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Weighted Lp’s theory for a Stokes
problem in a perturbed half-space and in

an aperture domain

Chérif Amrouche ∗, Florian Bonzom

Laboratoire de mathématiques appliquées, UMR CNRS 5142, Université de Pau et des Pays
de l’Adour, IPRA, Avenue de l’Université, 64000 Pau cedex, France

Abstract The purpose of this work is to solve the Stokes problem with a Diri-
chlet boundary condition in a perturbed half-space and in an aperture domain,
two unbounded geometries with noncompact boundaries. We study the exis-
tence and the uniqueness of generalized solutions in weighted Lp’s theory with
1 < p <∞. We study too the case of strong solutions and very weak solutions.
Key words Weighted Sobolev spaces ; Stokes operator ; Dirichlet boundary
condition ; Aperture domain ; Perturbed half-space.

1 Introduction and preliminaries
Many problems in fluid dynamics, such as flows past obstacles, around cor-

ners or through pipes or apertures, are first conceptualized by Stokes or Navier-
Stokes equations in unbounded domains. In a previous paper ([4]), we have
solved the Stokes system in a particular unbounded domain, namely an exterior
domain in the half-space. We have given results in weighted Sobolev spaces which
are well-adapted to these problems because they satisfy an optimal Poincaré-
type inequality. Here, we want to study the Stokes system in two other types
of unbounded geometry. Let Ω ⊂ Rn, n ≥ 3, an unbounded domain with a
noncompact and sufficienly smooth boundary Γ = ∂Ω. Either

- Ω is a perturbed half-space, i.e. it is obtained by an arbitrary modification
of the half-space

Rn+ = {x = (x1, . . . , xn) ∈ Rn, xn > 0},

or

- Ω is an aperture domain, i.e. Ω consists of two half-spaces separated by
some wall of thickness d > 0 and connected by some hole (aperture).

∗Corresponding author. E-mail addresses: cherif.amrouche@univ-pau.fr (C. Amrouche),
florian.bonzom@univ-pau.fr (F. Bonzom).
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We can remind that the aperture domain became interesting since Heywood
([17], [18], in the Hilbert case) found the important role of the flux condition∫

M

u · n dσ

as an additional boundary condition in order to get uniqueness for the Stokes
problem with a Dirichlet boundary condition (see also [9], [20], [23] or [24]). Here,
we denote by M a (n − 1)-dimensionnal smooth manifold in the hole dividing
Ω in an upper domain Ω+ and a lower domain Ω− such that Ω = Ω+ ∪Ω− ∪M
is a disjoint decomposition and M = ∂Ω+ ∩ ∂Ω−. Further, n is the unit normal
vector on M directed to Ω− and u · n the normal component of the velocity
field u.

To study a Stokes problem, several families of spaces are used, like the com-
pletion of D(Ω) for the norm of the gradient in Lp(Ω) (in [17] and [13] for
instance), which has the inconvenient that, when p ≥ n and Ω = Rn, some very
treacherous Cauchy sequences exist in D(Rn) that do not converge to distribu-
tions, a behaviour carefully described in 1954 by Deny and Lions [11]. An other
family of spaces is the subspace in Lploc(Ω) of functions whose gradients belong
to Lp(Ω) (see [12]) which have an imprecision at infinity inherent to the Lploc
norm. We have chosen to go on working with the weighted Sobolev spaces be-
cause these spaces allow us to describe the behaviour of functions and not just
of their gradient, which is vital from the mathematical and the numerical point
of view. Moreover, on such geometries, we notice that even the boundary is not
bounded. So, we have to introduce weights even in the spaces of traces. We can
cite Hanouzet [19] who has given the first results for such spaces in 1971 and
Amrouche, Nečasová [7] who have extended these results in 2001 to weighted So-
bolev spaces which possess logarithmic weights (we just remind that logarithmic
weights allow us to have a Poincaré-type inequality even in the “critical” cases ;
see below for more details). Let us quote too Maz’ya-Plamenevskii-Stupyalis
[22] and Amrouche, Nečasová and Raudin [8] who have solved Stokes systems
in weighted Sobolev spaces with noncompact boundary.

In this paper, we state that we will concentrate only on the basic weights
for the sake of simplicity and because they are the most usual.

Now, we give a precise definition of a perturbed half-space. Let Ω an open
and connected domain such that

Rn+ ⊂ Ω ⊂ Rn.

There exists an open ball B ⊂ Rn such that

Ω ∪B = Rn+ ∪B.

We set Γ = ∂Ω the boundary of Ω that we suppose of class C1,1 ; then, we can
choose some bounded subdomain G ⊂ Ω with boundary ∂G of class C1,1 such
that Ω∩B ⊂ G. The ball B can be chosen centered on the origin and sufficiently
large so that there exists another ball B0 centered on the origin with closure
B0 ⊂ B such that

Ω ∪B0 = Rn+ ∪B0.
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Then, we define the following domains : Σ = Γ ∩ Rn−1, D = Rn−1 \ Σ and
S = Γ \ Σ. Moreover, we define also ω = Ω \ Rn+ (we notice that ∂ω = D ∪ S)
and ω′ the symmetric region of ω with respect to Rn−1. Finally, we choose B0

and B sufficiently large so that they satisfy ω′ ⊂ B0 ⊂ B and we introduce the
following partition of the unity

ψ1, ψ2 ∈ C∞(Rn), 0 ≤ ψ1, ψ2 ≤ 1, ψ1 + ψ2 = 1 in Rn,
ψ1 = 1 in B0, supp ψ1 ⊂ B.

Next, we give the definition of an aperture domain. For this, we set d ∈ R+
∗

and Rn−d = {x ∈ Rn, xn < −d}. Let Ω an open domain such that

Rn+ ∪ Rn−d ⊂ Ω ⊂ Rn.

There exists an open ball B ⊂ Rn such that

Ω ∪B = Rn+ ∪ Rn−d ∪B.

We set Γ = ∂Ω the boundary of Ω that we suppose of class C1,1 ; then, we
can choose some bounded subdomain G ⊂ Ω with boundary ∂G of class C1,1

such that Ω ∩B ⊂ G. The ball B can be chosen centered on (0, . . . , 0,−d
2

) and

sufficiently large so that there exists another ball B0 centered on (0, . . . , 0,−d
2

)

with closure B0 ⊂ B such that

Ω ∪B0 = Rn+ ∪ Rn−d ∪B0.

We define two disjoints subdomains Ω+ and Ω− of Ω and an (n−1)-dimensional
smooth manifold M with the following properties :

Ω = Ω+ ∪ Ω− ∪M, M = ∂Ω+ ∩ ∂Ω−,

and
Ω+ ∪B = Rn+ ∪B, Ω− ∪B = Rn−d ∪B.

We can notice that Ω+ and Ω− are perturbed half-spaces.

Finally, we define here again the following partition of unity :

ψ1, ψ2 ∈ C∞(Rn), 0 ≤ ψ1, ψ2 ≤ 1, ψ1 + ψ2 = 1 in Rn,
ψ1 = 1 in B0, supp ψ1 ⊂ B.
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We complete this introduction with a short review of the weighted Sobolev
spaces and their trace spaces. In all this article, we suppose that the dimension
n is greater than or equal to 3. For any integer q we denote by Pq the space of
polynomials in n variables, of degree less than or equal to q, with the convention
that Pq is reduced to {0} when q is negative.
For any real number p ∈ ]1,+∞[, we denote by p′ the dual exponent of p :

1
p

+
1
p′

= 1.

Let x = (x1, . . . , xn) be a typical point of Rn, x′ = (x1, . . . , xn−1) and let
r = |x| = (x2

1 + · · ·+ x2
n)1/2 denote its distance to the origin. We shall use two

basic weights :

ρ(r) = (1 + r2)1/2 and lg r = ln(2 + r2).

As usual, D(Ω) is the space of indefinitely differentiable functions with compact
support in Ω, D′(Ω) its dual space, called the space of distributions and D(Ω)
the space of restrictions to Ω of functions in D(Rn). We define also

Lploc(Ω) = {u, for any compact K ⊂ Ω, u ∈ Lp(K)}.

Then, for any integers n ≥ 3 and m ≥ 0 and real numbers p > 1 and α,
setting

k = k(m,n, p, α) =


−1 if

n

p
+ α /∈ {1, . . . ,m},

m− n

p
− α if

n

p
+ α ∈ {1, . . . ,m},

we define the following space :

Wm,p
α (Ω) = {u ∈ D′(Ω);

∀λ ∈ Nn : 0 6 |λ| 6 k, ρα−m+|λ|(lg r)−1Dλu ∈ Lp(Ω);

∀λ ∈ Nn : k + 1 6 |λ| 6 m, ρα−m+|λ|Dλu ∈ Lp(Ω)}.

It is a reflexive Banach space equipped with its natural norm :

‖u‖Wm,p
α (Ω) = (

∑
06|λ|6k

‖ρα−m+|λ|(lg r)−1Dλu‖pLp(Ω)

+
∑

k+16|λ|6m

‖ρα−m+|λ|Dλu‖pLp(Ω))
1/p.

We also define the semi-norm :

|u|Wm,p
α (Ω) = (

∑
|λ|=m

‖ραDλu‖pLp(Ω))
1/p.

Remark : In this paper, we will work sometimes in classical Sobolev spaces.
Let us remind the notations of these spaces that we will use in the sequel (see [10]
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for more informations). We define classical Sobolev spaces for any nonnegative
integers n and m and real numbers p > 1 setting :

Wm,p(Ω) = {u ∈ D′(Ω); ∀λ ∈ Nn, |λ| ≤ m, Dλu ∈ Lp(Ω)}.

We equipped this space with its natural norm. When m = 1 and p = 2, we set

H1(Ω) = W 1,2(Ω),

then H
1
2 (Γ) is the space of traces of functions in H1(Ω) and H1

0(Ω) is the sub-
space of functions in H1(Ω) whose the trace is equal to zero on Γ. �

The weights defined previously are chosen so that that the space D(Ω) is
dense in Wm,p

α (Ω) and so that the following Poincaré-type inequalities hold in
the following spaces :

Theorem 1.1. Let α be a real number, m ≥ 1 an integer and q′ = min(q,m−1),
where q is the highest degree of the polynomials contained in Wm,p

α (Ω). Then :
i) the semi-norm | . |Wm,p

α (Ω) defined on Wm,p
α (Ω)/Pq′ is a norm equivalent to

the quotient norm.
ii) the semi-norm | . |Wm,p

α (Ω) is a norm on
◦
W m,p

α (Ω) = D(Ω)
‖.‖Wm,p

α (Ω) , which
is equivalent to the full norm ‖ . ‖Wm,p

α (Ω).

We prove this theorem using the previous partitions of unity and results in
bounded domains [21] and in the half-space [7]. We denote W−m,p

′

−α (Ω) the dual

space of
◦
W m,p

α (Ω) and we notice that it is a space of distributions.

Now, we define the traces of functions of Wm,p
α (Ω). For any σ ∈ ]0, 1[, we set

ω1 =

 ρ if
n

p
6= σ,

ρ(lgρ)1/σ if
n

p
= σ.

