii) C({x}) = ∅ ⇔ (∃ε > 0, ∀[x] ⊆ B (x, ε) , C([x]) = ∅) (continuity)

where B (x, ε) is the ball centered on x with radius ε.

A box [x] is said to be insensitive to C if C([x]) = [x] and sensitive otherwise. By
extension, a point x is said to be sensitive or insensitive whether {x} is sensitive
or not. Property (i) states that a box can only be reduced by a contractor.
Property (ii) states that no insensitive points can be removed. Finally, property
(iii) is required for properties on the paver as we will explain further.

The set associated to a contractor C is the union of all of its insensitive points:

set(C) = {x ∈ R
n, C(x) = x}.

The continuity property of C implies that set(C) is closed.

If C is a contractor for a constraint c, in the classical sense of the word (see
§1.1), then set(C) ⊇ set(c). An important novelty in our formalism is to consider
sets associated to contractors rather than to constraints. This allows a rigorous
description of the output of our paver (see Proposition 2). A contractor is not
only an algorithm, it can also be interpreted as a subset of R

n, and all the
standard operations on sets can be extended to contractors. We define:

(C1 ∩ C2)([x]) := C1([x]) ∩ C2([x]) (intersection)

(C1 ∪ C2)([x]) := �

(

C1([x]) ∪ C2([x])
)

(union)

(C1 ◦ C2)([x]) := C1(C2([x])) (composition)
C∞

1 := C1 ◦ C1 ◦ C1 ◦ . . . (iterated composition)
C1 ⊓ C2 := (C1 ∩ C2)

∞ (iterated intersection)
C1 ⊔ C2 := (C1 ∪ C2)

∞ (iterated union).

(2)

All these operations are stable, i.e., they only yield contractors.

We also introduce the following definition:

Definition 2. Let C1, . . . , Ck be a collection of contractors.

C1, . . . , Ck are complementary if set(C1) ∩ . . . ∩ set(Ck) = ∅,
C1, . . . , Ck are independent if ∀i 6= j, set(Ci)

C ∩ set(Cj)
C = ∅.

Additional properties of contractors play a significant role:

C is monotonous if [x] ⊆ [y]⇒ C([x]) ⊆ C([y]),
C is minimal if ∀[x] ∈ IR

n, C([x]) = �([x] ∩ set(C)),
C is idempotent if ∀[x] ∈ IR

n, C(C([x])) = C([x]).
(3)

16

Given a contractor C on R
n×R

m, we also define the two following contractors
on R

n:

C∪[y]([x]) :=
⋃

y∈[y] πx(C([x], y)

C∩[y]([x]) :=
⋂

y∈[y] πx(C([x], y)

with πx([x], [y]) := [x]. The first operation is called proj-union and the second
proj-intersection. Once again, these operations are stable in the set of contrac-
tors. We have:

set(C∪[y]) = {x, ∃y ∈ [y], (x, y) ∈ set(C)},
set(C∩[y]) = {x, ∀y ∈ [y], (x, y) ∈ set(C)}.

Fig. 7. Proj-Union. We consider a contractor C on IR
2 with S := set(C). (a) Repre-

sentation of C∪[y] when [y] is degenerated (a real y). The contraction on [x] results in
an enclosure of {x ∈ [x] | (x, y) ∈ S}. Since C is continuous, when both [x] and [y] are
degenerated, the enclosure is minimal, i.e., C∪y(x) = {x} iff (x, y) ∈ S. (b) Principle of
an implementation resorting to parameter splitting and union of sub-contractions (the
interval [y] is decomposed as finely as possible). (c) Result of the proj-intersection in
practice: only an outer approximation of set(C∪[y]) is obtained, after numerous repeti-
tions of the splitting operation presented in (b).

This result being rather intuitive, the proof is not given (see Figures 7 and
8). In practice, these operators are implemented as follows. For the proj-union,
[y] is split into a sequence of small subintervals [y]i. Then, the contractor C is
enforced on each sub-domain [x]× [yi] and the hull of the results is returned. For
the proj-intersection, a sequence of points yi are sampled from [y], C is enforce
on [x]× {yi} and the intersection of the results is returned.

Although examples of contractors will be the topic of Section 4, we shall in-
troduce right here the precision contractor Cε that has a special status. This
contractor is aimed at controlling the precision of the paver or scheduling con-
tractors (see §5.1 and §5.3) and will be implicitly referred to in the subsequent
propositions.

17

Fig. 8. Proj-intersection. (a) In a similar way as in Figure 8, given a fixed interval
[y], C∩[y] allows to constrain x ∈ R with ∀y ∈ [y], (x, y) ∈ S. (b) Principle of an
implementation resorting to parameter splitting and intersection. (c) Result of the
proj-intersection in practice: only an outer approximation of set(C∩[y]) is obtained.

Definition 3 (Precision contractor). Given ǫ > 0, the precision contractor
Cε is defined as follows:

Cε([x]) :=

{

[x] if width([x]) > ǫ

∅ otherwise.

Many properties could be stated on contractors. As an example, the set of idem-
potent and monotonous contractors is a complete lattice for the inclusion. Listing
these properties would be out of the scope of this paper, which is rather aimed
at introducing the concepts. However, the fundamental properties of the paver
given in the previous section are based on the properties of contractors and we
are now in position for proving them.

