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An Iterative Bayesian Algorithm for Sparse
Component Analysis in Presence of Noise

Hadi Zayyani, Student Member, IEEE, Massoud Babaie-Zadeh, Senior Member, IEEE, and
Christian Jutten, Fellow, IEEE

Abstract—We present a Bayesian approach for Sparse Compo-
nent Analysis (SCA) in the noisy case. The algorithm is essentially
a method for obtaining sufficiently sparse solutions of under-
determined systems of linear equations with additive Gaussian
noise. In general, an underdetermined system of linear equations
has infinitely many solutions. However, it has been shown that
sufficiently sparse solutions can be uniquely identified. Our main
objective is to find this unique solution. Our method is based on a
novel estimation of source parameters and maximum a posteriori
(MAP) estimation of sources. To tackle the great complexity of
the MAP algorithm (when the number of sources and mixtures
become large), we propose an Iterative Bayesian Algorithm (IBA).
This IBA algorithm is based on the MAP estimation of sources,
too, but optimized with a steepest-ascent method. The conver-
gence analysis of the IBA algorithm and its convergence to true
global maximum are also proved. Simulation results show that
the performance achieved by the IBA algorithm is among the
best, while its complexity is rather high in comparison to other
algorithms. Simulation results also show the low sensitivity of the
IBA algorithm to its simulation parameters.

Index Terms—Atomic decomposition, blind source separation
(BSS), sparse component analysis (SCA), sparse decomposition,
sparse source separation.

I. INTRODUCTION

INDING (sufficiently) sparse solutions of underdeter-

mined systems of linear equations (possibly in the noisy
case) has been studied extensively in recent years [1]-[7].
The problem has a growing range of applications in signal
processing. To introduce the problem in more details, we will
use the context of sparse component analysis (SCA) [8]. The
discussions, however, may be easily followed in other contexts
of application, for example, in finding a “sparse decomposi-
tion” of a signal on an overcomplete dictionary, which is the
goal of the so-called overcomplete “atomic decomposition”
[9]. Sparse representations are well suited for content analysis,
i.e., extracting structure or meaning of a signal [10]. They may
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also be applied to signal compression applications to facilitate
the storage, processing and communication of signals [11].
Another application of sparse decomposition is related to its de-
noising capability [12], [13]. Recently, interesting applications
in decoding of real error correcting codes have been reported
[14]-[16]. Also, some applications in the sampling theory have
been initiated which can be regarded as unifying the sampling
and the coding theories [17], [18].

SCA can be viewed as a method to achieve separation of
sparse sources [3], [6]-[8], [19], [20]. The blind source sepa-
ration (BSS) problem is to recover m unknown sources from
n observed mixtures of them, where little or no information
is available about the sources (except their statistical indepen-
dence) and about the mixing system. In this paper, we consider
the noisy linear instantaneous model at each instant:

Xx=As+n (1)

where X, s and n are n X 1, m x 1 and n x 1 vectors of
sources, mixtures and white Gaussian noises, respectively, and
A is the n x m mixing matrix. In the underdetermined case
(m > n), estimating the mixing matrix is not sufficient to re-
cover the sources, since the mixing matrix is not invertible. Then
it appears that the estimation of sources requires other prior in-
formation on the sources. One prior information that can result
in source recovery in underdetermined case is the sparsity of
sources. The sparsity of a source vector means that almost all its
entries are zero (or near zero) and only a few entries are nonzero.
If we restrict ourselves to sufficiently sparse solutions of the un-
derdetermined system of linear equations, it has been shown that
the solution is unique [1], [2], [21].

SCA can be solved in two steps: first estimating the mixing
matrix, and then estimating the sources. The first step may be
accomplished by means of clustering [3], [22] or other methods
[6], [7]. The second step requires finding the sparse solution of
(1) assuming A to be known [23]-[27]. Finally, some methods
estimate the mixing matrix and sources simultaneously [5], [20].
In this paper, we focus on the source estimation, assuming A is
already known.