If Ω is a perturbed half-space, we define the space

Wσ,p
0 (Γ) = {u, ω−σ1 u ∈ Lp(Σ), u ∈ Lp(S),

∫
Γ×Γ

|u(x)− u(y)|p

|x− y|n+σp
dxdy <∞}.

It is a reflexive Banach space equipped with its natural norm

(‖ u
ωσ1
‖pLp(Σ) + ‖u‖pLp(S) +

∫
Γ×Γ

|u(x)− u(y)|p

|x− y|n+σp
dxdy)1/p.

If Ω is an aperture domain, we define the space

Wσ,p
0 (Γ) = {u, ω−σ1 u ∈Lp(Γ ∩ cB0), u ∈ Lp(Γ ∩B0),∫

Γ×Γ

|u(x)− u(y)|p

|x− y|n+σp
dxdy <∞}.

It is a reflexive Banach space equipped with its natural norm

(‖ u
ωσ1
‖pLp(Γ∩ cB0) + ‖u‖pLp(Γ∩B0) +

∫
Γ×Γ

|u(x)− u(y)|p

|x− y|n+σp
dxdy)1/p.
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Now, when Ω is either a perturbed half-space or an aperture domain, for any
s ∈ R+, we set

W s,p
0 (Γ) = {u ∈W [s],p

[s]−s(Γ), ∀|λ| = [s], Dλu ∈W s−[s],p
0 (Γ)}.

It is a reflexive Banach space equipped with its natural norm

‖u‖W s,p
0 (Γ) = ‖u‖

W
[s],p
[s]−s(Γ)

+
∑
|λ|=s

‖Dλu‖
W
s−[s],p
0 (Γ)

.

Then, for any s ∈ R+ and α ∈ R, we set

W s,p
α (Γ) = {u ∈W [s],p

[s]+α−s(Γ), ∀|λ| = [s], ραDλu ∈W s−[s],p
0 (Γ)}.

Next, in both cases, we have the following traces lemma :

Lemma 1.2. For any integer m ≥ 1 and real number α, we define the mapping

γ : D(Ω)→ (D(Γ))m

u 7→ (γ0u, . . . , γm−1u)

where for any k = 0, . . . ,m − 1, γku =
∂ku

∂nk
. Then, γ can be extended by

continuity to a linear and continuous mapping still denoted by γ from Wm,p
α (Ω)

to
m−1∏
j=0

W
m−j− 1

p ,p
α (Γ). Moreover, γ is onto and

Ker γ =
◦
W

m,p
α (Ω).

Proof- We prove first this lemma for the perturbed half-space and in the
basic case of a function in W 1,p

0 (Ω), the generalization being obvious.

i) First, let u be in D(Ω). We set ui = ψiu for i = 1, 2 and we have

‖γu2‖
W

1− 1
p
,p

0 (Γ)
= ‖γu2‖

W
1− 1

p
,p

0 (Σ)
≤ C ‖u2‖W 1,p

0 (Rn+) ≤ C ‖u‖W 1,p
0 (Ω),

because γu2 = 0 on S, Σ ⊂ Rn−1 and that γ is continuous from W 1,p
0 (Rn+) to

W
1− 1

p ,p

0 (Rn−1) (see [7]). Next, noticing that γu1 = 0 on Γ∩ cB, that Γ∩B ⊂ ∂G
and that, thanks to results in bounded domains, γ is continuous from W 1,p(G)
to W 1− 1

p ,p(∂G), we have

‖γu1‖
W

1− 1
p
,p

0 (Γ)
≤ C ‖γu1‖

W
1− 1

p
,p

(Γ∩B)
≤ C ‖u1‖W 1,p(G) ≤ C ‖u‖W 1,p

0 (Ω).

Finally, we deduce from this, by density, that γ can be extended by continuity
to a linear and continuous mapping from W 1,p

0 (Ω) to W
1− 1

p ,p

0 (Γ).

ii) Now, we want to show that γ is onto. Let g be in W
1− 1

p ,p

0 (Γ). We set
gi = ψig, i = 1, 2 and

g̃2 = g2 on Σ, g̃2 = 0 on D.
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We have g̃2 ∈W
1− 1

p ,p

0 (Rn−1) and there exists (see [7]) v ∈W 1,p
0 (Rn+) such that

v = g̃2 on Rn−1. We define the function ṽ by ṽ = v in Rn+ and ṽ = 0 in ω. Then,
ṽ ∈W 1,p

0 (Ω) and ṽ = g2 on Γ. We set also

g̃1 = g1 on ∂G ∩ Γ, g̃1 = 0 on ∂G ∩ Rn+.

We have g̃1 ∈ W 1− 1
p ,p(∂G) and there exists, thanks to results in bounded do-

mains, w ∈ W 1,p(G) such that w = g̃1 on ∂G. We define the function w̃ by
w̃ = w in G and w̃ = 0 in Ω \ G. Then, w̃ ∈ W 1,p

0 (Ω) and w̃ = g1 sur Γ.
Consequently, there exists u = ṽ + w̃ ∈ W 1,p

0 (Ω) such that u = g on Γ. So, γ is
onto.

iii) Finally, it remains to show that Ker γ =
◦
W

1,p
0 (Ω) = D(Ω)

‖.‖
W

1,p
0 (Ω) . Let

u be in
◦
W

1,p
0 (Ω). Then, there exists a sequence (ϕ`)`∈N ⊂ D(Ω) such that

‖γ(u− ϕ`)‖
W

1− 1
p
,p

0 (Γ)
≤ C ‖u− ϕ`‖W 1,p

0 (Ω) → 0.

But γϕ` = 0 for any ` ∈ N because ϕ` ∈ D(Ω), so, γu = 0 inW
1− 1

p ,p

0 (Γ) and u ∈
Ker γ. Conversely, let u be in Ker γ, ui = ψiu for i = 1, 2. We have u2 = 0 on
Rn−1 so u2 ∈

◦
W

1,p
0 (Rn+) (see [7]). Thus, there exists (ϕ`)`∈N ⊂ D(Rn+) ⊂ D(Ω)

such that ‖u2 − ϕ`‖W 1,p
0 (Rn+) → 0. Moreover, since, for any ` ∈ N, u2 = ϕ` = 0

in ω, we deduce that ‖u2 − ϕ`‖W 1,p
0 (Ω) → 0, i.e u2 ∈

◦
W

1,p
0 (Ω). With the

same idea, u1 = 0 on ∂G so u1 ∈
◦
W 1,p(G) (see [10]). Thus, there exists

(ψ`)`∈N ⊂ D(G) ⊂ D(Ω) such that ‖u1 − ψ`‖W 1,p(G) → 0. Moreover, since
for any ` ∈ N, u1 = ϕ` = 0 in Ω \ G, we have ‖u1 − ϕ`‖W 1,p

0 (Ω) → 0, i.e

u1 ∈
◦
W

1,p
0 (Ω). Consequently, u = u1 + u2 ∈

◦
W

1,p
0 (Ω) and Ker γ =

◦
W

1,p
0 (Ω).

iv) To prove this lemma in the case of an aperture domain, we use the
same kinds of arguments. First, for the continuity, we work like previously, in
an unbounded domain and next in a bounded domain. For the surjectivity, we
easily prove, using results in half-spaces, that we can find u ∈ W 1,p

0 (Ω) such
that u = g2 on Γ and then, we study the bounded part like for the perturbed
half-space. For the characterization of the kernel, the bounded part is again the
same as the previous case and for the unbounded part, we find two sequences,
the first one, C∞ with compact support in Rn+ (so in Ω) and the second one in
Rn− (so in Ω) and we work with the sum of these two sequences. �

For θ, any open subset sufficiently smooth of Rn, we set

< ., . >θ = < ., . >
W−1,p

0 (θ),
◦
W

1,p′
0 (θ)

,

and
< ., . >∂θ = < ., . >

W
− 1
p
,p

0 (∂θ),W
1− 1

p′ ,p
′

0 (∂θ)
.

In this article, C will denote a positive and real constant which may vary
from line to line. We remind that we use only the basic weights and that we
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have supposed that Ω is of class C1,1.

Remark : In this paper, we avoid the case n = 2. Indeed, when n = 2, we
are not able to establish Lemma 2.1 (and consequently any result of this work)
because of a condition of compatibility which is not satisfied.

2 Stokes system in a perturbed half-space

We remind that we suppose that n ≥ 3. Let p ∈ ]1,+∞[, f ∈ W−1,p
0 (Ω),

h ∈ Lp(Ω) and g ∈ W
1− 1

p ,p

0 (Γ). We consider here the problem (S1) : find
(u, π) ∈W 1,p

0 (Ω)× Lp(Ω) such that

(S1)

 −∆u+∇π = f in Ω,
div u = h in Ω,
u = g on Γ.

2.1 Case p = 2.
Thanks to Lemma 1.2, we notice first that there exists ug ∈W 1,2

0 (Ω) such
that ug = g on Γ and satisfying

‖ug‖W 1,2
0 (Ω) ≤ C ‖g‖

W
1
2 ,2
0 (Γ)

.

So, it is equivalent to solve the problem with homogeneous boudary conditions :
for any f ∈W−1,2

0 (Ω) and h ∈ L2(Ω), find (u, π) ∈W 1,2
0 (Ω)×L2(Ω) such that

(S10)

 −∆u+∇π = f in Ω,
div u = h in Ω,
u = 0 on Γ,

Now, we want to establish Proposition 2.2 to lift the data for the divergence.
For this, we use this preliminary lemma :

Lemma 2.1. For any h in L2(Ω), there exists u ∈W 2,2
0 (Ω) solution of

∆u = h in Ω and
∂u

∂n
= 0 on Γ. (1)

Moreover, u satisfies
‖u‖W 2,2

0 (Ω) ≤ C ‖h‖L2(Ω),

where C is a real positive constant which depends only on Ω.

Proof - Let h be in L2(Ω). We set h1 = ψ1h ∈ L2(Ω) and h2 = ψ2h ∈ L2(Ω).

i) By Theorem 3.1 in [3], there exists v ∈W 2,2
0 (Rn+) such that

∆v = h2 in Rn+ and
∂v

∂n
= 0 on Rn−1,

and satisfying
‖v‖W 2,2

0 (Rn+) ≤ C ‖h‖L2(Ω).
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We set for almost all (x′, xn) ∈ Rn :

v∗(x′, xn) = v(x′, xn) if xn > 0, v∗(x′, xn) = v(x′,−xn) if xn < 0.

It is clear that v∗ ∈ W 2,2
0 (Rn) and that ‖v∗‖W 2,2

0 (Rn) ≤ C ‖h‖L2(Ω). Moreover,
we easily show that

∆v∗ = h2 in Ω, (2)

and that
∂v∗
∂n
∈W

1
2 ,2
0 (Γ) has its support included in S.

ii) Now, we want to find w ∈W 2,2
0 (Ω) solution of

∆w = h1 in Ω and
∂w

∂n
= −∂v∗

∂n
on Γ, (3)

satisfying
‖w‖W 2,2

0 (Ω) ≤ C ‖h‖L2(Ω). (4)

Since h1 ∈ L2(Ω) has a compact support, we have h1 ∈ W−1,2
0 (Ω) and it is

reasonable to search first a solution w ∈W 1,2
0 (Ω). For this, we observe that (3)

is equivalent to the following variational formulation : find w ∈ W 1,2
0 (Ω) such

that for any z ∈W 1,2
0 (Ω)

(FV)
∫

Ω

∇w · ∇z dx =
∫

Ω

h1z dx − <
∂v∗
∂n

, z >Γ .

