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1. Introduction 
 

Parallel kinematic machines (PKM) are commonly claimed as appealing solutions in many 
industrial applications due to their inherent structural rigidity, good payload-to-weight 
ratio, high dynamic capacities and high accuracy (Tlusty et al., 1999; Tsai, 1999; Merlet, 2000; 
Wenger et al., 2001). However, while PKM usually exhibit a much better repeatability 
compared to serial mechanisms, they may not necessarily possess a better accuracy that is 
limited by manufacturing/assembling errors in numerous links and passive joints (Wang & 
Masory, 1993). Thus, the PKM accuracy highly relies on an accurate kinematic model, which 
must be carefully tuned (calibrated) for each manipulator individually. 
Similar to serial manipulators, PKM calibration techniques are based on the minimization of 
a parameter-dependent error function, which incorporates residuals of the kinematic 
equations (Schröer et al., 1995; Wampler et al., 1995; Fassi et al., 2007; Legnani et al., 2007). 
For parallel manipulators, the inverse kinematic equations are considered computationally 
more efficient, contrary to the direct kinematics, which is usually analytically unsolvable for 
PKM. But the main difficulty with this technique is the full-pose measurement requirement, 
which is very hard to implement (Innocenti, 1995; Iurascu & Park, 2003; Daney, 2003;  Jeong 
et al., 2004; Huang et al., 2005). Hence, a number of studies have been directed at using the 
subset of the pose measurement data, which however creates another problem, the 
identifiability of the model parameters (Khalil & Besnard, 1999; Daney & Emiris, 2001; 
Besnard & Khalil, 2001; Rauf et al., 2004, 2006).  
Popular approaches in parallel robot calibration deal with one-dimensional pose errors 
using a double-ball-bar system or other measuring devices as well as imposing mechanical 
constraints on some elements of the manipulator (Zhuang et al., 1999; Thomas et al., 2003; 
Daney, 1999). However, in spite of hypothetical simplicity, it is hard to implement in 
practice since an accurate extra mechanism is required to impose these constraints. 
Additionally, such methods reduce the workspace size and the identification efficiency. 
Another category of calibration methods, the self- or autonomous calibration, is 
implemented by minimizing the residuals between the computed and measured values of 
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the active and/or redundant joint sensors (Hesselbach et al., 2005). Adding extra sensors at 
usually unmeasured joints is very attractive from a computational point of view, since it 
allows getting the data in the whole workspace and potentially reduces impact of the 
measurement noise. However, only a partial set of the parameters may be identified in this 
way, since the internal sensing is unable to provide sufficient information for the robot end-
effector absolute location (Zhuang, 1997; Williams et al., 2006). 
More recently, several hybrid calibration methods were proposed that utilize intrinsic 
properties of a particular parallel machine allowing extracting the full set of the model 
parameters (or the most essential of them) from a minimum set of measurements. It worth 
mentioning an innovative approach developed by Renaud et al. (2004 - 2006) who applied 
the vision-based measurement technique for the parallel manipulators calibration from the 
leg observations. In this approach, the source data are extracted from the leg images, 
without any strict assumptions on the end-effector poses. The only assumption is related to 
the manipulator architecture (the mechanism is actuated by linear drives located on the 
base). However, current accuracy of the camera-based measurements is not high enough yet 
to apply this method in industrial environment. 
This chapter summarises the authors’ results in the area of parallel robotics (Pashkevich et 
al., 2005, 2006) and focuses on the calibration of the Orthoglide-type mechanisms, which is 
also actuated by linear drives located on the manipulator base and admits technique of 
Renaud et al. (2004, 2005). But, in contrast to the known works, our approach assumes that 
the leg location is observed for specific manipulator postures, when the tool centre point 
(TCP) moves along the Cartesian axes. For these postures and for the nominal Orthoglide 
geometry, the legs are strictly parallel to the corresponding Cartesian planes. So, the 
deviations of the manipulator geometry influence on the leg parallelism that gives the 
source data for the parameter identification. The main advantage of this approach is the 
simplicity of the measuring system that can avoid using computer vision and is composed 
of standard comparator indicators, which are common in industry. 