3.3 Paver properties

Proposition 1 (Termination). Let {C1, . . . , Ck} be a list of complementary
contractors. The paver terminates for any initial box [x](0).

Proof. Assume by contradiction that paver does not terminate. Hence, there is
a sequence of non-empty boxes [x](i) and x̃ ∈ [x](0) such that for all i > 0:

(i) [x](i) ⊂ [x](i−1) (strict inclusion, i.e., [x](i) 6= [x](i+1))

(ii) C1([x](i)) = . . . = Ck([x](i)) = [x](i)

(iii) x̃ ∈ [x](i)

Indeed, (i) is a direct consequence of the properties of contractors and bisections
and (ii) is due to the fixpoint postcondition of the inner while loop inside the

18

paver algorithm. Finally, for all i, pick a point x̃(i) ∈ [x](i) (which is nonempty).
The sequence is bounded so it admits at least one accumulation point x̃. Since
for all i, [x](i) is a closed set that contains the whole subsequence (x̃(j))j≥i, it
also contains this accumulation point x̃. Hence, (iii) holds.

Now, each box [x](i) can be identified to a 2n-tuple u(i) of its vertices coordi-
nates. This identification can be made isometric with appropriate distances (the
Hausdorff distance on IR

n and its counterpart on R
2n). For all component j,

1 ≤ j ≤ 2n, the sequence u
(i)
j is either increasing or decreasing, and bounded by

a component of x̃. Hence, it converges to a point ūj . By the inverse isometry,
it follows that the sequence of boxes [x](i) converges then to a box ¯[x]. Further-
more, the width of this box is necessarily null (i.e., ¯[x] is a degenerated box {x̄})
since

∀i ≥ 0, rad([x](i+n)) ≤
1

2
rad([x](i)).

Next, we have set(C1)∩. . .∩set(Ck) = ∅ which means that at least one contractor
Cl satisfies x̄ 6∈ set(Cl). By applying the continuity property of Cl (see Definition
1) we obtain that there exists ǫ and i such that [x](i) ⊆ B(x̄, ǫ) and Cl([x](i)) = ∅,
i.e., a contradiction. �

To ensure the complementarity between contractors, we usually resort to the
precision contractor because set(Cε) = ∅.

Informally, the following proposition states that, up to a given precision ǫ, the
sub-paving associated to a contractor matches the intersection of the other con-
tractors sets. Since the set of a contractor usually approximates the set related
to an initial constraint, we have now a clear semantics for the paver.

Proposition 2 (Sub-pavings characterization). Let {C1, . . . , Ck} be a list
of independent contractors and Cε such that set(Cε) = ∅. Let us denote by
K1, . . . , Kk and Kǫ the sub-paving returned by paver for C1, . . . , Ck and Cε re-
spectively. We have:

∀i, 1 ≤ i ≤ k,
⋂

j 6=i

set(Cj)\Ki ⊆ Kǫ .

Proof. First of all, paver terminates thanks to the previous proposition. Let i be
an index, 1 ≤ i ≤ k. For all j 6= i we have by hypothesis set(Ci)

C ∩ set(Cj)
C = ∅

hence set(Ci)
C ⊆ set(Cj) which implies set(Ci)

C ⊆ ∩j 6=i set(Cj). Since ∀[x] ∈ Ki

we have [x] ⊆ set(Ci)
c (by applying the consistency of Ci), then Ki ⊂ set(Ci)

C ⊂
∩j 6=i set(Cj). The two last inclusions are strict because set(Ci)

C is open while
the other sets are closed. It follows that

⋂

j 6=i set(Cj)\Ki is nonempty.

Take [x] in this set and assume [x] 6∈ Kǫ. The box [x] has been removed from the
search by Cl with 1 ≤ l ≤ k, i.e. [x] ⊆ set(Cl)

C . Since [x] ∈
⋂

j 6=i set(Cj) then
l = i which leads to a contradiction since [x] 6∈ Ki. �

19

4 Contractor design

In this section, we present some contractors and operations that do not help
in modeling problems but in improving the efficiency of a paver. We basically
explain how to manage a constraint c, i.e., the different ways to build a contrac-
tor C satisfying set(C) = set(c). Likewise, all the operations op will preserve
associated sets. E.g., an unary operator op will satisfy for all contractor C,
set(op(C)) = set(C).

Hence, contractors and operations in this section will not have an influence on
the result, in terms of sub-paving characterization. On the other hand, they may
decrease the time complexity or the space complexity (i.e., the number of boxes
in a sub-paving).

We will overlook technical details on purpose here, sticking to generalities. The
interested reader may refer to Section 6 where important implementation choices
we made for our own system are disclosed.

We shall distinguish numerical contractors, those which are directly built from
a numerical constraint, and those which are the result of an operation (such as
composition) between other contractors.

Numerical contractors can be related to equations, inequalities or systems of
equations. The point is that a large part of interval analysis routines can be
wrapped into these contractors. As announced above, a good separation can
then be obtained between numerical skills (the design of numerical contractors)
and constraint programming skills (the design of compound contractors).

In this layered framework, constraint propagation will be generalized to con-
tractor propagation. A possible implementation of the corresponding operator
(propag) will be described in detail in §6.3.

4.1 Numerical contractors

Several contractors can be associated to an equation f(x) = 0.