Then, applying the theorem of Lax-Milgram in (W 1,2
0 (Ω), ‖ · ‖W 1,2

0 (Ω)) (since
n > 2, the coercivity is satisfied by the point i) of Theorem 1.1), we deduce that
there exists a unique solution of (FV).

Next, we prove that w is in W 2,2
0 (Ω). For this, we set w1 = ψ1w ∈ W 1,2

0 (Ω)
and w2 = ψ2w ∈W 1,2

0 (Ω). Since supp w1 ⊂ G and ∆w = h1 ∈ L2(Ω), we have

∆w1 = w∆ψ1 + 2∇ψ1 · ∇w + ψ1h1 ∈ L2(G),

and since ψ1 =
∂ψ1

∂n
= 0 on ∂G ∩Rn+ and

∂w

∂n
= −∂v∗

∂n
∈ H 1

2 (∂G ∩ Γ), we have

∂w1

∂n
= ψ1

∂w

∂n
+
∂ψ1

∂n
w ∈ H 1

2 (∂G).

Thanks to regularity results in bounded domains (see [21] when the boundary
is very smooth and the technique of Grisvard [16] for the extension to a C1,1

boundary), we deduce from this that w1 ∈ H2(G) and since supp w1 ⊂ G, then

w1 ∈W 2,2
0 (Ω). Thus, in Rn+ ∆w2 ∈ L2(Rn+) and

∂w2

∂n
∈W

1
2 ,2
0 (Rn−1). We easily

conclude thanks to Corollary 3.3 of [3] that w2 ∈ W 2,2
0 (Rn+) and since supp

w2 ⊂ Rn+, w2 ∈ W 2,2
0 (Ω). So, w = w1 + w2 ∈ W 2,2

0 (Ω), satisfies (3) and the
estimate (4). Finally, from (2) and (3), u = v∗ + w is solution of (1) and the
corresponding estimate follows immediately. �
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Proposition 2.2. We suppose here that Ω is only Lipschitz-continuous. So, for

any h ∈ L2(Ω), there exists w ∈
◦
W 1,2

0 (Ω) satisfying

div w = h in Ω, ‖w‖W 1,2
0 (Ω) ≤ C ‖h‖L2(Ω),

where C is a real positive constant depending only on Ω.

Proof - 1) In a first time, we suppose that Ω is of class C1,1. Let h be in
L2(Ω). We know, thanks to the previous lemma, that there exists ϕ ∈W 2,2

0 (Ω)
solution of (1) with the corresponding estimate. We set v = ∇ϕ ∈ W 1,2

0 (Ω),
g = v|Γ, g1 = ψ1g, g2 = ψ2g and we notice that g, g1 and g2 belong to

W
1
2 ,2
0 (Γ).

i) First, we want to solve the following problem : find t ∈W 1,2
0 (Ω) such that

div t = 0 in Ω and t = g2 on Γ. (5)

We define the function g̃2 by g̃2 = g2 on Σ and g̃2 = 0 on D. Noticing that
supp g2 ⊂ Σ, we have g̃2 ∈W

1
2 ,2
0 (Rn−1). Moreover, we know, thanks to results

in the half-space, that there exists u ∈W 1,2
0 (Rn+) such that

div u = 0 in Rn+ and u = g̃2 on Rn−1

and satisfying the estimate

‖u‖W 1,2
0 (Rn+) ≤ C ‖g̃2‖

W
1
2 ,2
0 (Rn−1)

≤ C ‖h‖L2(Ω).

We define the function t by t = u in Rn+ and t = 0 in ω. We easily check that
t ∈ W 1,2

0 (Ω) and that div t = 0 in Ω. Thus, since on Σ, t = g2 and on S,
t = g2 = 0, we have established that t ∈ W 1,2

0 (Ω) is solution of (5) and that
we have the estimate

‖t‖W 1,2
0 (Ω) ≤ C ‖g‖

W
1
2 ,2
0 (Γ)

≤ C ‖h‖L2(Ω).

ii) Now, we want to solve the following problem : find z ∈ W 1,2
0 (Ω) such

that
div z = 0 in Ω and z = g1 on Γ. (6)

We define the function g̃1 by g̃1 = g1 on ∂G ∩ Γ and g̃1 = 0 on ∂G ∩ Rn+.
Noticing that supp g1 ⊂ ∂G ∩ Γ, we have g̃1 ∈H

1
2 (G) and we notice that∫

∂G

g̃1 · n dσ = 0,

We deduce from this, thanks to results in bounded domain that there exists
u0 ∈H1(G) such that

div u0 = 0 in G and u0 = g̃1 on ∂G

and satisfying the estimate

‖u0‖H1(G) ≤ C ‖g̃1‖
H

1
2 (∂G)

≤ C ‖h‖L2(Ω).
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We define the function z by z = u0 in G and z = 0 in Ω \G. We easily check
that z ∈ W 1,2

0 (Ω) and that div z = 0 in Ω. Thus, we have established that
z ∈W 1,2

0 (Ω) is solution of (6) and that we have the estimate

‖z‖W 1,2
0 (Ω) ≤ C ‖g‖

W
1
2 ,2
0 (Γ)

≤ C ‖h‖L2(Ω).

So, w = v−t−z ∈W 1,2
0 (Ω) is solution of our problem and we have the estimate

searched.

2) Now, we suppose that Ω is only Lipschitz-continuous. Then, using simi-
lar arguments than Theorem 3.2 in [14], we can prove that the result is also
satisfied. �

So to solve (S10), it is sufficient to solve the following problem (S100) : find
(u, π) ∈W 1,2

0 (Ω)× L2(Ω) solution of

(S100)

 −∆u+∇π = f in Ω,
div u = 0 in Ω,
u = 0 on Γ,

and, the study of this problem is exactly equivalent to the one of the end of
Section 2 in [4]. In consequence, we have the following theorem :

Theorem 2.3. For any f ∈ W−1,2
0 (Ω), h ∈ L2(Ω) and g ∈ W

1
2 ,2
0 (Γ) there

exists a unique (u, π) ∈ W 1,2
0 (Ω) × L2(Ω) solution of (S1). Moreover, (u, π)

satisfies

‖u‖W 1,2
0 (Ω) + ‖π‖L2(Ω) ≤ C (‖f‖W−1,2

0 (Ω) + ‖h‖L2(Ω) + ‖g‖
W

1
2 ,2
0 (Γ)

),

where C is a real positive constant which depends only on Ω.

2.2 Case p 6= 2.
First, we suppose that p > 2 and we want to study the kernel of the Stokes

system. We set :

Dp0(Ω) = {(z, π) ∈
◦
W 1,p

0 (Ω)× Lp(Ω), −∆z +∇π = 0 and div z = 0 in Ω}.

We have the following result :

Theorem 2.4. For each p > 2, the kernel Dp0(Ω) is reduced to {(0, 0)}.

Proof - Let (z, π) be in Dp0(Ω). We set (z1, π1) = (ψ1z, ψ1π) ∈
◦
W 1,p

0 (Ω)×
Lp(Ω). Since supp (z1, π1) is included in G which is bounded, we have

(z1, π1) ∈W 1,2
0 (Ω)× L2(Ω).

Now, we set (z2, π2) = (ψ2z, ψ2π) ∈
◦
W 1,p

0 (Ω)× Lp(Ω) and

f =−∆z2 +∇π2 = ∆z1 −∇π1 ∈W−1,2
0 (Ω)

h = div z2 = − div z1 ∈ L2(Ω).
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By [8], there exists (s, θ) ∈W 1,2
0 (Rn+)× L2(Rn+) solution of

−∆s+∇θ = f in Rn+, div s = h in Rn+, s = 0 on Rn−1. (7)

But, noticing that on Rn−1, z2 = 0 (because z2 = 0 on Σ and ψ2 = 0 on
D), it is obvious that (z2, π2) ∈ W 1,p

0 (Rn+) × Lp(Rn+) is solution of (7). So,
(w, τ) = (s− z2, θ − π2) satisfy

−∆w +∇τ = 0 in Rn+, div w = 0 in Rn+, w = 0 on Rn−1,

and we easily deduce that (w, τ) = (0, 0) in Rn+ (see Lemma 3.1 in [4]). Thus
(z2, π2) = (s, θ) ∈ W 1,2

0 (Rn+) × L2(Rn+) and since supp (z2, π2) ⊂ Rn+, we
deduce that (z2, π2) ∈ W 1,2

0 (Ω) × L2(Ω). Finally, we conclude that (z, π) ∈
W 1,2

0 (Ω) × L2(Ω), which implies that (z, π) ∈ D2
0(Ω). But, we have seen at

Theorem 2.3 that when p = 2, (S10) has a unique solution. Here, (0, 0) is solu-
tion, so we have our result. �

Now, supposing that p > 2, we want to study the Stokes system with homo-
geneous boundary conditions, that is to say : let f be inW−1,p

0 (Ω) and h be in
Lp(Ω), we want to find (u, π) ∈ W 1,p

0 (Ω) × Lp(Ω) solution of (S10). First, we
establish the following lemma :

Lemma 2.5. For each p > 2 and for any f ∈W−1,p
0 (Ω) and h ∈ Lp(Ω) with

a compact support in Ω, there exists a unique (u, π) ∈ (W 1,2
0 (Ω) ∩W 1,p

0 (Ω))×
(L2(Ω) ∩ Lp(Ω)) solution of (S10).

Proof - Let f be inW−1,p
0 (Ω) and h be in Lp(Ω) with a compact support in

Ω. Then, since p > 2, we easily check that f ∈W−1,2
0 (Ω) and h ∈ L2(Ω) and we

deduce from Theorem 2.3 that there exists a unique (u, π) ∈W 1,2
0 (Ω)× L2(Ω)

solution of (S10). It remains to show that (u, π) ∈ W 1,p
0 (Ω) × Lp(Ω). We set

(u1, π1) = (ψ1u, ψ1π) ∈
◦
W 1,2

0 (Ω)× L2(Ω), it has a compact support included
in G. Elementaries calculus show that we have

−∆u1 +∇π1 = ψ1f + F 1 in G, div u1 = ψ1h+H1 in G, u1 = 0 on ∂G,

where

F 1 = −(2∇u∇ψ1 + u∆ψ1) + π∇ψ1 ∈ L2(G) and H1 = u · ∇ψ1 ∈H1(G).

Thanks to the Sobolev imbeddings, we have

(F 1 , H1) ∈W−1,s(G)× Ls(G), ∀1 < s ≤ 2∗,

where 2∗ =
2n
n− 2

. So, if p ≤ 2∗, thanks to results in bounded domains (see [5]),
we have

(u1, π1) ∈W 1,p(G)× Lp(G) (8)

and
‖u1‖W 1,p(G) + ‖π1‖Lp(G) ≤ C (‖f‖W−1,p

0 (Ω) + ‖h‖Lp(Ω)).