 
2. Orthoglide Mechanism 
 

2.1 Manipulator architecture 
The Orthoglide is a three d.o.f. parallel manipulator actuated by linear drives with mutually 
orthogonal axes. Its kinematic architecture is presented in Fig. 1 and includes three identical 
parallel chains that will be further referred to as “legs”. Each manipulator leg is formally 
described as PRPaR - chain, where P, R and Pa denote the prismatic, revolute, and 
parallelogram joints respectively. The output machinery (with a tool mounting flange) is 
connected to the legs in such a manner that the tool moves in the Cartesian space with fixed 
orientation (i.e. restricted to translational motions). The Orthoglide workspace has a regular, 
quasi-cubic shape. The input/output equations are simple and the velocity transmission 
factors are equal to one along the x, y and z direction at the isotropic configuration, like in a 
conventional serial PPP machine. The latter is an essential advantage for machining 
applications (Wenger & Chablat, 2000; Chablat & Wenger, 2003).  
Another specific feature of the Orthoglide mechanism, which will be further used for 
calibration, is displayed during the end-effector motions along the Cartesian axes. For 
example, for the x-axis motion, the sides of the x-leg parallelogram must retain strictly 
parallel to the x-axis. Hence, the observed deviation may be a data source for calibration. 
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Fig. 1. The architecture of Orthoglide manipulator (a) and kinematics of its leg (b) 

(© CNRS Photothèque / CARLSON Leif) 
 
For a small-scale Orthoglide prototype used for the calibration experiments, the workspace 
size is approximately equal to 200200200 mm3 with the velocity transmission factors 
bounded between 1/2 and 2 (Chablat & Wenger, 2003). The legs nominal geometry is 
defined by the following parameters:  L = 310.25 mm, d = 80 mm, r = 31 mm where L, d are 
the parallelogram length and width, and r is the distance between the points Ci and the tool 
centre point P (see Fig. 1b). 

 
2.2 Modelling assumptions 
Following previous studies on the PKM accuracy (Wang & Massory, 1993; Renaud et al., 
2004, Caro et al., 2006), the influence of the joint defects is assumed negligible compared to 
the encoder offsets and the link length deviations. This validates the following modelling 
assumptions:  

(i) the manipulator parts are supposed to be rigid bodies connected by perfect joints; 
(ii) the manipulator legs (composed of a prismatic joint, a parallelogram, and two 

revolute joints) generate a four degrees-of-freedom motions; 
(iii) the articulated parallelograms are assumed to be perfect but non-identical; 
(iv) the linear actuator axes are mutually orthogonal and are intersected in a single 

point to ensure a translational movement of the end-effector; 
(v) the actuator encoders are perfect but located with some errors (offsets). 

Using these assumptions, calibration equations will be derived based on the observation of 
the parallel motions of the manipulator legs. 

 
2.3 Kinematic model 
Since the kinematic parallelograms are admitted to be non-identical, the kinematic model 
developed in our previous works (Pashkevich et al., 2005, 2006) should be extended to 
describe the manipulator with different length leg parameters.  
Under the adopted assumptions, similar to the equal-leg case, the articulated parallelograms 
may be replaced by the kinematically equivalent bar links. Besides, a simple transformation 
of the Cartesian coordinates (shifted by the vector (r, r, r)T, see Fig. 1b) allows us to eliminate 
the tool offset. Hence, the Orthoglide geometry can be described by a simplified model, 
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which consists of three rigid links connected by spherical joints to the tool centre point at 
one side and to the allied prismatic joints at another side (Fig. 2). Corresponding formal 
definition of each leg can be presented as PSS, where P and S denote the actuated prismatic 
joint and the passive spherical joint respectively.  

(a) (b) 
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Fig. 2. Orthoglide simplified model (a) and its ‘‘zero’’ configuration (b) 
 

Thus, if the origin of a reference frame is located at the intersection of the prismatic joint 
axes and the x, y, z-axes are directed along them (see Fig. 2), the manipulator kinematics 
may be described by the following equations 






















xx

xxx

xxxxx

L

L

eL






sin

cossin

coscos)(

p  (1a) 

sin

( ) cos cos

sin cos

y y

y y y y y

y y y

L

L e

L



   

 

 
 

     
 
 

p  (1b) 




















eL

L

L

zzzzz

zz

zzz






coscos)(

sin

cossin

p  (1c) 

where p = (px, py, pz)T is the output vector of the TCP position,  = (x, y, z)T is the input 
vector of the prismatic joints variables,  = (x, y, z)T is the encoder offset vector, i, i, 
i{x, y, z} are the parallelogram orientation angles (internal variables), and Li are the length 
of the corresponding leg.  
After elimination of the internal variables i , i , the kinematic model (1) can be reduced to 
three equations  

  2222)( ikjiii Lppp    (2) 
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which includes components of the input and output vectors p and  only. Here, the 

subscripts },,{,, zyxkji  , kji   are used in all combinations, and the joint variables i 

are obeyed the prescribed limits maxmin   i  defined in the control software (for the 

Orthoglide prototype, min = -100 mm and max = +60 mm). 