The simplest one consists in evaluating with interval arithmetics f([x]) and
checking whether 0 belongs to the image range or not. If 0 6∈ f([x]) then [x]
can be contracted to the empty set. Otherwise, it is left unchanged. This con-
tractor can therefore be qualified as binary (in the sense that it keeps all or
nothing). This test can be easily extended to inequalities. This contractor can
be given many variants, based on various symbolic or numerical processing as
the two following examples show.

Example 3. Assume that there exist several equivalent expressions for f , say
f1, . . . , fk, each of them minimizing the multi-incidence of a different variable.
Since the overestimation of interval evaluation grows with the multi-incidence of
variables (see [34]), we get to sharper results by computing f1([x])∩ . . .∩ fk([x])
instead of f([x]), whence a more accurate (but slower) test.

20

Example 4. On the numerical side, we can resort to the centered form, i.e.,
compute f(x0) + f ′([x])([x] − x0) instead of f([x]) where x0 is an arbitrary
point inside [x]. Higher-order Taylor formulas may also be payfull. One may also
introduce intermediate monotonicity tests. Consider a two-dimensional vector x.
If ∂f

∂x1

([x]) turns to be a positive interval then f is increasing with respect to

x1 so that f([x]) can be replaced by [f({x−
1 } × [x2]), f({x+

1 } × [x2])], a smaller
interval.

More sophisticated contractors associated to a constraint c (equation or inequal-
ity) compute an outer estimation of the feasible set, i.e., C([x]) is a nontrivial
superset of {x ∈ [x] | c(x)}. Three important techniques can be found in the
literature:

1. Forward-backward traversals of the syntax tree with intermediate interval
computations, such as HC4Revise [3].

2. Univariate interval Newton iterations (as performed by the narrowing oper-
ator of box consistency [47]).

3. Linear relaxations (see [30] and references therein). In such techniques, a
nonlinear constraint is cast into a linear program which feasible region en-
compasses the original solution set.

Given an equation f(x) = 0, we will denote by Cf in the sequel an arbitrary
contractor among those above.

Of course, numerical techniques can also handle several equations simultane-
ously, i.e., a system of equations. Many of them are derived from a multivariate
interval Newton, one famous variant being the Hansen-Sengupta algorithm [17].
In case of linear equalities, many dedicated algorithms also exist (see [35] or
[37]). One can be easily convinced that all these algorithms act as contractors.

4.2 Propagation

The propagation operator allows the implementation of interval variants of the
classical AC3 algorithm such as hull consistency (see, e.g., [3, 11]) but also many
more algorithms. This operator illustrates by itself the potential of our frame-
work, in terms of contractor design. The key idea is to propagate contractors
instead of constraints.

Given a list of contractors, the principle is to obtain the fixpoint of their com-
position, i.e., (C1 ◦ · · · ◦Cm)∞ at a lower computation price. We shall denote by
propag our operator. We have:

set(propag(C1, . . . , Cm)) = set((C1 ◦ · · · ◦ Cm)∞)

which means that propag is a pure efficiency contractor (it has no impact on the
output).

21

An implementation of this operator will be proposed in §6.3.

Let us now recall that the hull consistency enforces bound consistency for each
equation. In practice, only a relaxation of bound-consistency is calculated via
the HC4Revise algorithm. The resulting propagation algorithm is called HC4. In
our framework, given a list of constraints c1, . . . , cm, the HC4 algorithm is simply
reimplemented as follows

HC4(c1, . . . , cm) ← propag(HC4Revise(c1), . . . , HC4Revise(cm))

A more interesting direct application is a multi-level propagation. Sometimes,
we would like to group constraints we know to have strong “dependencies”. For
instance, one may find relevant to perform an intermediate fixpoint with con-
straints that strictly share the same variables. Consider three sets of constraints
{c1, c2, c3}, {c4} and {c5, c6}. The following contractor will ensure that a con-
straint in a subset (say, c4) will not be wakened between constraints of other
subsets (say, c1 and c2).

propag(propag(c1, c2, c3),c4,propag(c5, c6))

4.3 Shaving

The purpose of this section is to show that other operators exist besides propag.

Shaving is an operation that allows implementing refutation techniques, similar
to SAC [5] with discrete domains. With continuous domains, refutation is used
to shrink endpoints only (instead of any value inside the domains) so that the
structure of interval is always maintained (whence the fancy name shaving).

Detailing the algorithm here would take too much room. We shall only give a
rough description.

A shaving operator shave takes a contractor C. Given a box [x], the resulting
contractor shave(C) contracts “slices” with C, i.e., subboxes obtained from [x]
by restricting the domain [x]k of one component to a small subinterval [x−

k , x−
k +ǫ]

or [x+
k −ǫ, x+

k]. When the result of the subcontraction is an empty set, the slice is
removed. Otherwise, contraction is tried on a smaller slice. This recursion leads
to consistent endpoints. More formally, the resulting box [y] := (shave(C))([x])
satisfies ∀k = 1, . . . , n

C([y]1 × · · · × [y]k−1 × {y
−
k } × [y]k+1 × · · · × [y]n) 6= ∅

and

C([y]1 × · · · × [y]k−1 × {y
+
k } × [y]k+1 × · · · × [y]n) 6= ∅.