Now, if p > 2∗, we can show that (u1, π1) ∈ W 1,2∗(G) × L2∗(G) because
(ψ1f , ψ1h) ∈W−1,2∗(G)×L2∗(G). Thus, we have (F 1, H1) ∈ L2∗(G)×W 1,2∗(G)
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and we apply the same argument as previously with 2∗ instead of 2. Finally,
starting again, we reach any value of p > 2. Thus, we have (8) in any case and
since supp (u1, π1) ⊂ G, we deduce that

(u1, π1) ∈W 1,p
0 (Ω)× Lp(Ω) (9)

Now, we set (u2, π2) = (ψ2u, ψ2π) ∈
◦
W 1,2

0 (Ω)× L2(Ω) and

f2 =−∆u2 +∇π2 = f − (−∆u1 +∇π1) ∈W−1,p
0 (Ω),

h2 = div u2 = h− div u1 ∈ Lp(Ω).

By [8], there exists (s, θ) ∈W 1,p
0 (Rn+)× Lp(Rn+) solution of

−∆s+∇θ = f2 in Rn+, div s = h2 in Rn+, s = 0 on Rn−1,

But, noticing that on Rn−1, u2 = 0 (because u2 = 0 on Σ and ψ2 = 0 on D), it
is obvious that inW 1,2

0 (Rn+)×L2(Rn+), (u2, π2) is solution of the same problem
that (s, θ) satisfies. We use the same reasoning as in Theorem 2.4 to conclude
that

(u2, π2) ∈W 1,p
0 (Ω)× Lp(Ω) (10)

Finally, (u, π) ∈W 1,p
0 (Ω)× Lp(Ω) by (9) and (10). �

Now, we establish the following theorem :

Theorem 2.6. For any p > 2 and g ∈ W
1− 1

p ,p

0 (Γ), there exists a unique
(u, π) ∈W 1,p

0 (Ω)× Lp(Ω) solution of

−∆u+∇π = 0 in Ω, div u = 0 in Ω, u = g on Γ. (11)

Moreover, (u, π) satisfies

‖u‖W 1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C ‖g‖

W
1− 1

p
,p

0 (Γ)
,

where C is a real positive constant which depends only on p and Ω.

Proof - The uniqueness comes from Theorem 2.4. Now, let g be inW
1− 1

p ,p

0 (Γ).
We set g1 = ψ1g and g2 = ψ2g.

i) First, we want to find (v, µ) ∈W 1,p
0 (Ω)× Lp(Ω) such that

−∆v +∇µ = 0 in Ω, div v = 0 in Ω, v = g1 on Γ. (12)

We notice that supp g1 ⊂ ∂G ∩ Γ. We define the function g̃1 by

g̃1 = g1 on ∂G ∩ Γ and g̃1 = 0 on ∂G ∩ Rn+.

We easily check that g̃1 ∈ W 1− 1
p ,p(∂G). Let ψ be in D(Rn) with a compact

support in G such that ∫
G

ψ(x) dx =
∫
∂G

g̃1 · n dσ.
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Thanks to this condition and results in bounded domains (see [5]), there exists
(z, π) ∈W 1,p(G)× Lp(G) such that

−∆z +∇π = 0 in G, div z = ψ in G, z = g̃1 on ∂G,

We denote again by (z, π) ∈W 1,p
0 (Ω)×Lp(Ω) its extension by (0, 0) in Ω. Thus,

(z, π) ∈W 1,p
0 (Ω)× Lp(Ω) satisfies

−∆z +∇π = σ in Ω, div z = ψ in Ω, z = g1 on Γ,

where we notice that σ ∈ W−1,p
0 (Ω) has a compact support in Ω. As ψ has

a compact support too, we deduce from Lemma 2.5 that there exists (t, τ) ∈
W 1,p

0 (Ω)× Lp(Ω) such that

−∆t+∇τ = −σ in Ω, div t = −ψ in Ω, t = 0 on Γ,

Finally, (v, µ) = (z + t, π + τ) ∈W 1,p
0 (Ω)× Lp(Ω) is solution of (12).

ii) Now, we want to find (w, η) ∈W 1,p
0 (Ω)× Lp(Ω) solution of

−∆w +∇η = 0 in Ω, div w = 0 in Ω, w = g2 on Γ. (13)

For this, we notice that supp g2 ⊂ Σ. We define the function g̃2 by g̃2 = g2 on
Σ and g̃2 = 0 on D. We easily check that g̃2 ∈W

1− 1
p ,p

0 (Rn−1). Thanks to [8],
there exists (z, π) ∈W 1,p

0 (Rn+)× Lp(Rn+) such that

−∆z +∇π = 0 in Rn+, div z = 0 in Rn+, z = g̃2 on Rn−1.

We denote again by (z, π) its extension by (0, 0) in Ω. So, (z, π) ∈W 1,p
0 (Ω)×

Lp(Ω) satisfies

−∆z +∇π = ξ in Ω, div z = 0 in Ω, z = g2 on Γ,

where ξ has a compact support in Ω. We deduce from Lemma 2.5 that there
exists (t, τ) ∈W 1,p

0 (Ω)× Lp(Ω) such that

−∆t+∇τ = −ξ in Ω, div t = 0 in Ω, t = 0 on Γ.

Finally, (w, η) = (z + t, π + τ) ∈W 1,p
0 (Ω)× Lp(Ω) is solution of (13).

In consequence, (u, π) = (v + w, p + η) ∈ W 1,p
0 (Ω) × Lp(Ω) is solution of

(11) and the estimate follows immediately. �

Now, we can solve the problem with homogeneous boundary conditions in
the case p > 2.

Theorem 2.7. For any p > 2, f ∈ W−1,p
0 (Ω) and h ∈ Lp(Ω), there exists a

unique (u, π) ∈W 1,p
0 (Ω)× Lp(Ω) solution of (S10). Moreover, (u, π) satisfies

‖u‖W 1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖f‖W−1,p

0 (Ω) + ‖h‖Lp(Ω)),

where C is a real positive constant which depends only on p and Ω.
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Proof - The uniqueness comes from Theorem 2.4. Then, as a consequence
of Theorem 1.1 ii), we know that there exists a tensor of the second order
F ∈ [Lp(Ω)]n×n such that div F = f . We extend F (respectively h) by 0 in
Rn, and we denote by F̃ (respectively h̃) this extension. Then, we set f̃ = div
F̃ . We have f̃ ∈ W−1,p

0 (Rn) and h̃ ∈ Lp(Rn). By [1], there exists (v, η) ∈
W 1,p

0 (Rn)× Lp(Rn) solution of

−∆v +∇η = f̃ in Rn and div v = h̃ in Rn,

satisfying the estimate

‖v‖W 1,p
0 (Rn) + ‖η‖Lp(Rn) ≤ C (‖f‖W−1,p

0 (Ω) + ‖h‖Lp(Ω)).

We denote again by v ∈ W 1,p
0 (Ω) and η ∈ Lp(Ω) the restrictions of v and η

to Ω. We have v|Γ ∈ W
1− 1

p ,p

0 (Γ), thus, thanks to Theorem 2.6, there exists
(w, τ) ∈W 1,p

0 (Ω)× Lp(Ω) solution of

−∆w +∇τ = 0 in Ω, div w = 0 in Ω, w = −v|Γ on Γ,

satisfying the estimate

‖w‖W 1,p
0 (Ω) + ‖τ‖Lp(Ω) ≤ C (‖f‖W−1,p

0 (Ω) + ‖h‖Lp(Ω)).

Finally, (u, π) = (v +w, η+ τ) ∈W 1,p
0 (Ω)×Lp(Ω) is solution of (S10) and the

estimate follows immediately. �

Now, we suppose that p is such that p < 2. Thanks to the previous theorem,
if we set

S :
◦
W 1,p′

0 (Ω)× Lp
′
(Ω) −→W−1,p′

0 (Ω)× Lp
′
(Ω),

(u, π) −→ (−∆u+∇π,−div u),

then, S is an isomorphism. So, by duality,

S∗ :
◦
W 1,p

0 (Ω)× Lp(Ω) −→W−1,p
0 (Ω)× Lp(Ω),

is an isomorphism too, and, as it is standard to check that S∗(u, π) = (−∆u+
∇π,−div u), we have Theorem 2.7 for any p < 2. �

Finally, it remains to return to the general problem with p 6= 2 and nonho-
mogeneous boundary conditions. For this, like for the case p = 2, we show that
there exists a function w ∈W 1,p

0 (Ω) such that w = g in Γ. Then, we have just
seen that there exists a unique (v, π) ∈W 1,p

0 (Ω)× Lp(Ω) solution of

−∆v +∇π = f + ∆w in Ω, div v = h− div w in Ω, v = 0 on Γ.

In consequence, the function (u = v +w, π) ∈W 1,p
0 (Ω) × Lp(Ω) is solution of

(S1) and we have the following theorem :

Theorem 2.8. For any f ∈W−1,p
0 (Ω), h ∈ Lp(Ω) and g ∈W 1− 1

p ,p

0 (Γ), there
exists a unique (u, π) ∈W 1,p

0 (Ω)× Lp(Ω) solution of (S1) and satisfying

‖u‖W 1,p
0 (Ω) + ‖π‖Lp(Ω) ≤ C (‖f‖W−1,p

0 (Ω) + ‖h‖Lp(Ω) + ‖g‖
W

1− 1
p
,p

0 (Γ)
),

where C is a real positive constant which depends only on p and Ω.
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2.3 Regularity, strong solutions and very weak solutions.
First, in this section, we are interested in the existence of strong solutions

of the Stokes system (S1), i.e. of solutions (u, π) ∈W 2,p
`+1(Ω)×W 1,p

`+1(Ω). Here,
we limit ourselves to the two cases ` = 0 and ` = −1.

We give at the beginning a regularity result studying the case ` = 0. In-
deed, we notice that in this case, we have the continuous injections W 2,p

1 (Ω) ⊂
W 1,p

0 (Ω) and W 1,p
1 (Ω) ⊂ Lp(Ω). So, Theorem which follows shows that the ge-

neralized solution of Theorems 2.3 and 2.8, with a stronger hypothesis on the
data, is in fact a strong solution.

Theorem 2.9. For any p > 1 such that
n

p′
6= 1, and for any f ∈W 0,p

1 (Ω), h ∈

W 1,p
1 (Ω) and g ∈W 2− 1

p ,p

1 (Γ), there exists a unique (u, π) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω)
solution of the problem (S1). Moreover, (u, π) satisfies

‖u‖W 2,p
1 (Ω) + ‖π‖W 1,p

1 (Ω) ≤ C (‖f‖W 0,p
1 (Ω) + ‖h‖W 1,p

1 (Ω) + ‖g‖
W

2− 1
p
,p

1 (Γ)
),

where C is a real positive constant which depends only on p and Ω.