It should be noted that, for the case 0 zyx   and LLLL zyx  , the nominal 

‘‘mechanical-zero’’ posture of the manipulator corresponds to the Cartesian coordinates 

p0 = (0, 0, 0)T and to the joints variables 0 = (L, L, L). Moreover, in this posture, the x-, y-and 

z-legs are oriented strictly parallel to the corresponding Cartesian axes. But the joint offsets 

and the leg length differences cause the deviation of the “zero” TCP location and 

corresponding deviation of the leg parallelism, which may be measured and used for the 

calibration. Hence, six parameters (x, y, z , Lx, Ly, Lz) define the manipulator geometry 

and are in the focus of the proposed calibration technique. 

 
2.4 Inverse and direct kinematics 

The inverse kinematic relations are derived from the equations (2) in a straightforward way 

and only slightly differ from the “nominal” case: 

ikjiiii ppLsp   222  (3) 

where sx, sy, sz { ±1} are the configuration indices defined for the “nominal” geometry as 

the signs of  x – px , y – py, z – pz, respectively. It is obvious that expressions (3) give 

eight different solutions, however the Orthoglide prototype assembling mode and the joint 

limits reduce this set to a single case corresponding to sx = sy = sz = 1. 

For the direct kinematics, equations (2) can be subtracted pair-to-pair that gives linear 

relations between the unknowns px, py, pz, which may be expressed in the parametric form 

as  
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where t is an auxiliary scalar variable. This reduces the direct kinematics to the solution of a 

quadratic equation  02  CBtAt   with the coefficients 

;)()( 22



ji

jjiiA          ;)()()( 2222
kkjj

kji
i

i
ii LB   

  
2 2 2 4 2 2( ) ( ) / 4 2 ( ) ( ) / 4i i i i i i j j k k

i i i j ki

C L L       
 

         
 
    



Parallel Manipulators 

 

6 

where },,{,, zyxkji  . From two possible solutions that give the quadratic formula, the 

Orthoglide prototype (see Fig. 1) admits a single one AACBBt 2/)4( 2   

corresponding to the selected manipulator assembling mode. 
2.4 Differential relations 
To obtain the calibration equations, let us derive first the differential relations for the TCP 
deviation for three types of the Orthoglide postures: 

(i) “maximum displacement” postures for the directions x, y, z  (Fig. 3a);  

(ii)  “mechanical zero” or the isotropic posture (Fig. 3b);  

(iii)  “minimum displacement” postures for the directions x, y, z (Fig. 3c);  

These postures are of particular interest for the calibration since, in the “nominal” case, a 
corresponding leg is parallel to the relevant pair of the Cartesian planes. 
 

(a) : XMax posture (b) : Zero posture (c) : XMin posture 
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Fig. 3. Specific postures of the Orthoglide (for the x-leg motion along the Cartesian axis X) 
 

The manipulator Jacobian with respect to the parameters   =(x, y, z ) and  L = ( Lx, 
Ly, Lz) can be derived by straightforward differentiating of  the kinematic equations  (2), 
which yields 
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Thus, after the matrix inversions and multiplications, the desired Jacobian can be written as 
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It should be noted that, for the sake of computing convenience, the above expression 
includes both the Cartesian coordinates px, py, pz and the joint coordinates x, y, z, but only 
one of these sets may be treated as independent taking into account the kinematic equations. 
For the “Zero” posture, the differential relations are derived in the neighbourhood of the 
point {p0 = (0, 0, 0) ; 0 = (L, L, L)}, which after substitution to (5) gives the Jacobian matrix  
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Hence, in this case, the TCP displacement is related to the joint offsets and the leg lengths 
variations Li by trivial equations  

;iii Lp    },,{ zyxi . (7) 

