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RIGIDITY FOR MULTI-TAUB-NUT METRICS.

VINCENT MINERBE

Abstract. This paper provides a classification result for gravitational instantons
with cubic volume growth and cyclic fundamental group at infinity. It proves that
a complete hyperkähler manifold asymptotic to a circle fibration over the Euclidean
three-space is either the standard R

3
×S

1 or a multi-Taub-NUT manifold. In partic-
ular, the underlying complex manifold is either C × C/Z or a minimal resolution of
a cyclic Kleinian singularity.
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Introduction.

Since the late seventies, there has been considerable interest in the so-called grav-
itational instantons, namely complete non-compact hyperkähler four-manifolds with
decaying curvature at infinity. They were introduced by S. Hawking [Haw] as build-
ing blocks for his Euclidean quantum gravity theory. Beside their natural link with
gauge theory, they have also appeared relevant in string theory. Their mathematical
beauty, including the nice twistorial point of view [Bes], is definitely a good motivation
to understand them.

All known examples fall into four families – ALE, ALF, ALG, ALH – which differ
by their asymptotic geometry. The ALE gravitational instantons are Asymptotically
Locally Euclidean, in that their asymptotic geometry is that of R

4, up to a finite cover-
ing. In the other families, the topology outside a compact set and up to finite covering
is that of a T

4−k-fibration over R
k, with k = 3 for the ALF family, k = 2 for the

ALG family, k = 1 for the ALH family ; moreover, the geometry is asymptotically
adapted to these fibrations. Much more details will be given below, in the ALF case.
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2 VINCENT MINERBE

It is useful to keep in mind that ALE gravitational instantons are exactly those grav-
itational instantons that have Euclidean volume growth – volB(x, t) ≍ t4 – [BKN],
while ALF gravitational instantons are characterized by their cubic volume growth –
volB(x, t) ≍ t3 [Mi2].

In 1989, P. Kronheimer classified ALE gravitational instantons [Kr1, Kr2]. The pos-
sible topologies are given by the minimal resolutions of the Kleinian singularities C

2/Γ.
Here, Γ is a finite subgroup of SU(2): cyclic, binary dihedral, tetrahedral, octahedral
or icosahedral. For every such manifold M , the different hyperkähler structures are
parameterized by three classes in H1,1(M,C), with a non-degeneracy condition [Kr2].
The simplest situation corresponds to “Ak+1” ALE gravitational instantons, namely
Γ = Zk, with k ≥ 1, since they are given by the explicit multi-Eguchi-Hanson metrics.
When k = 1, the manifold is T ∗

CP 1 and the metric is also known as Calabi’s metric.
ALF gravitational instantons should be classified in a similar way. What are the

examples ? The trivial one is C × C/Z, with fundamental group at infinity Z. More
sophisticated examples are given by multi-Taub-NUT metrics (cf. section 1), which live
exactly on the same manifolds as the multi-Eguchi-Hanson metrics; the fundamental
group at infinity is then Zk. Some more mysterious examples were built recently by
S. Cherkis and A. Kapustin, with a dihedral fundamental group at infinity. It is
conjectured that these are the only ALF gravitational instantons.

Indeed, [Mi2] already ensures the topology outside a compact set is like in these
examples. Let us recall the precise statement. We will denote by ρ the distance to
some distinguished point.

Theorem 0.1 — [Mi2] Let M be a four-dimensional complete hyperkähler manifold
such that Rm = O(ρ−3) and volB(x, t) ≍ t3. Then M is ALF in that there is a
compact subset K of M such that M\K is the total space of a circle fibration π over
R

3 or R
3/{± id} minus a ball and the metric g can be written

g = π∗gR3 + η2 + O(ρ−τ ) for any τ < 1,

where η is a (local) connection one-form for π; moreover, the length of the fibers goes
to a finite positive limit at infinity.