Atomic decomposition [9] is another viewpoint to the same
mathematical problem as above. In this viewpoint, we have just
“one” signal whose samples are collected in the n X 1 signal
vector x and the objective is to express it as a linear combination
of a set of predetermined signals where their samples are col-
lected in vectors {a; }/™ ;. After [28], the a;’s are called atoms
and they collectively form a dictionary over which the signal is
to be decomposed. In this paper, we also consider an additive
noise term in the decomposition. So we can write x = As + n,
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where A is the n xm dictionary (matrix) with the columns being
the atoms and s is the m X 1 vector of coefficients. The vector n
can be interpreted either as the noisy term of the original signal
that we intend to decompose (the term that is not in the span
of our dictionary) or as the allowed error for the decomposition
process. A dictionary with m > n atoms is called overcomplete.
It is clear that the representation of a signal on an overcomplete
dictionary is not unique. However, as above, if a signal has a suf-
ficiently sparse representation over such a dictionary, it would
be unique under some mild conditions on the dictionary [4].

To obtain the sparse solution of (1), an approach is to search
for solutions having minimum £%-norm, i.e., minimum number
of nonzero components. This method is computationally in-
tractable when the dimension increases (due to the need for a
combinatorial search), and it is too sensitive to noise (because
any small amount of noise completely change the /°-norm of a
vector). Then, one of the most successful approaches of finding
the sparse solution is Basis Pursuit (BP) [9], which achieves a
convexification of the problem by replacing the /°-norm with
an /'-norm. In other words, BP proposes to find the solution of
(1) for which Y"7" | |s;| is minimized. The minimum ¢'-norm
solution is also the maximum a posteriori (MAP) source
estimation under Laplacian source prior for the noiseless case
[29]. As a main benefit, it can be easily implemented by linear
programming (LP) methods (especially fast interior-point LP
solvers). Recently, a fast method called smoothed-#° method
has been proposed to minimize a smoothed approximation of
the ¢°-norm [25], [26]. The FOCal Underdetermined System
Solver (FOCUSS) uses /P-norm as a replacement for the
/-norm and a Lagrange multiplier method for the optimiza-
tion [21]. Other simple approaches are Matching Pursuit
(MP) [28], [30] and Orthogonal Matching Pursuit (OMP)
[31] algorithms. Another refined algorithm is the stage-wise
Orthogonal Matching Pursuit (stOMP) [32]. Recently, a fast
iterative detection-estimation algorithm has been used to solve
this problem [23]. Moreover, Bayesian approaches have been
proposed: Sparse Bayesian Learning (SBL) [33] and recently,
Bayesian Compressive Sensing (BCS) [34]. Finally, sparse
reconstruction are possible using some new gradient methods
like gradient pursuits [35] and gradient projection [36].

Among available methods for sparse decomposition, the fast
methods (e.g., MP) usually do not produce accurate results,
while BP which is guaranteed to asymptotically obtain the exact
minimum ¢°-norm solution will become computationally de-
manding for large dimensions. With regard to the new appli-
cations of this area in decoding [14] or denoising [12] in which
the performance of the algorithm in presence of noise is very
important, finding a new algorithm with a better accuracy is a
necessity. In this paper, our main concern is in this way.

In our algorithm, we first proposed a three-step (sub-)op-
timum (in the MAP sense) method for SCA in the noisy un-
derdetermined case for Bernoulli-Gaussian (BG) sources. It has
the drawback of large complexity which is not tractable when
there are many sources and mixtures. To tackle the great com-
plexity, an iterative method for MAP estimation of sources is
presented. This leads to a more efficient algorithm, which is
again a three-step iterative Bayesian algorithm, among which
two steps are expectation and maximization steps. These steps
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resemble the classical EM algorithm [37] which is also success-
fully used in [38].