For the “XMax” posture, the Jacobian is computed in the neighbourhood of the point 
{ )0,0,( LSp ; ),,(  LCLCLSLρ }, where  is the angle between the y-, z-legs and the 

X-axes:  )/sin( max La   ; )(sin  S ,   )cos( C . This gives the Jacobian 



























1

1

010

001

001001





CTT

CTTxJ  (8) 

where )tan( T . Hence, the differential equations for the TCP displacement may be 

written as xxx Lp    

yxyxy LCLTTp  1
   

zxzxz LCLTTp  1
   

(9) 

It can be proved that similar results are valid for the YMax and ZMax postures (differing by 
the indices only), and also for the XMin, YMin, ZMin postures. In the latter case, the angle   
should be computed as minasin( / )L  . 

 
3. Calibration Method 
 

3.1 Measurement technique 
To identify the Orthoglide kinematic parameters specified in the previous section, two 
approaches can be used, which employ different measurement techniques to evaluate the 
leg-to-surface parallelism. The first of them (Fig. 4a) assumes two measurements for the 
same leg posture (to assess distances from both leg ends to the base surface). The second 
technique (Fig. 4b) assumes a fixed location of the measuring device but two distinct leg 
postures, which are assumed to be parallel to each other in the nominal case.  
It is obvious that, for the perfectly calibrated manipulator, both methods give zero 
differences for each measurement pair. In contrasts, the non-zero differences contain source 
information for the parameter identification. However, the first method involves absolute 
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measurements that require essential implementation efforts; besides it allows evaluating 
parallelism only for the X- and Y-legs with respect to the XY-plane. So, the second method 
will be used here. 
 

(a) 
single-posture / double-sensor method  

(b) 
double-posture / single-sensor method 

 

Manipulator legs 

d1 
d2  = d2 - d1 

Base plane  

 

Manipulator legs 

d1

 = d2 - d1 

Manipulator legs

d2

Base plane 

Base plane 

Posture #1 

Posture #2 

 

Fig. 4. Measuring the leg parallelism with respect to the base plane 
 
For this method, which employs the relative measurements and allows assessing the leg 
parallelism with respect to both relevant planes (XY- and XZ-planes for the X-leg, for 
instance), the calibration experiment may be arranged in the following way: 

Step 1. Move the manipulator to the Zero posture; locate two gauges in the middle of the X-

leg (orthogonal to the leg and parallel to the axes Y and Z); get their readings. 

Step 2. Move the manipulator sequentially to the XMax and XMin postures, get the gauge 

readings, and compute the differences  +
xy , +

xz , xy , xz  with respect to the “Zero” 

posture values. 

Step 3+. Repeat steps 1, 2 for the Y- and Z-legs and compute the differences +
yx , +

yz , yx , 

yz , and +
zx , +

zy , zx , zy  corresponding to these legs. 

In the above description, the variable following the symbol  denotes the measurement 
direction (x, y or z), the subscript defines the manipulator leg, and the superscript indicates 
the manipulator posture (‘+’ for XMax and ‘-’ for XMin). For example, +

xz   denotes the z-

coordinate deviation of the X-leg for the XMax posture with respect to Zero location. 

 
3.2 Calibration equations 
The system of calibration equations can be derived in two steps. First, it is required to define 
the gauges’ initial locations that are assumed to be positioned at the leg middle at the Zero 
posture, i.e. at the points ( ) / 2ip r , { , , }i x y z  where the vectors ri define the prismatic 
joints centres:  ( ; 0; 0)T

x xL   r ;  (0; ; 0)T
y yL   r ;  (0; 0; )T

z zL   r . Hence, using the 
equation (7), the gauge initial locations can be expressed as 

¨0 ( ) / 2 ; ( ) / 2; ( ) / 2
T

x x x y y z zL L L L              g   
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¨0 ( ) / 2; ( ) / 2 ; ( ) / 2
T

y x x y y z zL L L L              g  (10) 

¨0 ( ) / 2; ( ) / 2; ( ) / 2
T

z x x y y z zL L L L              g   

Afterwards, for the XMax, YMax, ZMax postures, the leg spatial location is also defined by 

two points, namely, (i) the tool centre point p, and (ii) the centre of the prismatic joint ri. For 

example, for the XMax posture, the TCP position is max ( ; ; )x x xLS L      p , the 

prismatic joint position is max ( ; 0; 0)x xL LS    r . So, the leg is located along the line 

 max max( ) (1 ) ; 0;1x x x        s p r , 

Since the x-coordinate of the gauge is kept constant (for X-leg measurements), the parameter 
 may be obtained from the equation 0[ ( )] [ ]x x x x s g , which yields: 