The shaving operator can also be given many variants mainly because of the
slicing which can either be optimistic (“try large slices first”) or pessimistic
(“check consistency of endpoints first”).

22

Given m constraints c1, . . . , cm, a box consistency operator (see [4, 45, 47]) can
be reimplemented in our framework as follows:

propag(shave(univNewton(c1)),. . . ,shave(UnivNewton(cm)))

where UnivNewton is an univariate interval Newton contractor (see §4.1). The
3B consistency defined in [31] can be reimplemented as follows:

shave(HC4(c1, . . . , cm)).

5 Revisiting examples

We now revisit all the examples in our framework. By convention, the sub-paving
of the precision contractor will always be represented in white in the pictures.
As a preliminary example, consider the system of equations in Figure 1 page 8
and remember that the goal is to enclose the solution set into a sub-paving. By
a direct application of our formalism, we then need two contractors:

1. A contractor Cf , to remove unfeasible points.
2. The precision contractor Cε.

The desired output is given in Figure 9. This time, the result of the outer con-
traction appears as a sub-paving with only unfeasible points. The roots are all
in the sub-paving of the precision contractor.

Fig. 9. System of equations, with an outer and precision contractor. The sub-paving
of the outer contractor is in light gray.

23

5.1 A decomposable problem

Assume that each subsystem (called block) has to be solved by a combination
of propagation and interval Newton. Of course, a multivariate interval Newton
(denoted by newton henceforth) requires a square system. When one variable
is fixed (e.g., xC and yC when the second triangle is to be solved), it must not
be considered as a variable by newton but rather as an interval constant. Such
information typically enters as a “static” parameter (see §6.1). For that reason,
the newton contractor takes two arguments: the set of constraints and the set
of variables. Similarly, let us refine the behaviour of the precision contractor Cε

(see §4). This contractor will also take here a subset S of variables in parameter.
A box [x] is emptied by Cε(S) if and only if the domains of the components in
S all have a diameter lower than ε.

In the sequel, dPQ denotes the distance constraint between two points P and Q.

For each block (here: a triangle), the solving strategy is implemented thanks to
the following operator block contractor:

block contractor({c1, . . . , ck}, {x1, . . . , xk}) ←
HC4(c1,. . . ,ck) ∩ newton({c1, . . . , ck}, {x1, . . . , xk})

For instance, a paver run with block contractor({dBD, dCD}, {xD, yD}) (and
Cε) with xC and yC fixed (i.e., their domains have a diameter less than ε) will
solve the second triangle in the required manner, i.e., using propagation and
Newton.

The step-by-step solving method proposed in §2.1 can then be directly imple-
mented with the following contractor:

block contractor({dAC, dBC},{xC , yC})
∩ (Cε({xC , yC})
∪ (block contractor({dBD, dCD}, {xD, yD})
∩ (Cε({xC , yC , xD, yD})
∪ block contractor({dDE, dCE}, {xE, yE})))

provided that variables are bisected block after block. In more details, the vari-
ables of the first block {xC , yC} must be bisected (say, in a round-robin fashion)
until precision is achieved for both of them. The bisection procedure must then
proceed to the second block, and so on. Branching procedures are not covered
in this paper but this mechanism is orthogonal to contractors and one should be
easily convinced that a block-wise bisection is easy to set up.

5.2 Enhanced description of the ring

In the set inversion problem, we need to characterize {x | f(x) ∈ [y]}. This means
that two sets have to be described by contractors: {x | f(x) ∈ [y]} (the ring)

24

Fig. 10. A description of the ring involving outer and inner contractors.

and {x | f(x) 6∈ int([y])} (the complementary of the ring). Put [y] = [y−, y+]
and g(x) := f(x)− y.

To deal with unfeasible points, we need an outer contractor. This contractor,
denoted by Cf∈[y], can be simply defined as follows:

Cf∈[y] := [x] 7→ πx(Cg([x], [y])).

The points inside the ring have to be classified with an inner contractor. As
explained in §2.2, the latter comes naturally with the negation of the problem.
We have

c(x) ⇐⇒ f(x) ∈ [y] ⇐⇒ y− ≤ f(x) and f(x) ≤ y+

⇐⇒ f(x) ∈ [y−, +∞) and f(x) ∈ (−∞, y+].

Hence,

c̄(x) ⇐⇒ f(x) ∈ (−∞, y−) or f(x) ∈ (y+, +∞)
=⇒ f(x) ∈ (−∞, y−] or f(x) ∈ [y+, +∞)

Therefore, the contractor

Cf 6∈[y]([x]) := [x] 7→ πx(Cg([x], (−∞, y−])) ∪ πx(Cg([x], [y+, +∞)))

only removes unfeasible points for c̄, i.e., feasible points for c.

Now, set(Cf∈[y]) ∩ set(Cf 6∈[y]) is the boundary of the ring, which is non empty.
Hence, we have to add a precision contractor to ensure the termination of the al-
gorithm. The result is depicted in Figure 10. Since Cf∈[y] and Cf 6∈[y] are indepen-
dent, the ring represented on the figure can be interpreted as an approximation
of the set to be described (see proposition 2).

25

Fig. 11. An appropriate paving, with smooth boundaries between surface levels.