BG sources is a usual model in the field of deconvolution,
which is reviewed by Mendel in [39], and it was used espe-
cially in seismic deconvolution [39]-[43]. Using £ -norm to
find sparse solutions of linear systems of equations can also be
traced back to Taylor et al. [40] in this field. The relaxation of
the discrete nature of BG processes by using a Gaussian mix-
ture model has been considered in [43], based on a cost func-
tion with a weighting parameter. The authors used an EM algo-
rithm for estimating their parameters, with a heuristic method
for choosing the weighting parameter. In contrast, our work is
originated from a MAP algorithm and the treatment is totally
Bayesian and the cost function is dependent on the statistical
parameters. We also used iterative Bayesian techniques to esti-
mate all the unknowns in a rather unified way. So, the global al-
gorithm resembles an EM algorithm, while we used some other
Bayesian techniques for parameter estimation.

Our approach can be categorized as a Bayesian method for
SCA [5], [20], [44] which is efficient for large number of sources
and mixtures.

The paper starts with the statement of the system model in
Section II. Then, a MAP solution is proposed in Section III.
Based on this algorithm, we develop the new Iterative Bayesian
Algorithm (IBA) in Section IV. Section V provides proof of
convergence of the proposed IBA algorithm. Finally, we present
some simulation results in Section VI.

II. SYSTEM MODEL

The noise vector in the model (1) is assumed zero-mean
Gaussian with a covariance matrix o2 1. For modeling the sparse
sources, we assumed the sources are inactive with probability
p, and are active with probability 1 — p (sparsity of sources
implies that p is near 1). In the inactive case, the value of
sources is zero and in the active case the value is obtained from
a Gaussian distribution. This is called a Bernoulli-Gaussian
model. The BG model is a realistic model in the sparse decon-
volution applications and it has been extensively used in this
literature [39]-[43]. This model has also been used in [16] for
simultaneously modeling the impulse and background noise in
a real-field channel coding system. It is also used to model the
impulse noise in a communication channel [45], or the sparse
vector in an application of regression [46]. This model is also
suitable for sparse decomposition applications where we want
to decompose a signal as a combination of only a few atoms
of the dictionary, while the coefficients of the other atoms are
zero. So, the probability density of the sources in SCA (or
coefficients in sparse decomposition) is

p(si) = pd(si) + (1 —p)N (0,07) . )

In this model, any sample of the sources can be written as
s; = q;r; where ¢; is a binary variable (with binomial distri-
bution) and r; is the amplitude of the :th source with Gaussian
distribution. So the source vector can be written as

s=Qr, Q= diag(q) 3)
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Fig. 1. Block diagram of our MAP algorithm.
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where q = (q1,92,---,qm)T andr = (r1,72,...,7,)7 are the
“source activity vector” and “amplitude vector,” respectively.
Each element of the source activity vector shows the activity of

the corresponding source. That is

)1
%=99

Consequently, the probability p(q) of source activity vector q
is equal to

if s; is active
if s; is inactive

(with probability 1 — p)

(with probability p). “)

p(q) = (L =p)"(p)™ " %)

where n,, is the number of active sources i.e., the number of 1’s
in q. Note that, in this paper, we use the same notation p(.) for
both the probability and for Probability Density Function (PDF).

III. MAP ALGORITHM

In [24], we proposed a three-step MAP algorithm for the
noisy sparse component analysis. Here, we explain it in details,
because it is the basis of our IBA algorithm. Its block diagram is
shown in Fig. 1, and consists of three steps. The first step is the
estimation of the source parameters (p, 0,.) and noise parameter
(o). If we define the parameter vector as @ = (p, 0., 0,,) 7, the
objective of this step is to obtain an estimation of 8. The second
step is the estimation of the source activity vector (q) which is
defined in (4). The last step is the source estimation.

A. Parameter Estimation

The parameter estimation step is done by a novel method
based on second and fourth order moments (for p and o,.) and
by a special application of EM algorithm [47] (for ,,). For es-
timating p and o, let one of the mixtures, be x = Z;W:l a;S; +
n = y + n. Then, neglecting the noise contribution (i.e., as-
suming o,, < 0;-), and taking into account that the sources are
independent and zero-mean, then the relationship between the
moments of the mixture and the moments of the sources are

E(z*) = E(y*) = <Z a%) E (s7) 6)
ety o)~ (St ) e

+16 Z a%a? E? (512) @)