0.5 /xS S L L      , 

Hence, after some transformations, the deviations of the X-leg measurements (between the 
XMax and Zero postures) may be expressed as 

1(0.5 ) (0.5 ) ((0.5 ) 0.5)x x y x yy S T S S T L S C L                    
1(0.5 ) (0.5 ) ((0.5 ) 0.5)x x z x zz S T S S T L S C L                      

A similar approach may be applied to the XMin posture, as well as to the corresponding 
postures for the Y- and Z-legs. This gives the system of twelve linear equations in six 
unknowns: 
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(11) 

where sin( );i ia     (0.5 sin( )) tan( );i i ib      (0.5 sin( )) / cos( ) 0.5;i i ic        {1,2}i , and 

1 maxasin( / ) 0;L      2 minasin( / ) 0L    . This system can be solved using the 

pseudoinverse of Moore-Penrose, which ensures the minimum of the residual square sum 
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for corresponding linear approximation of the kinematic equations that is valid for small 

values of , , ,x y y zL L     . Otherwise, it is prudent to apply straightforward numerical 

optimisation, which fits the experimental data to the manipulator kinematic model (1). 
3.4 Calibration accuracy 
Because of the measurement noise, the developed technique may produce some errors in 
estimates of the model parameters. Thus, for practical applications, it is worth to evaluate 
the statistical properties of the calibration errors. 
Within the linear calibration equations (11), the impact of the measurement noise may be 
evaluated using general techniques from the identification theory, under the standard 
assumptions concerning the primary measurement errors (.)  (zero-mean independent and 

identically distributed Gaussian random variables with the standard deviation ). For these 
assumptions, the covariance matrix of the estimated parameters is written as (Ljung, 1999) 

1 1( , ) ( ) ( ) ( )T T T T         V ρ L J J J E s s J J J  (12) 

where E(.) denotes the mathematical expectation, J is the identification Jacobian, and s is 
the vector of the measurement errors in the right-hand side of the system (11).  However, in 
contrast to the standard technique, the vector s includes some statistically-dependent 
components because the same measurement values, corresponding to the Zero position, are 
subtracted from those corresponding to the Max and Min postures. In particular, 

0 0 0( ) ( ), ( ) ( ), ( ) ( )
T

y y x x x xx x y y z z             s  , (13) 

where the index sequence strictly corresponds to (11). Thus, the covariance ( )T E s s  is the 

1212 non-identity matrix that after relevant transformations may be expressed as 

  2

12 12

2 0 1 0
0 2 0 1

;
1 0 2 0
0 1 0 2

T 



                  

G 0 0
E s s 0 G 0 G

0 0 G

 (14) 

Hence, using expressions (12), (14) it is possible to evaluate the identification accuracy (via 
the covariance matrix (12)) for the set of parameters { , , , }x y y zL L      provided the 
measurement error parameter  is known. For instance, for the Orthoglide prototype 
described in sub-section 2.1 and the Max/Min posture characteristic angles 1 11.0    and 

2 18.7    , the measurement noise with 210 mm   causes the mean-square errors for the 

, , ,x y y zL L      of about 0.07 mm. 

 
4. Experimental results 
 

4.1 Experimental setup 
For experimental verification of the developed technique, we used the measuring system 
composed of standard comparator indicators with resolution of 10.0 m. The indicators 
were attached to universal magnetic stands that allow fixing them on the manipulator base. 
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This system is sequentially used for measuring the X-, Y-, and Z-leg parallelism while the 
manipulator moves between the Max, Min and Zero postures. (It is obvious that for 
industrial applications it is worth using more sophisticated digital indicators with the 
resolution of 1.0 m or less, which yield more accurate calibration results.)  