5.3 Level surfaces

First of all, the contractor Cf∈[yi,+∞) (as defined in the previous paragraph)

could be associated to the ith level surface {f ≥ yi}. Of course, in this way, the
contractor of the lowest surface level would preempt most of the boxes, leading
to a bad result (independence does not hold).

Introducing a priority between the different contractors (in addition to indepen-
dence) does not require any extra concept. We just need to adapt the contractors
to their actual semantics: a (sufficiently small) box [x] must be classified with
the contractor of the ith surface level only if

[x] is inside the ith surface level
and [x] does not intersect the (i−1)th surface level

or [x] has a small width (lower than ε)

The desired contractor Ci is then obtained by simply rewriting these conditions
in terms of sub-contractors:

Ci := Cf 6∈[yi,+∞) ∪
(

Cf∈[yi−1,+∞) ∩Cε

)

or, using a sub-distributivity rule:

Ci := Cf 6∈[yi−1,+∞] ∩
(

Cf∈[yi,+∞) ∪Cε

)

.

Finally, we need as before an outer contractor for all the surface levels, namely,
Cn+1 := Cf∈(−∞,yn]. Moreover, the intersection of C1∩ . . .∩Cn+1 is {x | f(x) =
yn} and, as usual, this set can be treated by a precision contractor Cε. Figure
11 shows the desired output.

26

5.4 Set inclusion

Fig. 12. The set inclusion problem solved by a more adapted algorithm. Boxes in dark
gray does not belong to set(c1). Boxes in light gray are inside set(c2). We resort to
splitting only in regions where boundaries of set(c1) and set(c2) are close.

The set inclusion problem can be solved efficiently in our formalism by using the
following simple reasoning.

A box [x] can be discarded from the search either if it does not belong to set(c1)
or if it is included in set(c2). Indeed, in both cases, [x] cannot compromise the
assertion to be proven since ∀x ∈ [x] we have c1(x)=⇒ c2(x).

Hence, an inner contractor C1 for c1 and an outer contractor C2 for c2 can be
used jointly. Only the box that both (possibly) contain points inside set(c1) and
outside set(c2) are bisected. The result is depicted in Figure 12.

No precision need to be introduced if int(set(c1)) ⊆ set(c2) (where int stands for
interior) since the algorithm will end in this case (we have set(C1)∩set(C2) = ∅).
But we still need a precision contractor Cε in case of non inclusion.

5.5 Bounded-Error Parameter estimation

As we evoked above, modeling this problem causes no difficulty. The overall
inner contractor is the union of the inner contractors related to each measure,
say, Cgi 6∈[yi] with gi(p) := f(p, ti) and ti ∈ [ti]. Here, the interval extension of gi

is a thick function since an interval constant [ti] substitutes for the variable ti.

Likewise, the intersection of the outer contractors Cgi∈[yi] defines an outer con-
tractor for the whole problem.

27

Fig. 13. Parameter estimation solved with inner and outer contractors based on proj-
union and proj-intersection. The precision of the paver is still 0.01.

For efficiency, we have to split ti inside the ith outer and inner contractor. Con-
sider first outer contraction: (p1, p2) is feasible if at least one value in [ti] satisfies
f(p, ti) ∈ [yi]. Hence, if a point (p, ti) ∈ R

3 is insensitive to Cf∈[yi] then p must
be insensitive to the outer contractor. The proj-union defined in §4 exactly fits
this requirement. We define:

Couter := C
∪[t1]
f(p,t1)∈[y1]

∩ . . . ∩ C
∪[t10]
f(p,t10)∈[y10]

Similarly, the proj-intersection fits the requirement for the inner contraction.
Indeed, a point (p, ti) ∈ R

3 sensitive to Cf 6∈[yi] must be discarded by the inner
contractor. We define:

Cinner := C
∩[t1]
f(p,t1) 6∈[y1]

∪ . . . ∪ C
∩[t10]
f(p,t10)) 6∈[y10]

A paving resulting from the combination of these contractors is shown in Figure
13.

6 The Quimper System

Besides theoretical investigations, contractor programming has given rise to a
real system named Quimper (QUick Interval Modeling and Programming in a
bounded-ERror context). This system includes today three different programs:
qPave (a graphical tool for paving sets in 2D), qSolve (a tool for listing numerical
results, typically in high dimension) and qTraj (a graphical tool tailored to
constraint problems derived from differential equations).

These are light-weight programs that only manage input/ouput, i.e., the lan-
guage for writing contractors (the “Quimper language”) and the interface for

28

configuring, running the paver and handling generated pavings. They are linked
to a C++ library called Ibex (Interval-Based Explorer) that implements a con-
tractor programming framework.

Ibex is based itself on the Profil/Bias library [28] for the low-level interval
arithmetics. However, part of this library has been wrapped into functions that
manage all the borderline cases (infinite bounds, values out of definition domains,
empty sets, etc.) so that arithmetic operations are always exception-free. This
explains why a modified release of Profil/Bias is included in the Ibex package.

All these software components are under GPL licence and can be downloaded
online [7]. A user guide for Quimper (including the grammar of the Quimper

language), as well as a complete documentation of Ibex classes are available
on the same site. An archive containing all the examples of this paper in the
Quimper syntax is also provided.

Ibex/Quimper has been developed by the first author but this software should
be considered as a prototype since a real collaborative open-source project con-
tinuing this work is about to be launched. This new project will take advantage
of the existing code.