4,351

In (6) and (7), we have assumed that the noise term is small and
so the moments of the mixture without noise (y) are approxi-
mately the same as the moment of the true mixture (z). From
the above equations and by assuming that all the sources have
equal moments (due to identical parameters) and the a;’s are
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known, the source moments can be computed. Especially, con-
cerning the second and fourth order moments of the sources, one
can obtain the following relations:

(1—p)o? ®)

me =F (s?) 1-—
1) =301 -p)o;. ©)

m4:E(5i)

From (8) and (9), we can compute the two source parameters:

Gy =) ot (10)
3m2
3A2

p=1- 22 (11)
my

where 1715 and 774 are estimated by (6) and (7). Moreover, E(z?)
and E(x*) are estimated from empirical expectation (weighted
sum) of the corresponding mixture. To estimate the observa-
tion noise variance (o,,), we use a special application of EM
algorithm introduced in [47] which gives a maximum likeli-
hood estimation of parameters of a Mixture of Gaussian (MoG)
(centers, probabilities, and variances) distribution from its sam-
ples. Since each s; can be either active or inactive, a mixture
z =Y.." a;s;+n canbe modeled by a mixture of 2" Gaussian
components. Since p is close to one (p &~ 1), one can neglect
powers of (1 —p) greater than one, which leads to the following
approximation of noisy sparse MoG:

p(z) = (p)™N(0,02) + (p)™ V(1 - p)

X ZN (0,a702 +072). (12)
=1

This equation shows that each mixture has a MoG distribution
and the smallest variance of these Gaussians is the variance of
the noise (o, ). Consequently, for estimating o,,, the EM algo-
rithm in [47] is applied to one of the mixture signals.

B. Estimation of the Source Activity Vector

To estimate the source activity vector (q), we use the MAP
detector which maximizes the posterior probability p(q|x).
Using the Bayes’ rule:

p(q)p(x|q)

13
p(x) ()

plqlx) =
the MAP detector should maximize p(q)p(x|q). The prior
source activity probability (p(q)) is given by (5). The likeli-
hood (p(x|q)) has a Gaussian distribution with the following
conditional covariance:

Q, = E(xx"|q) = AV ,AT + 521 (14)
where the matrix V is the conditional covariance of the sources
and can be stated as

V,=02Q (15)

where Q was defined in (3). Consequently, the prior probability
p(x]q) has the following Gaussian form:

(16)

= ; X _—1XT “1x
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and the MAP detector maximizes the p(q)p(x|q) over all 2™
cases for all source activity vectors:

p(q) (_1 TA-1 )
—argmax ———¢€ —X X ). 17
Quar =argmax e ) TP\ 2 X 17

C. Estimation of Sources

After estimating the source activity vector, the estimation of
sources is achieved with the estimation of amplitudes (r;’s), i.e.,
of amplitude vector (r). The vector r has a Gaussian distribution
and hence its MAP estimation is equal to its linear least square
(LLS) estimation [48]. The LLS estimation of r by knowing the
source activity vector and the mixture vector has the following
form [48]:

tros = E(rx"|q) E(xx"|q) "'x. (18)
The calculation of the two terms E(rx’|q) and E(xx”|q) re-
sults in the following equations:

E(rxT|q) =o2QAT (19)
E(xx"|q) =0?AQAT + 421 (20)
Then, the source amplitudes are estimated as
-1
F=02QA” (o,%AQAT + agl) X. 1)

The maximization of p(q)p(x|q) may be done by exhaustive
search over the discrete space of vectors q with 2™ discrete
elements. This method can solve the SCA problem only for a
small number of sources (for example m < 12). However, the
complexity of this algorithm, based on an exhaustive search,
can be alleviated with the IBA algorithm described in the next
section.

IV. ITERATIVE BAYESIAN ALGORITHM

A. Basic Idea

In the MAP algorithm, the maximization of the posterior
probability given by (17) is done by a combinatorial search over
the discrete space. In this section, we propose a maximization
method based on first converting the problem to a continuous
maximization and then using a steepest-ascent algorithm. In
this purpose, we use a mixture of two Gaussian model centered
around 0 and 1 with sufficiently small variances. Thus, the
discrete binomial variable g; is converted to a variable with the
following form:

gi ~pN (0,03) + (L —p)N (1,07). (22)
To avoid local maxima of (17) a gradually decreasing variance is
used in the different iterations (this is similar to what is done in
simulated annealing algorithms, and to graduated nonconvexity
[49]). However, (17), as a cost function with respect to q, is very
complex to work with.