Proof - First, we want to solve the problem with homogeneous boundary
conditions. For this, we notice that we have the continuous injectionsW 0,p

1 (Ω) ⊂
W−1,p

0 (Ω) because
n

p′
6= 1 and W 1,p

1 (Ω) ⊂ Lp(Ω). Thus, thanks to Theo-

rems 2.3 and 2.8, there exists a unique (u, π) ∈ W 1,p
0 (Ω) × Lp(Ω) solution

of (S10). Next, it remains to show that (u, π) ∈ W 2,p
1 (Ω) ×W 1,p

1 (Ω). We set

(u1, π1) = (ψ1u, ψ1π) ∈
◦
W 1,p

0 (Ω)× Lp(Ω), it has a compact support included
in G. Elementaries calculus show that we have

−∆u1 +∇π1 = ψ1f + F 1 in G, div u1 = ψ1h+H1 in G, u1 = 0 on ∂G,

where

F 1 = −(2∇u∇ψ1 +u∆ψ1) + π∇ψ1 ∈ Lp(G) and H1 = u · ∇ψ1 ∈W 1,p(G).

So, using results in bounded domains, we have (u1, π1) ∈W 2,p(G)×W 1,p(G)
and since supp (u1, π1) ⊂ G,

(u1, π1) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω). (14)

Now, we set (u2, π2) = (ψ2u, ψ2π) ∈
◦
W 1,p

0 (Ω)× Lp(Ω) and

f2 =−∆u2 +∇π2 = f − (−∆u1 +∇π1) ∈W 0,p
1 (Ω),

h2 = div u2 = h− div u1 ∈W 1,p
1 (Ω).

By [8], there exists (s, θ) ∈W 2,p
1 (Rn+)×W 1,p

1 (Rn+) solution of

−∆s+∇θ = f2 in Rn+, div s = h2 in Rn+, s = 0 on Rn−1, (15)

But, noticing that (u2, π2) is also solution of (15) and that, by Theorem 4.2
in [8], the solution of this problem is unique in W 1,p

0 (Rn+) × Lp(Rn+), we have
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(u2, π2) = (s, θ) ∈W 2,p
1 (Rn+)×W 1,p

1 (Rn+). The support of (u2, π2) being inclu-
ded in Rn+, we deduce that

(u2, π2) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω) (16)

So, (u, π) ∈ W 2,p
1 (Ω) ×W 1,p

1 (Ω) by (14) and (16). Finally, thanks to Lemma
1.2, we come back to a problem with nonhomogeneous boundary conditions. �

Now, we examine the basic case ` = −1, corresponding to f ∈ Lp(Ω) and
first, we study the kernel of such a problem. We set

Sp0(Ω) = {(z, π) ∈ W 2,p
0 (Ω)×W 1,p

0 (Ω), −∆z +∇π = 0 in Ω,
div z = 0 in Ω and z = 0 on Γ}.

The characterization of this kernel is given by this proposition :

Proposition 2.10. For each p > 1 such that
n

p′
6= 1, we have the following

statements : i) If p < n, Sp0(Ω) = {(0, 0)}.
ii) If p ≥ n, Sp0(Ω) = {(v(λ) − λ, η(λ) − µ), λ ∈ (Rxn)n−1 × {0}, µ ∈ R}
where (v(λ), η(λ)) ∈W 2,p

1 (Ω)×W 1,p
1 (Ω) is the unique solution of

−∆v +∇η = 0 in Ω, div v = 0 in Ω, v = λ on Γ. (17)

Proof - Let (z, π) ∈ Sp0(Ω). We set (zi, πi) = (ψiz, ψiπ) ∈ W 2,p
0 (Ω) ×

W 1,p
0 (Ω) (for i = 1 or 2). Since supp (z1, π1) is bounded, we have (z1, π1) ∈

W 2,p
1 (Ω)×W 1,p

1 (Ω). Now, we set

f2 = −∆z2 +∇π2 = ∆z1 −∇π1, h2 = div z2 = − div z1.

We have (f2, h2) ∈W 0,p
1 (Ω) ×W 1,p

1 (Ω), so by Theorem 5.2 of [8], there exists
(s, θ) ∈ (W 2,p

1 (Rn+)×W 1,p
1 (Rn+)) ⊂ (W 2,p

0 (Rn+)×W 1,p
0 (Rn+)) solution of

(S+) −∆s+∇θ = f2 in Rn+, div s = h2 in Rn+, s = 0 on Rn−1.

Noticing that (z2, π2) ∈W 2,p
0 (Rn+)×W 1,p

0 (Rn+) is solution of (S+), we can de-
duce, using Theorem 5.6 in [8], the following results :

i) If p < n, the solution of (S+) is unique in W 2,p
0 (Rn+) × W 1,p

0 (Rn+), so
(z2, π2) = (s, θ). Thus, as the support of (z2, π2) is included in Rn+, we have
(z2, π2) ∈ W 2,p

1 (Ω)×W 1,p
1 (Ω) and so (z, π) ∈ W 2,p

1 (Ω)×W 1,p
1 (Ω). Thanks to

Theorem 2.9, we have necessarily (z, π) = (0, 0).

ii) If p ≥ n, there exists λ ∈ (Rxn)n−1×{0} and µ ∈ R such that z2 = s−λ
and π2 = θ−µ in Rn+. We define w by w = s in Rn+, w = λ in ω and ξ by ξ = θ

in Rn+, ξ = µ in ω. We easliy check that (w, ξ) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω) and that
z2 = w − λ and π2 = ξ − µ in Ω. Finally, we set v = z + λ and η = π + µ in
Ω. Then, (v, η) is in W 2,p

1 (Ω) ×W 1,p
1 (Ω) and is the unique (see Theorem 2.9)

solution of (17). In consequence, we have the characterization of the kernel. �

We have the following result, corresponding to Theorem 2.9 :

17



Theorem 2.11. For any p > 1 such that
n

p′
6= 1, and for any f ∈ Lp(Ω),

h ∈ W 1,p
0 (Ω) and g ∈ W 2− 1

p ,p

0 (Γ), there exists a unique (u, π) ∈ (W 2,p
0 (Ω) ×

W 1,p
0 (Ω))/Sp0(Ω) solution of (S1). Moreover, (u, π) satisfies

inf
(z,α)∈Sp0(Ω)

(‖u+ z‖W 2,p
0 (Ω) + ‖π + α‖W 1,p

0 (Ω))

≤ C (‖f‖Lp(Ω) + ‖h‖W 1,p
0 (Ω) + ‖g‖

W
2− 1

p
,p

0 (Γ)
),

where C is a real positive constant which depends only on p and Ω.

Proof - i) First, we solve the following problem : find (u, π) ∈ W 2,p
0 (Ω) ×

W 1,p
0 (Ω) solution of

−∆u+∇π = 0 in Ω, div u = 0 in Ω, u = g on Γ.

For this, we set gi = ψig ∈ W
2− 1

p ,p

0 (Γ) (for i = 1 or 2) and we define the

function g̃2 by g̃2 = g2 on Σ, g̃2 = 0 on D. So g̃2 ∈ W
2− 1

p ,p

0 (Rn−1) and by
Theorem 5.6 of [8], there exists (w, τ) ∈W 2,p

0 (Rn+)×W 1,p
0 (Rn+) solution of

−∆w +∇τ = 0 in Rn+, div w = 0 in Rn+, w = g̃2 on Rn−1.

Now, we define for almost all (x′, xn) ∈ Rn, the following functions w∗ and τ∗
by

w∗(x′, xn) = w(x′, xn) if xn > 0, w∗(x′, xn) = −w(x′,−xn) if xn < 0

and

τ∗(x′, xn) = τ(x′, xn) if xn > 0, τ∗(x′, xn) = τ(x′,−xn) if xn < 0.

Then, we set w̃ = w in Rn+, w̃ = w∗ in ω and τ̃ = τ in Rn+, τ̃ = τ∗ in ω. We
easily check that w̃ ∈ W 2,p

0 (Ω) and that τ̃ ∈ W 1,p
0 (Ω). Finally, we denote by

µ ∈W 2− 1
p ,p

0 (Γ) the trace of the function w̃ and we set

−∆w̃ +∇τ̃ = ξ in Ω, div w̃ = σ in Ω.

The functions ξ ∈ Lp(Ω) and σ ∈W 1,p
0 (Ω) have clearly a compact support, so,

by Theorem 2.9, there exists (t, β) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω) such that

−∆t+∇β = −ξ in Ω, div t = −σ in Ω, t = 0 on Γ,

The pair (z, η) = (w̃ + t, τ̃ + β) ∈W 2,p
0 (Ω)×W 1,p

0 (Ω) satisfy

−∆z +∇η = 0 in Ω, div z = 0 in Ω, z = µ on Γ.

In a last step, noticing that on Σ ∩ B0, µ = 0 because µ = g2 on Σ, we can
say that the function γ, defined by γ = −µ on S and γ = 0 on Σ, belongs
to W

2− 1
p ,p

0 (Γ). Moreover, since g1 and γ have a compact support, they belong

to the space W
2− 1

p ,p

1 (Γ). Thus, applying Theorem 2.9, there exists (v, p) ∈
(W 2,p

1 (Ω)×W 1,p
1 (Ω)) ⊂ (W 2,p

0 (Ω)×W 1,p
0 (Ω)) such that

−∆v +∇p = 0 in Ω, div v = 0 in Ω, v = γ + g1 on Γ.

18



Noticing that on Γ, µ + γ + g1 = g, we conclude that (u, π) = (z + v, η + p)
answers the question.

ii) We easily show that there exists extensions f̃ ∈ Lp(Rn) of f and h̃ ∈
W 1,p

0 (Rn) of h in Rn and, by Theorem 3.10 of [2], there exists (w, η) ∈W 2,p
0 (Rn)×

W 1,p
0 (Rn) solution of

−∆w +∇η = f̃ in Rn, div w = h̃ in Rn.

Moreover, by i), there exists (z, µ) ∈W 2,p
0 (Ω)×W 1,p

0 (Ω) such that

−∆z +∇µ = 0 in Ω, div z = 0 in Ω, z = g −w|Γ on Γ.

Thus, (u, p) = (z +w, µ+ η) is solution of our problem. �

On the other hand, we want to study the case of very weak solutions i.e.,
we study (S1) with f = 0, h = 0 and singular data on the boundary. We use
previous results for strong solutions and we argue by duality. The proofs are
exactly the same as [4]. We give the two following theorems :

Theorem 2.12. For each p > 1 such that
n

p
6= 1 and for any g ∈ W− 1

p ,p

−1 (Γ)

satisfying
g · n = 0 on Γ, (18)

there exists a unique (u, π) ∈W 0,p
−1(Ω)×W−1,p

−1 (Ω) solution of (S1) with f = 0,
h = 0. Moreover, (u, π) satisfies

‖u‖W 0,p
−1 (Ω) + ‖π‖W−1,p

−1 (Ω) ≤ C ‖g‖
W
− 1
p
,p

−1 (Ω)
,

where C is a real positive constant wich depends only on Ω and p.