It shows that the topology of the ALF gravitational instanton M can be described
outside a compact subset by : M\K = E × R

∗
+, where E is the total space of a circle

fibration over S
2 or RP 2. When the base of the circle fibration at infinity is S

2, we will
say that M is ALF of cyclic type : in this case, E is either S

2 × S
1 or S

3/Zk (where
Zk is seen as the group of kth roots of 1, acting by scalar multiplication in C

2), so the
fundamental group of the end is Z or Zk, hence the denotation. When the base of the
circle fibration at infinity is RP 2, we say that M is ALF of dihedral type : E is then a
quotient of S

3 by a binary dihedral group Dk (of order 4k), so the fundamental group
is dihedral (the trivial bundle is excluded for orientability reasons). In particular, this
topological classification for the end rules out any tetrahedral, octahedral or icosahedral
fundamental group at infinity. Note thatD1 is indeed Z4, so “ALF of cyclic type” means
a little bit more than just “with cyclic fundamental group at infinity”.

The aim of this paper is to establish a complete classification for ALF gravitation
instantons of cyclic type. The precise statement is as follows.

Theorem 0.2 — An ALF gravitational instanton of cyclic type is either the flat C ×
C/Z or a multi-Taub-NUT manifold.
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This classification is up to triholomorphic isometry. In view of Theorem 0.1, it
means that a complete hyperkähler manifold asymptotic to C × C/Z (resp. a multi-
Taub-NUT manifold) is necessarily C × C/Z (resp. a multi-Taub-NUT manifold). In
this statement, “hyperkähler” cannot be relaxed to “Ricci-flat”. For instance, there is
a non-flat Ricci-flat manifold asymptotic to C×C/Z : the Schwarzschild metric ([Mi3],
for instance).

The strategy of the proof is as follows. [Mi2] provides an asymptotic model for the
manifolds under interest. It involves as key ingredients three functions and a one-form.
In the examples, this data extends harmonically to the interior of the manifold and
determines the metric. We will prove the existence of such an harmonic extension and
then recover the metric from these. In particular, we will extend a “Killing vector field
at infinity” into a Killing vector field on the whole manifold.

This work is related to R. Bielawski’s paper [Bie], which (in particular) classifies
simply-connected hyperkähler four-manifolds endowed with a trihamiltonian action of
S

1 (see also [KS]). In our context, we are not given a global action of S
1 but we build

it, thanks to the Killing vector field mentionned above.
In a first section, we will describe the multi-Taub-NUT examples, since their prop-

erties are crucial for the proof. In a second section, we will start our construction,
extending the fibration at infnity into a harmonic map on the whole manifold. In a
third section, we will use the complex structures to construct the promised Killing
vector field and then finish the proof.

1. Multi-Taub-NUT metrics.

Given an integer k ≥ 1 and k points a1, . . . , ak in R
3, we let Mk∗ be the total space

of the principal S
1 bundle over R

3\ {a1, . . . , ak} whose Chern class integrates to −1
over the small two-spheres around each point ai – this definition makes sense for these
two-spheres form a basis for the homology of R

3\ {a1, . . . , ak} in degree two. Note that
the Chern class consequently integrates to −k over the large two-spheres at infinity
(Stokes). We need to endow this bundle with a connection. To fix conventions, we
recall a connection on a S

1 bundle is merely a S
1 invariant one-form η0, normalized so

that its value on the generator of the action is 1 (we identify the Lie algebra of S
1 with

R and not iR). It follows that dη0 is the pull back of a (“curvature”) two-form Ω0 on
the base, whose cohomology class is the Chern class of the bundle up to a factor 2π.

Denoting by x = (x1, x2, x3) the coordinates on R
3, we pick a positive number m

and introduce:

V = 1 +
k∑

i=1

2m

|x− ai|
.

This a harmonic function so ∗R3dV is a closed two-form. It follows that ∗R3dV integrates

to −8mπ over the small two-spheres around each ai, so that
∗

R3dV

4m
represents the Chern

class of the bundle, hence is the curvature two-form of a connection one-form η
4m

(when

k = 1, this is basically the standard contact form on S
3). The multi-Taub-NUT metrics

are then given by the Gibbons-Hawking ansatz:

g = V dx2 +
1

V
η2 with dη = ∗R3dV.