The main idea of our algorithm is that the source estimation
is equivalent to estimation of vectors q and r (as observed from
(3)) and can be done iteratively. First, an estimated vector g is
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assumed and then the MAP estimate of the vector r based on
the known ¢ and the observation vector x is obtained (we refer
to it as T). Secondly, the MAP estimate of vector q is obtained
based on estimated vector T and observation vector x (we refer
to it as vector q). Therefore, the MAP estimation of sources is
achieved through two other elementary MAP estimation steps.

In the first step, a source activity vector q is assumed and
the estimation of r will be computed. Because the vector r is
Gaussian, its MAP estimate is equal to the LLS estimation [48]
and can be computed as follows:

Tumap =Trrs = E(r|x,q) = E(rxT|a)E(xxT|a)_1x.
(23)
This step can be called Expectation step or Estimation step
(E-step). Computation and simplification of (23) (similar to
what done in [24]) leads to the following equation which is
similar to (21):
~ ~ —1
T =o2QAT (azAQAT n 031) X. (24)
In the second step which can be called Maximization step

(M-step), we estimate q based on known T and observed x. The
MAP estimation is

dvap = arg max p(q|x,T) = arg max p(q|T)p(x|q,T)
q q
= arg max p(q)p(x|q,T)
q

= arg max (log p(q) + log p(x|q,T)). (25)

q

Equation (22) implies that, in (25) p(q) can be computed as
a continuous variable:

p(a) = [[ p(a)
=1

= f[l[pexp (;f§)+(1—p) exp (%ﬂ - (26)

In addition, the term p(x|q,T) in (25) can be computed as

p(x|q,T) =pn(x — AQF)
= (2#02)%

X exp <%(x _AQH)(x - AQ?)) e

n

Consequently, (25) writes as

M —step: ¢ = argmaxL(q) (28)

q

where
L(a) = Y log (p(a) ~ 5, (x ~ AQE)” (x ~ AQF). (29)
i=1 n

Maximization of L(q) in the M-step can be done by the
steepest-ascent method. The main steepest-ascent iteration is

oL(q)
dq

Adi+1 = dr + 1 (30)
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where 4 is the step-size in the steepest-ascent method. After
calculating the gradient (see Appendix I), the steepest-ascent
algorithm for the M-step is

Qi1 = Qi + 58(q) + Lyding (AT(AQE-x)) £ (D)
0 n

where g(q), given in Appendix I by (58), depends on o¢. In suc-
cessive iterations of our simulations, we gradually decrease the
variance o according to the series o) = ac{'™") where « is
selected between 0.6 and 1. In Section V, a suitable range on
values of 4 for the convergence of the proposed IBA algorithm
is calculated. This suitable interval means that if the step size p
is selected in this interval, with a probability close to one, the
convergence is insured. Assuming the columns of A are nor-
malized to have unit norms, the suitable interval is

mM*2 (32)
o2

n

O<p< T

a

o 1

where M* = 0,Q ! (%). As we see from (31) the
second summand is responsible for increasing the prior prob-
ability p(q) while the third summand is responsible for de-
creasing the noise power ||x — As||?. When o is much larger
than o,,, the second term is weaker than the third term and as a
result the exactness of x = As is more relevant than the spar-
sity of s. When o is comparable to o,,, both terms are effective
to yield the equilibrium point between sparsity and noise.

In summary, the overall algorithm is a three-step iterative al-
gorithm the first two steps of which are E-step and M-step in
(24) and (31), while the last step, explained in the next section,
is the parameter estimation step.