     
Fig. 5. Experimental setup for calibration experiments 

For each measurement, the indicators are located on the mechanism base in such a manner 
that a corresponding leg is admissible for the gauge contact for all intermediate postures 
(Fig. 5). The Min and Max postures are constrained by the software limits and defined as 

min 100.00 mm    and max 60.00 mm    respectively. Initial position of the indicator 

corresponds to the leg middle point at the manipulator Zero posture. 
During experiments, the legs were moved sequentially via the following postures: 
Zero  Max  Min   Zero … . To reduce the measurement errors, the measurements 
were repeated three times for each leg. Then, the results were averaged and used for the 
parameter identification. It should be noted that the measurements demonstrated very high 
repeatability compared to the encoder resolution (dissimilarity was less than 20.0 m). 

 
4.2 Calibration results and their analysis 
The experimental study included three types of experiments targeted to the following 
objectives: (#1) validation of modelling assumptions; (#2) obtaining source data for the 
parameter identification; and (#3) verification of the calibration results. 
Experiment #1. The first calibration experiment demonstrated rather high parallelism 
deviation for the legs at the Max and Min postures, up to 2.37 mm as shown in Table1. This 
indicated low accuracy of the nominal kinematic model and motivated necessity of the 
calibration. On the other hand, the milling accuracy evaluated in separate tests was quite 
good. However, this is not an indicator of high absolute accuracy but just a proof of the 
Orthoglide architecture advantages (the milling tests were perfect just because of the high 
homogeneity of the manipulator workspace in the neighbourhood of the isotropic location). 
The straightforward application of the proposed calibration algorithm to the data set #1 was 
not optimistic: in the frames of the adopted kinematic model the root-mean-square (r.m.s.) 
deviation for the legs can be reduced down from 1.19 mm to 0.74 mm only (see Table 1 
where +

y y yx x x    , +
z z zx x x    , etc.). Besides, the statistical estimation of the 

measurement noise parameter  (based on the residual analysis) also yielded unrealistic 
result compared to the encoder resolutions (0.01 mm). This impelled to conclude that some 
modelling assumptions are not valid and the manipulator mechanics required more careful 
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tuning, especially orientation of the linear actuator axes (that are assumed to be mutually 
orthogonal and to intersect in a single point). Thus, the manipulator mechanics was re-
tuned, in particular spatial locations of the actuator axes were adjusted. 

Data Source xy xz yx yz zx zy  r.m.s. 

Experiment #1  (before mechanical tuning and before calibration) 

Measurements #1 +0.52 +1.58 +2.37 -0.25 -0.57 -0.04  1.19 

Expected 
improvement -0.94 +0.63 +1.07 -0.84 -0.27 +0.35  0.74 

Experiment #2 (after mechanical tuning, before calibration) 

Measurements #2 -0.43 -0.37 +0.42 -0.18 -1.14 -0.70  0.62 

Expected 
improvement -0.28 +0.25 +0.21 -0.14 -0.13 +0.09  0.20 

Experiment #3  (after calibration and adjusting of ) 

Measurements #3 -0.23 +0.27 +0.34 -0.10 -0.09 +0.11  0.21 

Expected 
improvement -0.29 +0.23 +0.25 -0.17 -0.10 +0.08  0.20 

Table 1. Experimental data and expected improvements of accuracy via calibration [mm] 
 

Experiment #2. The second calibration experiment (after mechanical tuning) yielded lower 
parallelism deviations, less than 0.62 mm in terms of the deviations 

yx , zx , … (see Table 
1), which is about twice better than in the first experiment. Besides, the expected residual 
reduction was also essential (0.20 mm) that justified validity of the modelling assumptions. 
For these data, the developed calibration algorithm was applied for three sets of the model 
parameters: for the full set {, L} and for the reduced sets {}, {L}. As follows from the 
identification results (Tables 2, 3), the calibration algorithm is able to identify 
simultaneously both the joint offsets and  and the link lengths L. However, both  and 
L (separately) demonstrate roughly the same influence on the residual reduction, from 
0.32 mm to 0.14 mm (in terms of the deviations + ,y yx x  +, ,z zx x  , ), while the full set {, 
L} gives further residual reduction down to 0.12 mm only. This motivates considering  
as the most essential parameters to be calibrated. Accordingly, the identified vales of joint 
offsets x, y, z were incorporated in the Orthoglide control software. 
Experiment #3. The third experiment was targeted to the validation of the calibration 
results, i.e. assessing the leg parallelism while using the kinematic model with the 
parameters identified from the data set #2. This experiment demonstrated very good 
agreement with the expected values of + ,y yx x  +, ,z zx x  , . In particular, the maximum 
deviation reduced down from 0.62 mm to 0.24 mm, and the root-mean-square value 
decreased down from 0.32 mm to 0.15 mm (expected value is 0.14 mm). On the other hand, 
further fitting of the kinematic model to the third data set gives both negligible 
improvement in the deviations and very small alteration of the model parameters. It is 
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evident that further reduction of the parallelism deviation is bounded by the manufacturing 
errors and, by non-geometric reasons.  