This extends as a complete metric on the manifold Mk obtained by adding one point pi

over each point ai. The pi’s should be thought of as the fixed points of the action of the
circle. The ambiguity resulting resulting from the choice of the form η only produces
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isometric metrics (two convenient one-forms η only differ by the pull-back of an exact
one-form df on the base, which makes them gauge-equivalent: the automorphism x 7→
eif(x) · x carries one onto the other).

This metric g turns out be hyperkähler ! The Kähler structures are easy to describe.
We simply define a complex structure I on T ∗Mk∗ by the relations Idx1 = η

V
and

Idx2 = dx3. One can check that this is indeed Kähler [Leb] (hence extends to the whole
Mk). The other Kähler structures are obtained by rotating the roles of dx1, dx2 and
dx3. For any of these complex structures, the complex manifold Mk is biholomorphic
to the minimal resolution of C

2/Zk [Leb].

At infinity, the curvature decays as |x|−3 and the length of the fibers goes to 8mπ.

2. A refined asymptotic model.

The aim of this section is to improve the asymptotic model provided by [Mi2] for the
manifolds we are interested in. In a first step, we recall the rough model from [Mi2],
which is basically a circle fibration at infinity, plus a connection on it. In a second
time, we improve the fibration and then the connection.

2.1. The rough model. Let us give a precise definition for the class of manifolds we
are interested in. Given a Riemannian manifold, we denote by Rm the curvature tensor
and by ρ the distance function to some distinguished point o. We can define an ALF
gravitational instanton as follows.

Definition 2.1 — An ALF gravitational instanton is a complete hyperkähler four-
manifold with cubic curvature decay – Rm = O(ρ−3) – and cubic volume growth –
∃ c > 0, ∀x, ∀ t ≥ 1, c−1t3 ≤ volB(x, t) ≤ ct3.

In view of [Mi1], under the other assumptions, the cubic curvature decay is indeed
automatic as soon as the curvature decays faster than quadratically. And it implies
the covariant derivatives obey ∇i Rm = O(ρ−3−i) [Mi2]. These facts follow from the
Ricci-flatness.

The paper [Mi2] describes the geometry at infinity of such manifolds. Theorem 0.1
in the introduction sums up what we need. It ensures the existence of a circle fibration
over R

3 or R
3/Z2 minus a ball at infinity. We assume in this paper that the base of this

fibration at infinity is R
3. minus a ball : the ALF gravitational instantons satisfying

this property are called “ALF of cyclic type”. In what follows, we consider an ALF
gravitational instanton of cyclic type (M,g). Let us describe precisely the geometry at
infinity, relying on [Mi2], where every detail is given.

Basically, M minus a compact subset K is the total space of a circle fibration π over
R

3 minus a ball B
3. Furthermore, this fibration encodes the asymptotic geometry as

follows. First, the length of the fibers of π goes to some positive and finite value L∞

at infinity and a g-unit π-vertical vector field U obeys

∇gU = O(ρ−2) and ∀ i ≥ 2, ∇g,iU = O(ρ−i).

Second, if we average the metric g into g̃ along the fibers of π (i.e. along the flow of
U), then

g = g̃ + O(ρ−2) and ∀ i ∈ N
∗, ∇g,ig̃ = O(ρ−1−i).

Third, if we push g̃ down into a metric ǧ on R
3\B3, then ǧ is asymptotically Euclidean

of order τ for any τ ∈]0, 1[ in the sense of [BKN]. It implies the existence of ǧ-harmonic
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coordinates xk on R
3\B such that

ǧ = dx2 + O(|x|−τ ) and ∇ǧdxk = O(|x̌|−τ−1).