The purpose of this section is to give some insight into the Ibex system. For
convenience, we shall adopt some object-oriented coding notations. A contrac-
tor C is a class with the main function being contract, i.e., for a box [x]

C.contract([x])

contracts [x] with C.

Generalizing constraint propagation to contractor propagation required letting
the interface of contractors inherit from constraints. First, we can ask a con-
tractor whether the domain of a given variable can impact the result of the
contraction or not. This notion simply generalizes the incidence graph of a con-
straint network.

A contractor C, as a class, therefore implements a Boolean function involves

that takes in argument the index j of a variable, i.e.,

C.involves(j)

returns false or true. Note that, by default, a contractor always returns true.
In the parlance of object-oriented programming, this function needs not neces-
sarily be overridden.

Second, we also added a few parameters to the contract function above, besides
the box to be contracted, as explained in the next section.

29

6.1 Indicators

Every contractor has its own set of specific parameters. For instance, the precision
contractor Cε (maxdiamGT in the Quimper syntax) takes a parameter ε. The
interval Newton also needs a parameter for controlling the termination of the
iteration: when a step does not reduce any interval by more than a given ratio, the
procedure stops. This ratio can be set externally. These parameters are related
to the semantics specific to contractors (e.g., the precision contractor has by
definition a threshold) or their implementations. They are usually set once for
all (as constructor parameters). We shall not consider this type of parameters
any further.

There is another type of parameters required by constraint programming algo-
rithms for efficiency reasons, called indicators. The purpose of these parameters
is to notify contractors during the search about the context in which they are
called. For instance, we may inform a contractor that only a contraction on a
given variable is actually expected (any other contraction being superfluous).
If the time complexity of the contractor depends on the number of variables,
some work is spared. We may also inform the contractor that only the domain
of a given variable has been modified since the last call. Again, if the contractor
works incrementally, this will speed up contraction.

Two indicators have been integrated into our system, corresponding precisely
to the examples just given. The first is named scope and contains the subset of
variables to be treated. The second is named impacted and contains the subset
of variables whose domain has been impacted.

The semantics of indicators is constrained by one single fundamental property:
they can be ignored by a called contractor without spoiling soundness (i.e., losing
solutions), whence their name. If one develops a contractor that ignores the scope
indicator, this contractor can still be passed as argument to an operator, should
the latter be based on the communicability of this information (e.g., propagate
below). The consequence is only a loss of efficiency.

Hence, only two indicators are proposed today but the nice point with indicators
is that new ones can be invented at any time and integrated progressively in the
subsequent implementations of contractors. In other words, backward compati-
bility is complete. We just had to put all the indicators in a dictionary structure.
The real signature of the contract function is:

contract(box [x], dictionary indicators).

As an example, one can ask a contractor C to focus on the two first variables
only in the following way:

C.contract([x], {scope = {0, 1}}).

30

6.2 Numerical Contractors

There is nothing particular in the implementation of numerical contractors in
Quimper, except that indicators have to be managed.

– The binary test 0 ∈ f([x]) is actually not proposed in Quimper, but such a
contractor would necessarily ignore all the indicators.

– HC4Revise is implemented. The complexity of this contractor is linear in the
length of the constraint expression. Hence, contracting for a single variable
amounts to contracting for all the variables (up to a small constant factor).
In Quimper, HC4Revise ignores the scope indicator.

– The univariate interval Newton is implemented. As contrary to HC4Revise,
this contractor deals with one particular variable at a time. Setting the scope
indicator to a single variable divides the contraction time by the number of
variables.

– Linear relaxations are not yet implemented. Now, since a linear program-
ming solver is called iteratively to reduce the bounds of each initial variable,
the scope indicator would have to be taken into account as with univariate
Newton.

The multivariate interval Newton is also implemented and ignores the scope and
impacted indicators.

6.3 Propagation

Here is how the propagation operator is implemented in Quimper.

Our convention for indices is to use i and j for contractors and variables respec-
tively. When a couple (i, j) is revised, the ith contractor has to work on the jth

variable. If the revision succeeds (a significant part of the ith domain is removed)
then the agenda is updated with the following classical procedure:

update agenda(integer i, integer j, subset scope)
| forall i′ 6= i such that Ci′ .involves(j)
| | forall j′ such that Ci′ .involves(j

′)
| | | if j′ ∈ scope\{j} then add (i′, j′) in the agenda

Now, if a revision (i, j) fails, there still may be a residual contraction. Further-
more, some subcontractors may not take into account the scope indicator so that
unsolicited contractions can appear as the propagation loop goes along. At some
point, the accumulation of these small contractions on a variable j can add up to
a significant contraction. The agenda must be updated in consequence. In this
case, the jth variable is the source but there is not a particular contractor. The
agenda must then be updated with all the couples (i, j), i describing the set of
contractors. This is what the next procedure does.