Theorem 2.13. For each p > 1 such that
n

p
6= 1 and for any g ∈ W− 1

p ,p

0 (Γ)

satisfying (18) and the following condition if p ≤ n

n− 1
: for any (z, p) ∈ Sp

′

0 (Ω)

< g,
∂z

∂n
>

W
− 1
p
,p

0 (Γ),W
1
p
,p′

0 (Γ)
= 0,

there exists a unique (u, π) ∈ Lp(Ω) ×W−1,p
0 (Ω) solution of (S1) with f = 0,

h = 0. Moreover, (u, π) satisfies

‖u‖Lp(Ω) + ‖π‖W−1,p
0 (Ω) ≤ C ‖g‖

W
− 1
p
,p

0 (Γ)
,

where C is a real positive constant wich depends only on Ω and p.

3 Stokes system in an aperture domain
We remind that we suppose that n ≥ 3. For each p ∈ ]1,+∞[, we want

to study the following problem (S2) : for any f ∈ W−1,p
0 (Ω), h ∈ Lp(Ω), g ∈
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W
1− 1

p ,p

0 (Γ) and α ∈ R, we want to find (u, π, a+, a−) ∈ W 1,p
0 (Ω) × Lploc(Ω) ×

R× R such that π − a+ ∈ Lp(Ω+), π − a− ∈ Lp(Ω−) and

(S2)

 −∆u+∇π = f in Ω, div u = h in Ω,

u = g on Γ,
∫
M

u · n dσ = α.

We define the following spaces :

V(Ω) = {v ∈ D(Ω), div v = 0 in Ω},

Vp(Ω) = V(Ω)
‖·‖

W
1,p
0 (Ω) ,

V̂p(Ω) = {v ∈
◦
W 1,p

0 (Ω), div v = 0 in Ω}

and the polar of V̂p :

V̂ ◦p(Ω) = {f ∈W−1,p
0 (Ω), ∀w ∈ V̂p(Ω), < f ,w >Ω= 0}.

We easily show that :

∀u ∈ Vp(Ω),
∫
M

u · n dσ = 0. (19)

Moreover, contrary to cases of exterior domains, half-space or perturbed half-
space, we notice (see [17]) that, in an aperture domain, we have only the strict
inclusion :

Vp(Ω)  V̂p(Ω). (20)

3.1 Case p = 2.
Thanks to Lemma 1.2, there exists ug ∈ W 1,2

0 (Ω) such that ug = g on Γ
and satisfying

‖ug‖W 1,2
0 (Ω) ≤ C ‖g‖

W
1
2 ,2
0 (Γ)

.

Thus, we show that it is equivalent to study the problem with homogeneous
boundary conditions.

Moreover, let h be in L2(Ω). We remind that we can consider Ω+ and Ω− as

perturbed half-spaces. So, thanks to Proposition 2.2, there exists t ∈
◦
W 1,2

0 (Ω+)
such that

div t = h in Ω+, and ‖t‖W 1,2
0 (Ω+) ≤ C ‖h‖L2(Ω),

and there exists z ∈
◦
W 1,2

0 (Ω−) such that

div z = h in Ω−, and ‖z‖W 1,2
0 (Ω−) ≤ C ‖h‖L2(Ω).

We define the function w by w = t in Ω+ and w = z in Ω−. We have w ∈
◦
W 1,2

0 (Ω) because t = z = 0 on the join M and we easily show that

div w = h in Ω and ‖w‖W 1,2
0 (Ω) ≤ C ‖h‖L2(Ω).
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Thus, thanks to this result, it remains only to study the following problem : for
f ∈W−1,2

0 (Ω) and α ∈ R, find (u, π, a+, a−) ∈W 1,2
0 (Ω)×L2

loc(Ω)×R×R such
that π − a+ ∈ L2(Ω+), π − a− ∈ L2(Ω−) and

(S200)

 −∆u+∇π = f in Ω, div u = 0 in Ω,

u = 0 on Γ,
∫
M

u · n dσ = α.

First, we establish the following lemma :

Lemma 3.1. There exists b ∈ V̂2(Ω) such that∫
M

b · n dσ = 1. (21)

Proof - By Lemma 11 of Heywood in [17], there exists b ∈ D(Ω)
‖∇·‖L2(Ω)

such that
div b = 0 in Ω and

∫
M

b · n dσ = 1.

Moreover, thanks to Lemma 2.1 of Farwig and Sohr in [12], we show that, in an

aperture domain, D(Ω)
‖∇·‖L2(Ω) = {u ∈ L2

loc(Ω), ∇u ∈ L2(Ω), u = 0 on Γ}.
So, it remains only to show that b ∈ W 1,2

0 (Ω). Let us set, for all i = 1, . . . , n,
si = ∇bi ∈ L2(Ω) and

s̃i = si in Ω and s̃i = 0 in Rn \ Ω.

We have s̃i ∈ L2(Rn) and we check that for any ϕ ∈ V(Rn)∫
Rn
s̃i ·ϕ dx =

∫
Ω

si ·ϕ dx = 0.

Moreover, thanks to Lemma 4.2 of Amrouche, Girault and Giroire in [6], V(Rn)
is dense in H2(Rn) = {v ∈ L2(Rn), div v = 0 in Rn}. So, s̃i ∈ L2(Rn) ⊥
H2(Rn). Then, thanks to Proposition 9.2 of [6], for each i = 1, . . . , n, there
exists w̃i ∈ W 1,2

0 (Rn) such that ∇w̃i = s̃i in Rn. We set wi ∈ W 1,2
0 (Ω) the res-

triction of w̃i in Ω ; we have ∇wi = si i.e. ∇wi = ∇bi in Ω. So, Ω being connec-
ted, there exists a real constant Ki ∈ Rn such that wi = bi + Ki ∈ W 1,2

0 (Ω).
Thus, since bi = 0 on Γ, wi = Ki on Γ. Moreover, we notice that ∇w̃i = 0 in
Rn \ Ω, so w̃i is constant in each of the two infinite and connected components
Θj (j = 1, 2) of Rn \ Ω. As w̃i ∈ W 1,2

0 (Θj) and that constants are not in this
space, we deduce that w̃i = 0 in Θ1 ∪Θ2. Finally, reminding that wi = Ki on Γ
and that w̃i ∈W 1,2

0 (Rn), we conclude that Ki = 0. Thus, bi ∈W 1,2
0 (Ω) for any

i = 1, . . . , n. �

Now, for any w ∈ V2(Ω), we define the following bilinear and continuous
application T by

Tw = < f ,w >Ω −α
∫

Ω

∇b : ∇w dx.

We apply the theorem of Lax-Milgram in (V2(Ω), ‖ · ‖W 1,2
0 (Ω)) to conclude that

there exists a unique v ∈ V2(Ω) such that∫
Ω

∇v : ∇w dx = < f ,w >Ω −α
∫

Ω

∇b : ∇w dx,
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(we notice that we have the coercivity thanks to the point ii) of Theorem 1.1

since V2(Ω) ⊂
◦
W 1,2

0 (Ω)). Then, setting u = v + αb ∈ V̂2(Ω), we have for any
w ∈ V2(Ω) : ∫

Ω

∇u : ∇w dx = < f ,w >Ω

and, by (19) and (21), ∫
M

u · n dσ = α. (22)

Then, let Ω′ be a connected open bounded subset of Ω. If w ∈ V2(Ω′), we
easily show that ∫

Ω′
∇u : ∇w dx = < f ,w >Ω′ .

Now, let w be in H1
0(Ω′). We define the linear continuous form F by

F(w) = −
∫

Ω′
∇u : ∇w dx + < f ,w >Ω′ .

We have F ∈H−1(Ω′), F is equal to zero on V2(Ω′) and consequently on V(Ω′).
We apply a result established by Girault and Raviart in bounded domain (see
[15]) to deduce from this that there exists p ∈ L2(Ω′), unique up to an additive
constant, such that

∇p = F in Ω′. (23)

This permits us to prove the following lemma :

Lemma 3.2. There exists π ∈ L2
loc(Ω) such that for any ψ ∈ D(Ω), we have∫

Ω

π div ψ dx =
∫

Ω

∇u : ∇ψ dx − < f ,ψ >Ω (24)

Proof - Let (Bm)m∈N∗ an increasing sequence of open balls included in Rn.
We set, for any m ≥ 1, Ωm = Bm ∩ Ω. For any m ≥ 1, we know, thanks to
(23), that there exists pm ∈ L2(Ωm) such that ∇pm = Fm in Ωm, where Fm is
defined, for any w ∈H1

0(Ωm), by

Fm(w) = −
∫

Ωm

∇u : ∇w dx + < f ,w >Ωm .

Moreover, we easily notice that in Ωm, we have Fm = Fm+1 which implies that,
for any m ≥ 1, ∇pm = ∇pm+1 in Ωm. As each Ωm is connected, we deduce that
each pm is unique up to an additive constant, constant that we can choose in
order to have pm = pm+1 in Ωm. Thus, starting again, we construct a function
π defined by :

∀ m ≥ 1, π = pm in Ωm.

Because of the definition of the space L2
loc(Ω), it becomes obvious that π ∈

L2
loc(Ω). Now, let ψ ∈ D(Ω), then, there exists m ∈ N∗ such that supp ψ ⊂ Ωm.

Since π = pm in Ωm and ψ ∈H1
0(Ωm), we have∫

Ωm

π div ψ dx =
∫

Ωm

∇u : ∇ψ dx − < f ,ψ >Ωm
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and consequently (24). �

Thus, we have found u ∈ V̂2(Ω) and π ∈ L2
loc(Ω) such that −∆u + ∇π =

f in Ω. It remains us to find two real constants a+ and a− such that π − a+ ∈
L2(Ω+) and π − a− ∈ L2(Ω−). Let ϕ be in

◦
W 1,2

0 (Ω+). We define F+ ∈
W−1,2

0 (Ω+) by

F+(ϕ) = −
∫

Ω+

∇u : ∇ϕ dx + < f ,ϕ >Ω+= −
∫

Ω+

π div ϕ dx.

We notice that F+ is equal to zero on V̂2(Ω+), so F+ ∈ V̂ ◦2(Ω+). Moreover,
considering Ω+ as a perturbed half-space, we establish (see the previous section
or [4]), that there exists π+ ∈ L2(Ω+) such that ∇π+ = F+. But, in Ω+ ⊂ Ω,
we have F+ = ∇π. So, ∇π = ∇π+ and there exists a real constant a+ such
that π − a+ = π+ ∈ L2(Ω+). Then, we may proceed with the same reasoning
for Ω−.

Finally, we define π ∈ L2(Ω) by

π − a+ ∈ Ω+, and π − a− ∈ Ω−,

and γ∞ by
γ∞ = a+ − a−,

and we easily check that

‖u‖W 1,p
0 (Ω) + ‖π‖Lp(Ω) + |γ∞| ≤ C (‖f‖W−1,p

0 (Ω) + |α|).