It turns out we can strengthen a little bit the statement about the asymptotic of ǧ.
In [Mi2], we proved a bound on the curvature tensor of ǧ that ensured this metric was
asymptotically Euclidean in C1,α topology, via [BKN]. It turns out we will need a C2

decay of ǧ to the flat metric. This is only a minor technicality, which we fix now.

Lemma 2.2 — ∇ǧ,2dxk = O(|x|−τ−2).

Proof. In view of [BKN] (p. 314-315), if we prove ∇ǧ Rmǧ = O(|x|−4), then the
asymptotically Euclidean behaviour is true with order τ in C2,α topology and we
are done. To prove this estimate, we choose exponential coordinates at the running
point on the base and lift the coordinate vector fields ∂i into vector fields Xi that
are g̃-orthogonal to the fibers of π. O’Neill’s formula ([Bes]) expresses the quantity
ǧ(Rmǧ(∂i, ∂j)∂k, ∂l) as g̃(Rmeg(Xi,Xj)Xk,Xl) plus a linear combination of terms like
g̃([Xi,Xj ], U)g̃([Xk,Xl], U). The formula can be differentiated to get

∣∣∇ǧ Rmǧ

∣∣ ≤ c
∣∣∣∇eg Rmeg

∣∣∣ + c
∣∣∣∇egU

∣∣∣
(∣∣Rmeg

∣∣ +
∣∣∣∇eg,2U

∣∣∣ +
∣∣∣∇egU

∣∣∣
2
)
.

Using the estimates recalled above, we find ∇eg,i Rmeg = O(ρ−3−i), ∇egU = O(ρ−2) and

∇eg,2U = O(ρ−2), hence the result. �

2.2. A best fibration at infinity. The estimates above make it possible to find g-
harmonic functions that approach the (pullback of the) functions xk at infinity in C1

topology, with appropriate C∞ estimates ; a “best” fibration π will stem from these
harmonic functions. Beware we will often use the same notation for a function on the
base R

3 and its pullback by the fibration.

Lemma 2.3 — For every index k, one can find a g-harmonic function xk on M such
that for any ǫ > 0, xk = xk + O(ρǫ) and dxk = dxk + O(ρǫ−1), with moreover:
∀i ≥ 2, ∇g,ixk = O(ρǫ−i).

Proof. Let us extend xk as a smooth function on the whole M and observe
∣∣∆gxk − ∆egxk

∣∣ ≤ c |g − g̃|
∣∣∣∇egdxk

∣∣∣ + c
∣∣∣∇g −∇eg

∣∣∣ |dxk| ≤ cρ−2.

Since the functions xk are harmonic with respect to ǧ or g̃, we deduce ∆gxk = O(ρ−2).

This lies in ρδ−2L2 for any δ > 3
2 , so we can apply the analysis of [Mi3] to find a solution

uk for the equation ∆guk = −∆gxk, with ∇iuk ∈ ρδ−iL2, 0 ≤ i ≤ 2. As explained in
the appendix of [Mi2], a Moser iteration yields

‖uk‖L∞(AR) ≤ cR− 3

2 ‖uk‖L2(A′

R
) + cR2 ‖∆guk‖L∞(A′

R
) ,

where AR = {R ≤ ρ ≤ 2R} and A′
R = {R/2 ≤ ρ ≤ 4R}. Since uk is in ρ

3

2
+ǫL2 and

∆guk = −∆gxk = O(ρ−2), we get uk = O(ρǫ) for any positive ǫ. Since Ricg =
0, the Hodge Laplacian and the Bochner Laplacian (which we denote by ∆g on the
whole tensor algebra) coincide on one-forms. With lemma 2.2, we can apply the same
argument to duk, with this Laplacian (cf. [Mi2]) and find duk = O(ρǫ−1). As a result,
the function xk := xk + uk is g-harmonic, with

xk = xk + O(ρǫ) and dxk = dxk + O(ρǫ−1).
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The equation ∆gdxk = 0 can be used together with [∆g,∇
g] = Rmg �∇g + ∇g Rmg �

(here, � denotes any bilinear pairing depending only on g) to obtain:

∆g∇
g,idxk =

i∑

j=0

∇g,j Rmg �∇g,i−jdxk.