31

update agenda(integer j, subset scope)
| forall i such that Ci.involves(j)
| | forall j′ such that Ci.involves(j

′)
| | | if j′ ∈ scope then add (i, j′) in the agenda

Now, let us give the main procedure. Two local boxes are defined, the first is
used to measure the result of each revision (the contraction of Ci over xj) while
the latter measure the contractions collected since the last time xj triggered an
update.

contract(box [x], subset scope, subset impacted)
box [xrev]← [x] // keeps track of domains before last revision
box [xupd]← [x] // keeps track of domains before last update
forall j′ ∈ impacted
| update agenda(j′,scope)
integer last i ← −1 // keeps track of the last contractor called
while the agenda is not empty
| pop (i, j) from the agenda
| | subset scope’ ← {j}; // we want to revise the jth variable only
| | subset impacted’ ← {}; // no domain has been touched ...
| | if (i 6= last i) // ... unless we popped a different contractor
| | | impacted’ ← { all variables }; // so that all may have been impacted
| | | forall j′ such that Ci.involves(j

′) // and all the constraint variables
| | | | [xrev]j′ ← [x]j′ // are now potentially impactable.
| | | last i ← i; // i becomes the last contractor called
| | Ci.contract([x], scope’, impacted’)
| | if [xupd]j\[x]j is sufficiently small // check accumulated contraction
| | | if [xrev]j\[x]j is sufficiently small // check last revision
| | | | update agenda(i,j,scope) // fine propagation
| | | else
| | | | update agenda(j,scope) // coarse propagation

| | | | [x]upd
j ← [x]j

6.4 Some performance results

All the examples in this paper have been executed almost instantaneously (less
than 0.1 second) when the precision was not high (this corresponds to the figures
with apparent boxes).

Figure 4.(a) was obtained by setting the precision of Cǫ to ǫ := 0.01. The paving
contains 17768 boxes and was generated in ∼ 1.2s.

Figure 5.(a) was obtained with two natural contractors corresponding to the
constraints c1(x) and (c̄1(x)∧ c2), with a precision set to ǫ := 0.005. The paving
contains 40844 boxes and was generated in ∼ 2.2s.

Figure 6.(a) was obtained with ǫ := 0.001 and by splitting 10 times the parameter
domain inside the contractors C∪ and C∩. Computation time was 26 seconds

32

in this case, mainly because of the parameter splitting process which occurs
systematically. The paving includes 18249 boxes.

7 Conclusion

We have presented a new framework for interval programming. The benefits of
this framework are twofold. First, a large class of constraint-based problems can
now be addressed with a unique simple algorithm, called paver. Second, a full
control on the solving process is at hand, including the core of the propagation
loop.

This framework is entirely built on the concept of contractor: inputs are con-
tractors instead of constraints. Similarly, outputs are related to contractor sets
instead of constraints sets. As just said, this –apparently small– change in mod-
eling can lead to significant improvements in the design of new solvers but also
in a declarative way. In a sense, the imperative aspect of solvers is now sub-
sumed in the declarative one: the end user write constraints while the constraint
programmer write contractors.

This approach is supported by a real system called Quimper which solves quickly
all the different problems mentioned in this paper.

There are plenty of possible extensions for this work. The first one is perhaps to
deal with global optimization. This extension would probably resort to dynamic
contractors, i.e., contractors parameterized by a value that can be updated dur-
ing the solving process. Orthogonally to contractors that potentially remove all
unfeasible points, local finders that find peculiar feasible points seem to be a key
feature as well.

References

1. H. Batnini and M. Rueher. Décomposition Sémantique pour la Résolution de
Systèmes d’Equations de Distance. JEDAI, Journal Electronique d’Intelligence
Artificielle, 2(1), 2004.

2. F. Benhamou and F. Goualard. Universally Quantified Interval Constraints. In
CP’00: 6th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 67–82, 2000.

3. F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising Hull and
Box Consistency. In ICLP, pages 230–244, 1999.

4. F. Benhamou, D. McAllester, and P. Van Hentenryck. CLP(intervals) revisited. In
International Symposium on Logic programming, pages 124–138. MIT Press, 1994.

5. C. Bessière and Debruyne R. Optimal and Suboptimal Singleton Arc Consistency
Algorithms. In IJCAI, 19th International Joint Conference on Artificial Intelli-
gence, pages 54–59, 2005.

6. C. Bliek, B. Neveu, and G. Trombettoni. Using Graph Decomposition for Solv-
ing Continuous CSPs. In CP’98: 4th International Conference on Principles and
Practice of Constraint Programming, pages 102–116. Springer, 1998.

33

7. G. Chabert. IBEX, an Interval-Based EXplorer. http://www.ibex-lib.org.

8. H. Collavizza, F. Delobel, and M. Rueher. Extending Consistent Domains of Nu-
meric CSP. In IJCAI, Sixteenth International Joint Conference on Artificial In-
telligence, pages 406–413, 1999.

9. E. Davis. Constraint Propagation with Interval Labels. Artificial Intelligence,
32(3):281–331, 1987.

10. R. Dechter. Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2003.

11. F. Delobel, H. Collavizza, and M. Rueher. Comparing Partial Consistencies. Re-
liable Computing, 5(3):213–228, 1999.

12. A. Goldsztejn. A branch and prune algorithm for the approximation of non-linear
AE-solution sets. In SAC’06: Proceedings of the 2006 ACM symposium on Applied
computing, pages 1650–1654, 2006.

13. A. Goldsztejn and L. Jaulin. Inner and Outer Approximations of Existentially
Quantified Equality Constraints. In CP’06: 12th International Conference on Prin-
ciples and Practice of Constraint Programming, pages 198–212. Springer, 2006.