Residuals 

Experiment 2 Experiment 3 

Exper. 
data 

Expected improvement Exper. 
data 

Expected improvement 

{, L} {} {L} {, L} {} {L} 

yx  –0.19 -0.09 -0.03 -0.03 -0.07 0.02 0.04 0.04 

xy  0.08 0.12 0.03 0.04 0.02 0.04 0.02 0.02 

yx  0.22 0.09 0.13 0.12 0.10 -0.07 -0.06 -0.06 

xy  -0.34 -0.10 -0.13 -0.13 -0.24 0.01 0.00 0.00 

zx  -0.29 -0.41 -0.32 -0.33 0.01 -0.02 -0.01 0.00 

xz  -0.52 -0.45 -0.39 0.42 0.11 -0.02 -0.03 0.04 

zx  0.08 0.23 0.26 0.26 -0.19 -0.05 -0.04 -0.04 

xz  0.62 0.55 0.57 0.56 -0.03 0.10 0.09 0.09 

zy  0.02 -0.04 -0.13 -0.12 0.07 -0.03 -0.05 -0.05 

yz  -0.24 0.29 -0.26 -0.27 -0.21 -0.05 -0.07 -0.07 

zy  0.20 -0.03 0.06 -0.06 0.17 0.04 0.03 0.03 

yz  0.45 0.48 0.51 0.50 0.27 0.11 0.10 0.10 

Average 0.32 0.12 0.14 0.14 0.15 0.13 0.14 0.14 

Table 2. Residual compensation using different sets of kinematic parameters [mm] 

Set of 
parameters 

Identified values [mm] 
Residuals 

x y z Lx Ly Lz 

{, L} 4.66 -5.36 1.46 5.20 -5.96 3.16 0.12 

{} -0.48 0.49 -1.67 – – – 0.14 

{L} – – – 0.50 -0.52 1.69 0.14 

Table3. Calibration results for parameters   and L 

Resume. Hence, the calibration results confirm validity of the proposed identification 
technique and its ability to tune the joint offsets and link lengths from observations of the 
leg parallelism. However, for these partucular experiments, combined influence of the 
parameters {, L} may be roughly decribed by the diffrence { - L} that allows us to 
simplify modifications of the kinematic model included in the control software. Another 
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conclusion is related to the modelling assumption: for further accuracy improvement it is 
prudent to generalize the manipulator model by including parameters describing 
orientation of the prismatic joint axes, which is equavalet to relaxing some modelling 
assumption. 
5. Conclusions 
 

Recent advances in parallel robot architectures encourage related research on kinematic 
calibration of parallel mechanisms. This paper proposes a novel calibration approach based 
on observations of manipulator leg parallelism with respect to the Cartesian planes. 
Presented for the Orthoglide-type mechanisms, this approach may be also applied to other 
manipulator architectures that admit parallel leg motions (along the Cartesian axes) or, in 
more general case, allow locating the leg in several postures with a common intersection 
point.  
The proposed calibration technique employs a simple and low-cost measuring system 
composed of standard comparator indicators attached to the universal magnetic stands. 
They are sequentially used for measuring the deviation of the relevant leg location while the 
manipulator moves the tool-center-point in the directions x, y and z. From the measured 
differences, the calibration algorithm estimates the joint offsets and link lengths that are 
treated as the most essential parameters that are difficult to identify by other methods. 
The presented theoretical derivations deal with the sensitivity analysis of the proposed 
measurement method and also with the calibration accuracy. The validity of the proposed 
approach and efficiency of the developed numerical algorithm were confirmed by the 
calibration experiments with the Orthoglide prototype, which allowed dividing the residual 
root-mean-square by three. 
To increase the calibration precision, future work will focus on the development of the 
specific assembling fixture ensuring proper location of the linear actuators and also on the 
expanding the set of the identified model parameters and compensation of the non-
geometric errors that are not identified within the frames of the adopted model. 
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