Since ∇g,j Rmg = O(ρ−3−j), the estimates follow from an induction argument based
on the following inequality (Moser iteration and cutoff argument, cf. [Mi2]):

∥∥∇g,idxk

∥∥
L∞(AR)

+R− 1

2

∥∥∇g,i+1dxk

∥∥
L2(AR)

≤ cR− 3

2

∥∥∇g,idxk

∥∥
L2(A′

R
)
+ cR

1

2

∥∥∆g∇
g,idxk

∥∥
L2(A′

R
)
.

�

Enlarging K if necessary, these g-harmonic functions x1, x2, x3 provide a new S
1-

fibration π = (x1, x2, x3) : M\K −→ R
3\B. As a consequence of (2.3), vector fields

X that are g-orthogonal to the fibers of π obey

(1)
|dπ(X)|g

R3

|X|g
= 1 + O(ρǫ−1)

and π satisfies the following estimates

(2) ∀i ≥ 2, ∇g,iπ = O(ρǫ−i),

with respect to the metric g on M\K and the Euclidean metric on the base. Let us
denote by U a g-unit π-vertical vector field. Differentiating the relation dπ(U ) = 0 and
using (1), (2), we get as in [Mi2]:

(3) ∀ i ∈ N
∗, ∇g,iU = O(ρǫ−1−i).

We also introduce the function L assigning to each point p the length of the π-fiber
through p and the flow ψt of U . With ψL = id, one finds dL =

(
g − ψL∗g

)
(U, .). Since

the Lie derivative of g along U is twice the symmetrization of ∇gU , we have
∣∣g − ψt∗g

∣∣ ≤ ctρǫ−2 and therefore |dL| ≤ cLρǫ−2.

So d logL = O(ρǫ−2). From Cauchy’s criterion, we deduce L goes to a limit L∞ at
infinity (and L∞ = L∞, indeed). Using the arguments of [Mi2], we can then estimate
the metric g̃ obtained by averaging g along the flow of U by

(4) ∀ i ∈ N, ∇g,i(g̃ − g) = O(ρǫ−2−i)

and the derivatives of L by

∀ i ∈ N
∗, ∇g,i(L) = O(ρǫ−1−i).

We introduce the vector field T := L
L
∞

U. on M\K and see
L
∞

2π
T as the infinitesimal

generator of a S
1 action, which makes π into a principal S

1-fibration. The one-form

η :=
eg(T ,.)

eg(T ,T ) is S
1 invariant and satisfies η(T ) = 1. It is

L
∞

2π
times a connection on the

S
1-bundle. The metric g̃ induces a metric ǧ on the base and we have

∀ i ∈ N, ∇ǧ,i
(
ǧ − dx2

)
= O(

∣∣x̌ǫ−1−i
∣∣).

The outcome of all this is a “model” metric h := dx2 + η2 such that dη = π∗Ω with

∀ i ∈ N, ∇h,i(g − h) = O(ρǫ−1−i) and Di(Ω) = O(|x|ǫ−2−i).
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For the sake of simplicity, we will forget the underlining and denote |x| by r. The letter
ǫ will refer to any small positive number and we basically use the convention ”ǫ = 2ǫ”
(finitely many times, hopefully).

What have we gained ? We chose to sacrifice an ǫ in the lower order estimates of
π and U for two benefits. The first one is technical : we are provided with better
estimates for the higher order derivatives. The second one is essential: the fibration at
infinity extends as a harmonic function on the whole manifold, as in the examples. It is
encouraging to notice that such a function π is unique up to the addition of a constant:
this is certainly the good object to look at!