Thus, we have solved the problem (S200) and consequently, we have the following
theorem :

Theorem 3.3. For any f ∈W−1,2
0 (Ω), h ∈ L2(Ω), g ∈W

1
2 ,2
0 (Γ) and α ∈ R,

there exists (u, π, a+, a−) ∈ W 1,2
0 (Ω) × L2

loc(Ω) × R × R such that π − a+ ∈
L2(Ω+), π − a− ∈ L2(Ω−) and solution of (S2). Moreover u is unique, π, a+

and a− are unique up to an additive and common constant and it holds

‖u‖W 1,2
0 (Ω) +‖π‖L2(Ω) + |γ∞| ≤ C (‖f‖W−1,2

0 (Ω) +‖h‖L2(Ω) +‖g‖
W

1
2 ,2
0 (Γ)

+ |α|),

where C is a real positive constant which depends only on Ω.

Proof - It remains to prove that u is unique and that π, a+ and a− are
unique up to an additive and common constant. We set :

B2
0(Ω) = {(z,π, a+, a−) ∈

◦
W 1,2

0 (Ω)× L2
loc(Ω)× R× R, with π ∈ L2(Ω),

−∆z +∇π = 0 and div z = 0 in Ω and
∫
M

z · n dσ = 0}.

Let (u, π, a+, a−) ∈ B2
0(Ω). For any v ∈

◦
W 1,2

0 (Ω), we define the linear and
continuous application ` ∈W−1,2

0 (Ω) by

`(v) =
∫
M

v · n dσ.
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Let ϕ ∈ D(Ω). Then, reminding that n is the unit normal vector onM directed
to Ω−, we have

< −∆u+∇π,ϕ >Ω = < −∆u,ϕ >Ω −
∫

Ω

π div ϕ dx

= < −∆u,ϕ >Ω −
∫

Ω

π div ϕ dx− a+

∫
Ω+

div ϕ dx− a−

∫
Ω−

div ϕ dx

=< −∆u+∇π,ϕ >Ω − a+

∫
∂Ω+

ϕ · n dx+ a−

∫
∂Ω−

ϕ · n dx

= < −∆u+∇π,ϕ >Ω − (a+ − a−)
∫
M

ϕ · n dx

= < −∆u+∇π − γ∞`,ϕ >Ω,

i.e. 0 = −∆u +∇π = −∆u +∇π − γ∞` in Ω. Now, let v be in
◦
W 1,2

0 (Ω), we
have < −∆u+∇π − γ∞`,v >Ω = 0 and so∫

Ω

∇u : ∇v dx−
∫

Ω

π div v dx− γ∞
∫
M

v · n dσ = 0.

But u ∈
◦
W 1,2

0 (Ω), div u = 0 in Ω and
∫
M

u · n dσ = 0. Thus, ‖∇u‖L2(Ω) = 0

which implies that u is a constant vector which is equal to zero because u = 0
on Γ. Consequently, π is constant in Ω. So π − a+ ∈ L2(Ω+) is constant and
since Ω+ is not bounded, π = a+ on Ω+. With the same reasoning, we establish
that π = a− on Ω− and since π is constant in Ω, we have π = a+ = a− in Ω
and our result. �

3.2 Case p 6= 2.
First, we suppose that p > 2 and we study the kernel of te Stokes system.

We set :

Bp0(Ω) = {(z,π, a+, a−) ∈
◦
W 1,p

0 (Ω)× Lploc(Ω)× R× R, with π ∈ Lp(Ω),

−∆z +∇π = 0 and div z = 0 in Ω and
∫
M

z · n dσ = 0}.

Theorem 3.4. We have Bp0(Ω) = {λ(0, 1, 1, 1), λ ∈ R}.

Proof - Let (z, π, a+, a−) be in Bp0(Ω) and (z1, π1) = (ψ1z, ψ1π) ∈
◦
W 1,p

0 (Ω)×
Lp(Ω). Since supp (z1, π1) ⊂ G which is bounded, we have (z1, π1) ∈W 1,2

0 (Ω)×
L2(Ω). In Rn+, we notice that π = π − a+, so ∇π = ∇π which implies that

−∆z +∇π = 0 in Rn+. We set (z2, π2) = (ψ2z, ψ2π) ∈
◦
W 1,p

0 (Ω)× Lp(Ω) and

f+ =−∆z2 +∇π2 = ∆z1 −∇π1) ∈W−1,2
0 (Rn+),

h+ = div z2 = − div z1 ∈ L2(Rn+).

We may proceed with the same reasoning as in Theorem 2.4 to obtain that
(z2, π2) ∈ W 1,2

0 (Rn+) × L2(Rn+). Now, working on Rn− instead of Rn+ (even if
we move the origin to a distance equal to d), we obtain too that (z2, π2) ∈
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W 1,2
0 (Rn−d) × L2(Rn−d). Finally, since supp (z2, π2) ⊂ Rn+ ∪ Rn−d, we conclude

that (z2, π2) ∈W 1,2
0 (Ω)×L2(Ω) and so (z, π) ∈W 1,2

0 (Ω)×L2(Ω) too. Moreo-
ver, it is obvious that π ∈ L2

loc(Ω) because π ∈ Lploc(Ω). Thus, we conclude that
(z, π, a+, a−) ∈ B2

0(Ω). �

Now, supposing again that p > 2, we want to study the Stokes system with
homogeneous boundary conditions, that is to say : for f ∈W−1,p

0 (Ω), h ∈ Lp(Ω)
and α ∈ R, we want to find (u, π, a+, a−) ∈ W 1,p

0 (Ω) × Lploc(Ω) × R × R such
that π − a+ ∈ Lp(Ω+), π − a− ∈ Lp(Ω−) and

(S20)

 −∆u+∇π = f in Ω, div u = h in Ω,

u = 0 on Γ,
∫
M

u · n dσ = α.

First, we establish the following lemma :

Lemma 3.5. For each p > 2, for any f ∈W−1,p
0 (Ω) and h ∈ Lp(Ω) with a com-

pact support in Ω and for any α ∈ R, there exists (u, π, a+, a−) ∈ (W 1,p
0 (Ω) ∩

W 1,2
0 (Ω))× Lploc(Ω)× R× R solution of (S20) with

π − a+ ∈ Lp(Ω+) ∩ L2(Ω+) and π − a− ∈ Lp(Ω−) ∩ L2(Ω−).

Moreover u is unique and π, a+ and a− are unique up to an additive and
common constant.

Proof - Let f be in W−1,p
0 (Ω) and h be in Lp(Ω) with a compact support

in Ω and α ∈ R. Then, since p > 2, we easily check that f ∈ W−1,2
0 (Ω) and

h ∈ L2(Ω) and we deduce from Theorem 3.3 that there exists (u, π, a+, a−) ∈
W 1,2

0 (Ω)× L2
loc(Ω)× R× R solution of (S20) where u is unique and π, a+ and

a− are unique up to an additive and common constant. It remains to show that

(u, π) ∈ W 1,p
0 (Ω) × Lploc(Ω). For any v ∈

◦
W 1,p′

0 (Ω), we define the linear and

continuous application ` ∈ W−1,p
0 (Ω) by `(v) =

∫
M

v · n dσ, and we recall

that −∆u + ∇π = −∆u + ∇π − γ∞` in Ω. We set, for i = 1, 2, (ui, πi) =

(ψiu, ψiπ) ∈
◦
W 1,2

0 (Ω) × L2(Ω) and we notice that (u1, π1) has a compact
support included in G. Elementaries calculus show that we have −∆u1 +∇π1 = ψ1f + F 1 + ψ1γ∞` in G,

div u1 = ψ1h+H1 in G,
u1 = 0 on ∂G,

where

F 1 = −(2∇u∇ψ1 + u∆ψ1) + π∇ψ1 ∈ L2(G), and H1 = u · ∇ψ1 ∈H1(G).

Noticing that the support of `, subset of M , is compact and using the same
reasoning as Lemma 2.5 for the perturbed half-space, we conclude that we have
(u1, π1) ∈ W 1,p

0 (Ω) × Lp(Ω) and here again, we do like Lemma 2.5 to obtain
that (u2, π2) ∈W 1,p

0 (Ω)×Lp(Ω). Thus (u, π) ∈W 1,p
0 (Ω)×Lp(Ω) and the esti-

mate follows immediately. Finally, we easily deduce from this, since π ∈ Lp(Ω),
that π ∈ Lploc(Ω) and we have our result. �

Now, we establish the following theorem :
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Theorem 3.6. For any p > 2 and g ∈ W
1− 1

p ,p

0 (Γ), there exists a unique
(u, π, a+, a−) ∈ (W 1,p

0 (Ω)×Lploc(Ω)×R×R)/Bp0(Ω) with π−a+ ∈ Lp(Ω+) and
π − a− ∈ Lp(Ω−) solution of −∆u+∇π = 0 in Ω, div u = 0 in Ω,

u = g on Γ,
∫
M

u · n dσ = α,

and satisfying

‖u‖W 1,p
0 (Ω) + ‖π‖Lp(Ω) + |γ∞| ≤ C (‖g‖

W
1− 1

p
,p

0 (Γ)
+ |α|),

where C is a real positive constant which depends only on p and Ω.

Proof - The idea is the same as Theorem 2.6. First, we use results in bounded
domains to say that there exists (z, θ) ∈W 1,p

0 (Ω)× Lp(Ω) solution of

−∆z +∇θ = σ in Ω, div z = ψ in Ω, z = g1 on Γ,

where σ ∈ W−1,p
0 (Ω) and ψ ∈ Lp(Ω) have a compact support. Using Lemma

3.5, then there exists (t, τ, a′+, a
′
−) ∈W 1,p

0 (Ω)× Lploc(Ω)× R× R such that −∆t+∇τ = −σ in Ω, div t = −ψ in Ω,

t = 0 on Γ,
∫
M

t · n dσ =
1
2
α−

∫
M

z · n dσ,

with τ−a′+ ∈ Lp(Ω+) and τ−a′− ∈ Lp(Ω−). Noticing that θ ∈ Lp(Ω) ⊂ Lploc(Ω),
we deduce that (v = z + t, µ = θ + τ, a′+, a

′
−) ∈W 1,p

0 (Ω)× Lploc(Ω)× R× R is
solution of  −∆v +∇µ = 0 in Ω, div v = 0 in Ω,

v = g1 on Γ,
∫
M

v · n dσ =
1
2
α,

with µ−a′+ ∈ Lp(Ω+) and µ−a′− ∈ Lp(Ω−). Next, we follow again the same ideas
as Theorem 2.6. First, we use results in Rn+ and in Rn−d and we extend by (0, 0) in
Ω. Then, summing the two found pairs, we construct (r, α) ∈W 1,p

0 (Ω)×Lp(Ω)
solution of

−∆r +∇α = ξ in Ω, div r = 0 in Ω, r = g2 on Γ.