14. C. Grandón, G. Chabert, and B. Neveu. Generalized Interval Projection: A New
Technique for Consistent Domain Extension. In IJCAI, 20th International Joint
Conference on Artificial Intelligence, pages 94–99, 2007.

15. L. Granvilliers and F. Benhamou. Algorithm 852: RealPaver: An Interval Solver
using Constraint Satisfaction Techniques. ACM Transactions on Mathematical
Software, 32(1), 2006.

16. E. Hansen. Global Optimization using Interval Analysis (second edition). Dekker,
2003.

17. E.R. Hansen and S. Sengupta. Bounding Solutions of Systems of Equations Using
Interval Analysis. BIT Numerical Mathematics, 21(2):203–211, 1980.

18. P. Herrero, M.A. Sainz, J. Veh́ı, and L. Jaulin. Quantified Set Inversion Algorithm
with Applications to Control. Reliable Computing, 11(5):369–382, 2005.

19. E. Hyvönen. Constraint Reasoning Based on Interval Arithmetic: The Tolerance
Propagation Approach. Artificial Intelligence, 58(1-3):71–112, 1992.

20. ILOG. ILOG Solver. http://www.ilog.com/products/cp/.

21. L. Jaulin. Localization of an Underwater Robot using Interval Constraint Prop-
agation. In CP’06: 12th International Conference on Principles and Practice of
Constraint Programming, 2006.

22. L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis. Springer,
2001.

23. L. Jaulin and E. Walter. Guaranteed Bounded-Error Parameter Estimation for
Nonlinear Models with Uncertain Experimental Factors. Automatica, 35(5):849–
856, 1999.

24. C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Decomposition of Geomet-
ric Constraint Systems: a Survey. IJCGA, International Journal of Computational
Geometry and Applications, 16(5–6):479–511, 2006.

25. N. Jussien, G. Rochart, and X. Lorca. The CHOCO Constraint Programming
Solver. In CPAIOR’08 workshop on Open-Source Software for Integer and Con-
traint Programming (OSSICP’08), 2008.

26. R. B. Kearfott. GlobSol. http://interval.louisiana.edu/GlobSol.

27. R.B. Kearfott. Rigorous Global Search: Continuous Problems. Springer, 1996.

28. O. Knüppel. Profil/Bias. http://www.ti3.tu-harburg.de/Software/PROFILEngli
sch.html.

34

29. M. Z. Lagerkvist and C. Schulte. Advisors for Incremental Propagation. In CP’07:
13th International Conference on Principles and Practice of Constraint Program-
ming. Springer, 2007.

30. Y. Lebbah, C. Michel, and M. Rueher. Efficient Pruning Technique Based on Linear
Relaxations. In COCOS, volume 3478 of Lecture Notes in Computer Science, pages
1–14, 2003.

31. O. Lhomme. Consistency Techniques for Numeric CSPs. In IJCAI, 13th Interna-
tional Joint Conference on Artificial Intelligence, pages 232–238, 1993.

32. J-P. Merlet. Alias. http://www-sop.inria.fr/coprin/logiciels/ALIAS.
33. J-P. Merlet. Solving the Forward Kinematics of a Gough-type Parallel Manipulator

with Interval Analysis. International Journal of Robotics Research, 23(3):221–236,
2004.

34. R. Moore. Interval Analysis. Prentice-Hall, 1966.
35. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University

Press, 1990.
36. B. Neveu, G. Chabert, and G. Trombettoni. When Interval Analysis Helps Inter-

Block Backtracking. In CP’06: 12th International Conference on Principles and
Practice of Constraint Programming. Springer, 2006.

37. S. Ning and R.B. Kearfott. A Comparison of Some Methods for Solving Linear
Interval Equations. SIAM Journal of Numerical Analysis, 34(1):1289–1305, 1997.

38. S. Ratschan. RSolver. http://rsolver.sourceforge.net.
39. S. Ratschan. Quantified constraints under perturbation. Journal of Symbolic Com-

putation, 33(4), 2002.
40. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-

dations of Artificial Intelligence). Elsevier Science Inc., 2006.
41. N. Sahinidis. BARON, Branch-And-Reduce Optimization Navigator. http://www.

andrew.cmu.edu/user/ns1b/baron/baron.html.
42. D. Sam-Haroud and B. Faltings. Consistency Techniques for Continuous Con-

straints. Constraints, 1:85–118, 1996.
43. C. Schulte, M. Lagerkvist, and G. Tack. Gecode. http://www.gecode.org/.
44. P. Van Hentenryck. The OPL optimization programming language. MIT Press,

Cambridge, 1999.
45. P. Van Hentenryck, D. McAllester, and D. Kapur. Solving Polynomial Systems

Using a Branch and Prune Approach. SIAM Journal of Numerical Analysis,
34(2):797–827, 1997.

46. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. The MIT Press,
2005.

47. P. Van Hentenryck, L. Michel, and Y. Deville. Numerica: A Modeling Language
for Global Optimization. MIT Press, Cambridge, 1997.

48. X-H. Vu. Rigorous Solution Techniques for Numerical Constraint Satisfaction
Problems. PhD Thesis, Swiss Federal Institute Of Technology In Lausanne, 2005.

35