3. Using the hyperkähler structure

3.1. A Killing vector field. We can rely on the hyperkähler structure (g, I, J,K) to
build a Killing vertical vector field. To fix ideas, let us proceed to some normalization.
Since d(dxk(IT )) = O(rǫ−2), the functions dxk(IT ) go to some constants at infinity
(Cauchy criterion). Indeed, since moreover η(IT ) = O(rǫ−1), we can rotate the co-
ordinates xk so that dxk(IT ) = δ1k + O(rǫ−1). Similarly, up to a second rotation (in
the plane x1 = 0 in R

3), we can assume dxk(JT ) = δ2k + O(rǫ−1), and consequently
dxk(KT ) = δ3k + O(rǫ−1).

The following proposition is a key step. Its proof again uses the fact that a hy-
perkähler metric has vanishing Ricci curvature, so that the Hodge Laplacian on 1-forms
coincides with the Bochner Laplacian.

Proposition 3.1 — There is a unique g-Killing vector field W such that

ιWωI = −dx1, ιWωJ = −dx2, ιWωK = −dx3.

It is π-vertical, preserves the complex structures I, J , K and obeys the estimate

∀ k ∈ N, ∇g,k(W − T ) = O(rǫ−1−k).

Proof. One can define three vector fields W1, W2, W3 by the relations ιW1
ωI = −dx1,

ιW2
ωJ = −dx2 and ιW3

ωK = −dx3. Since the one-forms dxl are g-harmonic and the
Kähler forms are parallel, the vector fields Wl are g-harmonic. Now, for l = 1, 2, 3, our
previous estimates ensure

∇k(Wl − T ) = O(rǫ−1−k),

for every positive integer k. Our choice of coordinates in R
3 moreover implies that

Wl − T goes to zero at infinity. One can therefore integrate the estimate for k = 1 into
the corresponding estimate for k = 0. In particular, the difference X between any two
of these vector fields Wl is harmonic and goes to zero at infinity. It follows that the
function |X|2 goes to zero at infinity and satisfies :

∆ |X|2 = 2g(∆X,X) − 2 |∇X|2 ≤ 0.

From the maximum principle, we deduce |X|2 = 0, namely X = 0. We conclude:
W1 = W2 = W3 =: W . By definition, we have dx1(W ) = −ιWωI(W ) = 0 as well
as dx2(W ) = dx3(W ) = 0 for the same reason. So W is vertical. Since ωI and
ιWωI = −dx1 are closed, Cartan’s magic formula yields LWωI = 0; similarly, LWωJ =
LWωK = 0. Finally, since ωI is parallel, we have: ι∇WωI = −∇dx1. The right-hand
side is a symmetric bilinear form, so for any two vector fields X, Y , we are given the
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identity: g(∇g
XW,Y ) = −g(∇g

IYW, IX). We can of course play the same game with K
and then J , so as to find

g(∇g
XW,Y ) = g(∇g

KIXW,KIY ) = −g(∇g
JKIYW,JKIX) = −g(∇g

Y W,X).

The tensor ∇gW is therefore skew-symmetric, which exactly means W is Killing. Since
the Kähler forms and the metric are preserved by W , the complex structures are also
preserved. �

Let us set α := g(W, .). The definition of W means dx1 = Iα, dx2 = Jα and
dx3 = Kα. In particular, the covectors dxk are everywhere g-orthogonal and have the
same g-norm as α – notice these covectors thus vanish only all at the same time. With
V := |W |−2, we might keep in mind the following formulas, on the open set M∗ where
W does not vanish:

g = V (dx2 + α2) and ωI = V (dx1 ∧ α+ dx2 ∧ dx3) .

3.2. The map π.

Lemma 3.2 — The set M\M∗ is finite : M\M∗ = {p1, . . . , pk}.

Proof. M\M∗ is the place where the vector field W vanishes. Pick a point p such that
Wp = 0. The flow φt of W preserves the hyperkähler structure so the differential Tpφ

t

acts on TpM by a transformation in SU(2), reading

(
eiλt 0
0 e−iλt

)
in some basis, for

some λ ∈ R
∗ ; this is indeed a special case of [GH]. It follows that p is an isolated fixed

point of the flow. This ensures M\M∗ is discrete. Since V goes to 1 at infinity, M\M∗

is compact. It is therefore a finite set. �

Lemma 3.3 — π : M −→ R
3 is onto.