Then, using like previously Lemma 3.5, we are able to find (w, η, a′′+, a
′′
−) ∈

W 1,p
0 (Ω)× Lploc(Ω)× R× R such that −∆w +∇η = 0 in Ω, div w = 0 in Ω,

w = g2 on Γ,
∫
M

w · n dσ =
1
2
α,

with η−a′′+ ∈ Lp(Ω+) and η−a′′− ∈ Lp(Ω−). Finally (u = v+w, π = µ+η, a+ =
a′+ +a′′+, a− = a′−+a′′−) ∈W 1,p

0 (Ω)×Lploc(Ω)×R×R is solution of our problem
and the estimate follows immediately. �
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Theorem 3.7. For any p > 2, f ∈ W−1,p
0 (Ω) and h ∈ Lp(Ω), there exists

(u, π, a+, a−) ∈ W 1,p
0 (Ω) × Lploc(Ω) × R × R solution of (S20). Moreover, u is

unique, π , a+ and a− are unique up to an additive and common constant and
we have

‖u‖W 1,p
0 (Ω) + ‖π‖Lp(Ω) + |γ∞| ≤ C (‖f‖W−1,p

0 (Ω) + ‖h‖Lp(Ω) + |α|),

where C is a real positive constant which depends only on p and Ω.

Proof - The uniqueness comes from Theorem 3.4. Then, there exists, as a
consequence of Theorem 1.1 ii), a tensor of the second order F ∈ [Lp(Ω)]n×n

such that div F = f . We extend F (respectively h) by 0 in Rn, and we denote
by F̃ (respectively h̃) this extension. Then, we set f̃ = div F̃ . We have f̃ ∈
W−1,p

0 (Rn) and h̃ ∈ Lp(Rn). By [1], there exists (v, η) ∈ W 1,p
0 (Rn) × Lp(Rn)

solution of
−∆v +∇η = f̃ in Rn and div v = h̃ in Rn.

We denote again by v ∈W 1,p
0 (Ω) and η ∈ Lp(Ω) ⊂ Lploc(Ω) the restrictions of

v and η to Ω. We have v|Γ ∈ W
1− 1

p ,p

0 (Γ), thus, thanks to Theorem 3.6, there
exists (w, τ, a+, a−) ∈W 1,p

0 (Ω)× Lploc(Ω)× R× R solution of −∆w +∇τ = 0 in Ω, div w = 0 in Ω,

w = −v|Γ on Γ,
∫
M

w · n dσ = α−
∫
M

v · n dσ,

with τ − a+ ∈ Lp(Ω+) and τ − a− ∈ Lp(Ω−). Finally, (u = v + w, π =
η + τ, a+, a−) ∈ W 1,p

0 (Ω) × Lploc(Ω) × R × R is solution of (S20) and the es-
timate follows immediately. �

Now, we suppose that p is such that p < 2 and we want to solve (S20). Since
p < 2, its dual exponent p′ satisfies p′ > 2. So, if f ∈ W−1,p′

0 (Ω), h ∈ Lp′(Ω)
and α ∈ R, there exists, thanks to Theorem 3.7, (u, π, a+, a−) ∈ W 1,p′

0 (Ω) ×
Lp
′

loc(Ω)× R× R such that −∆u+∇π = f in Ω, div u = h in Ω,

u = 0 on Γ,
∫
M

u · n dσ = α,

with π − a+ ∈ Lp
′
(Ω+) and π − a− ∈ Lp

′
(Ω−). We easily notice that this is

equivalent to say that, for any (f , h, α) ∈W−1,p′

0 (Ω)×Lp′(Ω)×R, the following
problem (S20)

−∆u+∇π − γ∞` = f in Ω, div u = h in Ω, `(u) = α,

possesses a unique solution (u, π, γ∞) ∈
◦
W 1,p′

0 (Ω)×Lp′(Ω)×R (the uniqueness
comes from the definition of Bp

′

0 (Ω)). So, the mapping

S :
◦
W 1,p′

0 (Ω)× Lp
′
(Ω)× R→W−1,p′

0 (Ω)× Lp
′
(Ω)× R

(u, π, γ∞) 7→ (−∆u+∇π − γ∞`,−div u,−`(u))
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is an isomorphism. Furthermore, we have, for any (u, π, γ∞) ∈
◦
W 1,p′

0 (Ω) ×
Lp
′
(Ω)× R and (v, η, θ∞) ∈

◦
W 1,p

0 (Ω)× Lp(Ω)× R,

< −∆u+∇π − γ∞`,v >Ω −
∫

Ω

div u η dx − θ∞`(u)

= < −∆v +∇η − θ∞`,u >Ω −
∫

Ω

div v π dx − γ∞`(v).

Thus, by duality

S∗ :
◦
W 1,p

0 (Ω)× Lp(Ω)× R→W−1,p
0 (Ω)× Lp(Ω)× R

(v, η, θ∞) 7→ (−∆v +∇η − θ∞`,−div v,−`(v))

is also an isomorphism, i.e., when p < 2, there exists a unique (v, η, θ∞) ∈
◦
W

1,p
0 (Ω)×Lp(Ω)×R solution of (S20). Finally, it remains to return to the problem
(S20). For this, let c+ and c− be two constants such that θ∞ = c+− c−. We set
η = η + c+ in Ω+, and η = η + c− in Ω−, and we easily show that

−∆v +∇η = −∆v +∇η − θ∞` in Ω.

Thus, (v, η, c+, c−) ∈
◦
W 1,p

0 (Ω)× Lploc(Ω)× R× R is solution of (S20). For the

kernel, let (w, µ, k+, k−) ∈
◦
W 1,p

0 (Ω)× Lploc(Ω)×R×R be an other solution of
(S20). So, setting µ = µ− k+ in Ω+, µ = µ− k− in Ω−, and α∞ = k+ − k−,
we easily check that (w, µ, α∞) is solution of (S20), problem which admits a
unique solution. Consequently, w = v, µ = η and α∞ = θ∞ and so, there exists
λ ∈ R such that k+ = c+ +λ, and k− = c−+λ. We easily deduce from this that
η = µ− λ and thus, the kernel of the problem when p < 2 is again Bp0(Ω).

Finally, it remains to return to the general problem when p 6= 2. Thanks to
Lemma 1.2, there exists ug ∈W 1,p

0 (Ω) such that ug = g on Γ and satisfying

‖ug‖W 1,p
0 (Ω) ≤ C ‖g‖

W
1− 1

p
,p

0 (Γ)
,

and thanks to previous results, we have seen that there exists a unique (v, π, a+, a−) ∈
W 1,p

0 (Ω)× Lploc(Ω)×R×R such that π − a+ ∈ Lp(Ω+), π − a− ∈ Lp(Ω−) and −∆v +∇π = f −∆ug in Ω, div v = h− div ug in Ω,

v = 0 on Γ,
∫
M

v · n dσ = α−
∫
M

ug · n dσ.

Finally, the function (u = v + ug, π, a+, a−) ∈ W 1,p
0 (Ω) × Lploc(Ω) × R × R is

solution of (S2) and the estimate follows immediately. In consequence, we have
the following theorem :

Theorem 3.8. For any p > 1, f ∈ W−1,p
0 (Ω), h ∈ Lp(Ω), g ∈ W 1− 1

p ,p

0 (Γ)
and α ∈ R, there exists (u, π, a+, a−) ∈ W 1,p

0 (Ω) × Lploc(Ω) × R × R such that
π−a+ ∈ Lp(Ω+), π−a− ∈ Lp(Ω−) and solution of (S2). Moreover u is unique,
π, a+ and a− are unique up to an additive and common constant and it holds

‖u‖W 1,p
0 (Ω)+‖π‖Lp(Ω)+|γ∞| ≤ C (‖f‖W−1,p

0 (Ω)+‖h‖Lp(Ω)+‖g‖
W

1− 1
p
,p

0 (Γ)
+|α|),

where C is a real positive constant which depends only on p and Ω.
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3.3 Regularity result
Here, we want to give a regularity result for the problem (S2). For this, we

define the space :

Dp
1(Ω) = {π ∈ Lploc(Ω), ρ∇π ∈ Lp(Ω)}.

We have the following regularity theorem :

Theorem 3.9. For any p > 1 satisfying
n

p′
6= 1 and for any f ∈ W 0,p

1 (Ω),

h ∈W 1,p
1 (Ω), g ∈W 2− 1

p ,p

1 (Γ) and α ∈ R, there exists a unique (u, π, a+, a−) ∈
(W 2,p

1 (Ω) × Dp
1(Ω) × R × R)/Bp0(Ω) such that π − a+ ∈ W 1,p

1 (Ω+), π − a− ∈
W 1,p

1 (Ω−) solution of (S2). Moreover u is unique and π, a+ and a− are unique
up to an additive and common constant.

Proof - Thanks to Lemma 1.2, it is easily to show that it is sufficient to solve
the problem with g = 0. Now, we notice that we have the continuous injections
W 0,p

1 (Ω) ⊂W−1,p
0 (Ω) because

n

p′
6= 1 and W 1,p

1 (Ω) ⊂ Lp(Ω). Thus, thanks to

Theorems 2.3 and 3.5, there exists (u, π, a+, a−) ∈W 1,p
0 (Ω)× Lploc(Ω)×R×R

solution of (S20) and such that π − a+ ∈ Lp(Ω+), and π − a− ∈ Lp(Ω−). Then,
it remains to show that (u, π) ∈W 2,p

1 (Ω)×Dp
1(Ω) and that π−a+ ∈W 1,p

1 (Ω+),
and π−a− ∈W 1,p

1 (Ω−).We set (ui, πi) = (ψiu, ψiπ), for i = 1, 2. An elementary
calculation shows that we have −∆u1 +∇π1 = ψ1f + F 1 in G,

div u1 = ψ1h+H1 in G,
u1 = 0 on ∂G,

where

F 1 = −(2∇u∇ψ1 +u∆ψ1) +π∇ψ1 ∈ Lp(G), and H1 = u ·∇ψ1 ∈W 1,p(G).

Thanks to results in bounded domains and since supp (u1, π1) is included in G,
we have

(u1, π1) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω).

Now, we define the function π2 by

π2 = π2 − a+ in Ω+, π2 = π2 − a− in Ω−,

and we easily check that π2 ∈ Lp(Ω). Now, considering the half-space Rn+ and
noticing that ∇π2 = ∇π2 in Rn+, we define

f2 =−∆u2 +∇π2 = f + ∆u1 −∇π1 ∈W 0,p
1 (Rn+),

h2 = div u2 = h− div u1 ∈W 1,p
1 (Rn+).

By [8], there exists (s, θ) ∈ (W 2,p
1 (Rn+) ×W 1,p

1 (Rn+)) ⊂ (W 1,p
0 (Rn+) × Lp(Rn+))

solution of

−∆s+∇θ = f2 in Rn+, div s = h2 in Rn+, s = 0 on Rn−1,
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and since in W 1,p
0 (Rn+)×Lp(Rn+) there is a unique solution of this problem, we

have
(u2, π2) = (s, θ) ∈W 2,p

1 (Rn+)×W 1,p
1 (Rn+).

We use the same reasoning in Rn−d and since supp (u2, π2) is included in Rn+ ∪
Rn−d, we have

(u2, π2) ∈W 2,p
1 (Ω)×W 1,p

1 (Ω).

Finally, we deduce from this that (u, π) ∈W 2,p
1 (Ω)×Dp

1(Ω) and that π− a+ ∈
W 1,p

1 (Ω+) and π − a− ∈W 1,p
1 (Ω−). �
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