Proof. Since π|M∗
is a submersion, the set π(M∗) is open in R

3. Let y be a point of its
boundary and let yn = π(xn) denote a sequence in π(M∗) and converging to y. Since
π is asymptotic to a circle fibration with fibers of bounded length, π is proper, so we
may assume xn goes to some point x in M , with π(x) = y. Since π(M∗) is open, x
cannot belong to M∗ : x is one of the pi’s. To sum up, π(M∗) is an open set of R3

whose boundary is contained in {π(p1), . . . , π(pk)}. In particular, π(M) is dense in R
3.

It is also closed, for π is proper : π(M) = R
3. �

Let us set ai = π(pi).

Lemma 3.4 — The map π : M∗ −→ R
3\ {a1, . . . , ak} is a circle fibration.

Proof. This submersion π : M∗ −→ R
3\ {a1, . . . , ak} is surjective and proper (it can

be proved exactly as in the lemma above), hence a fibration by Ehresmann’s theorem.
Since it is a circle fibration outside a compact set, it is a circle fibration. �

Remark. π can be interpreted as the hyperkähler moment map for the Hamiltonian
action given by the flow of W . This kind of situation is studied in [Bie], which inspired
us.
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3.3. The connection. Let us redefine the one-form η := V α, so that η(W ) = 1,
LWη = 0 and thus ιW dη = 0 ; it follows that dη = π∗Ω for some two-form Ω on the
base. We wish to interpret η as a connection form (up to some normalization).

The fibers of π are also the orbits of W , so that the flow of W is periodic. In M∗, the
period Px of the orbit π−1(x) is equal to the integral

∫
π−1(x) η. Given nearby points x

and y, it follows from Stokes theorem that the difference Px − Py is the integral of dη
over the cylinder π−1([x, y]), which vanishes because dη is basic! The period is therefore
constant and can be computed at infinity : it is equal to the length L∞ of the fibers at
infinity. In particular, the vector field L∞

2π
W is the infinitesimal generator of an action

of S
1, making π|M\K a principal S

1 bundle over R
3 minus a ball. Furthermore, 2π

L∞

η is

a connection one-form on this S
1-bundle and its curvature can be computed through

the following lemma.

Lemma 3.5 — Ω = ∗R3dV .

Proof. The Kähler form ωI = dx1 ∧ α + V dx2 ∧ dx3 is closed, hence the relation
dx1 ∧ dη = dV ∧ dx2 ∧ dx3, which means: Ω(∂2, ∂3) = ∂1V . The other Kähler forms
provide the remaining components. �

So we know Ω as soon as we know V .

Lemma 3.6 — There are positive numbers mi such that V = 1 +
k∑

i=1

2mi

|x− ai|
.

Proof. Lemma 3.5 implies V is gR3-harmonic outside the ai’s. Moreover, it is positive.
A classical result [ABR] then ensures that around each singularity ai, it is the sum of
the function 2mi

|x−ai|
, mi > 0, and of a smooth harmonic function. Globally, this means

V = ϕ +
∑k

i=1
2mi

|x−ai|
for some smooth harmonic function ϕ on R

3. The asymptotic of

the metric implies ϕ goes to 1 at infinity, so that ϕ = 1. �

We can then identify Ω. If dωi is the volume form of the unit sphere around ai, we
have :

Ω = −
k∑

i=1

2midωi.

As recalled in section 1, this data determines the connection up to gauge (which is
enough for a classification up to isometry).

Observe the topology of the circle bundle determines the cohomology class of Ω, seen
as L∞

2π
times the curvature of a connection. For large R, this means 1

L∞

∫
r=R

Ω = c∞1 ,
where c∞1 is the Chern number of the fibration over the large spheres. A relation
follows:

−8π

k∑

i=1

mi = L∞c
∞
1 .

Let us now look at the circle bundle induced on a small sphere near ai. It has Chern
number ci1 = ±1 for there is no orbifold singularity on M and it can be computed by
an integral of Ω as above:

−8πmi = L∞c
i
1.

This has two consequences. First, ci1 = −1 because mi is nonnegative. Second, 8πmi =
L∞ ! The parameters mi are necessarily all equal, depending only on the length of the
fibers at infinity (a similar remark can be found [GH]).
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Observe also that the number k of singularities is given by the Chern number at
infinity : k = −c∞1 ; the fundamental group at infinity is simply Zk. The topology is
completely determined by the parameter k.

Remark. It is interesting to relate the asymptotic of V to the mass m defined in this
paper. It is a nonnegative Riemannian invariant, given by

m := −
1

12πL∞
lim

R−→∞

∫

∂BR

∗h

(
divh g + dTrh g −

1

2
d g(W,W )

)
,

where h = dx2 + η2 in our context (this definition indeed differs by a factor 3 from that

in [Mi3]). Here, a slight computation (cf. [Mi3]) ensures this mass is m =
∑k

i=1mi,
hence −8πm = L∞c1. The classification result when k = 0 is an immediate application
of [Mi3] for the mass m vanishes iff (M,g) is isometric to the standard R

3 × S
1.

3.4. The classification. We can conclude by the

Theorem 3.7 — When k = 0, (M,g) is isometric to the standard R
3 × S

1, with no
holonomy and circles of length L∞. When k ≥ 1, (M,g) is isometric to Mk endowed
with the multi-Taub-NUT metric given by

g = V dx2 +
1

V
η2,

where V = 1 +
∑k

i=1
2m

x−ai
and dη = ∗R3dV . The positive parameter m is the mass of

(M,g) and it is k
8π

times the length of the fibers at infinity.

The holomorphic classification follows from the explicit formulas for the Kähler
forms.

References

[Abr] U. Abresch, Lower curvature bounds, Toponogov’s theorem, and bounded topology II, Ann. Sci.
Ecole Norm. Sup. (4) 20 (1987), no. 3, 475–502.

[ABR] S. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Graduate Texts in Mathematics,
137. Springer-Verlag, New York, 2001.

[BKN] S. Bando, A. Kasue, H. Nakajima, On a construction of coordinates at infinity on manifolds

with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), no. 2, 313–349.
[Bes] A. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987.
[Bie] R. Bielawski, Complete hyper-Kähler 4n-manifolds with a local tri-Hamiltonian R

n-action, Math.
Ann. 314 (1999), no. 3, 505–528.

[GH] G. W. Gibbons, S. W. Hawking, Classification of gravitational instanton symmetries, Comm.
Math. Phys. 66 (1979), no. 3, 291–310.

[Haw] S. W. Hawking, Gravitational instantons, Phys. Lett. 60A (1977), 81–83.
[KS] M. Kalafat, J. Sawon, Hyperkhler manifolds with circle actions and the Gibbons-Hawking Ansatz,

arXiv:0910.0672.
[Kr1] P. B. Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential

Geom. 29 (1989), no. 3, 665–683.
[Kr2] P. B. Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29

(1989), no. 3, 685–697.
[Leb] C. Lebrun, Complete Ricci-flat Kähler metrics on C

n need not be flat, Several complex variables
and complex geometry, Part 2 (Santa Cruz, CA, 1989), 297–304, Proc. Sympos. Pure Math., 52,
Part 2, Amer. Math. Soc., Providence, RI, 1991.

[Mi1] V. Minerbe, Weighted Sobolev inequalities and Ricci flat manifolds, Geom. Funct. Anal. 18 (2009),
no. 5, 1696–1749.

[Mi2] V. Minerbe, On some asymptotically flat manifolds with non maximal volume growth,
arXiv:0709.1084.

[Mi3] V. Minerbe, A mass for ALF manifolds, Comm. Math. Phys. 289 (2009), no. 3, 925–955.