B. Parameter Estimation

So far the parameters (p, o, and o,) are assumed to be
known. The parameter estimation is necessary and can also
be done iteratively. We also assume that the columns of the
matrix have unit norms. In other words, the basis atoms of
our dictionary are normalized to have unit norm. With these
assumptions and by assuming the ergodicity of sources (i.e.,
the mixtures can be considered as samples of a random variable
T; = EZI ajiSi+e; where aj; = bjl/\/b%q + b%1 + ...+ b%w
and b;; is arandom variable with uniform distribution on [—1,1]
and s; and e; are random variables), and by neglecting the
noise power, we have E(x7) = mFE(a%;) E(s7). In addition, we
know that Z?Zl a?; = 1 and hence we deduce E(a3;) = 1/n.
Finally, from (8), we have E(s?) = (1 — p)o2, and therefore
we can write

(33)

With the initialization of p with ]/5(0)7 we will have
o, = \/nE(a:?)/m(l — p©). For the starting noise vari-

ance, we choose EZ(O) =0, /10. In [27], we used the algorithm
with a simple non iterative parameter estimation step that was
stated above. But, here these simple non iterative estimates are
just used as the initial estimation of the parameters. Along the

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 57, NO. 11, NOVEMBER 2009

o Initialization:
1) Let B¢ equal to the initial parameter estimation:

$(®:  arbitrary value in [0.5 1],
L(0) _ nk(x?) L(0) &,(J’)
o =\ ma—pmy On = o

2) Let so, qg and ro equal to the initial solution from
minimum £2-norm:
so = AT(AAT)~Ix,
qo = (So > Th), ro = So.(So > Th)A
e Until Convergence do:
1) E-step: solution obtained in (24).
2) M-step:
- for j =1,..., njteration:
* Update q with (31)
x Update oéj ) = aa(()j -1
3) Parameter Estimation Step: using (33), (34), (35) and
(36).
o Final answer is § = qg,,1Tfinal-

Fig. 2. Final overall IBA algorithm estimation.

iterations, we update the estimation of these parameters using
the following simple equations:

lallo

p= (34)
m
. |Ix— AS]|2
n =" 35
o NG (35)

Tvm
where it is assumed that the number of sources m is known
in advance. In addition to (36), we can use (33) to update the
estimation of o, in the iterations.

It is shown in Appendix II that the formulas (34), (35), and
(36) are the MAP estimates of the corresponding parameters
based on knowing all the other unknowns.

Finally, the complete IBA algorithm, including the parameter
estimation step, is summarized in Fig. 2. Since the active sources
are Gaussian with a variance 03, we choose the threshold param-
eter Th as a fraction of o,.. The exact value of Th determines
the number of active sources in the first step. We will discuss
about this parameter in the simulation results section.

V. CONVERGENCE ANALYSIS

In this section, we first prove that the log posterior probability
A . . .

L(s) = logp(s|x) is concave. Therefore, the unique maximum
of this function is the global maximum. Then, we prove the con-
vergence of the steepest-ascent algorithm in the M-step and find
the suitable interval for the step-size () for the convergence of
the steepest-ascent algorithm. Finally, the convergence of the
overall IBA algorithm will be proved.

A. Concavity of the Posterior Probability

The log posterior probability function L(s) can be written as
L(s) x logp(s) + log p(x|s), that we can decompose as

L(s) = Y log (p(s1)) - %(x _As)T(x—As).  (37)
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To prove the concavity of L(s), we prove the concavity of each
log(p(s;)) and the convexity of ¢(s) a (x — As)T'(x — As).
Then, since the sum of concave functions is also concave, the
proof is completed. As before, the probability distribution of
sources in (2) is assumed to be a BG distribution

p(si) = —2—= exp <_—8L2) 4 L1op exp <_S?>
g1V 27 20’% 097 /2 20’%
with sufficiently small 4. To prove the concavity of log(p(s;)),
we need to prove that its second derivative is negative. It is
equivalent to prove that h(s;) 2 p(s:)p" (s:) — p'(s:)* < 0.
Calculation of this function leads to the following formula:

P () et (s
of \ of 5 o3
p(l—p) i s\ 1 1

T 272 T2 2

102 O'l 0'2 O'l 0'2

_s? g
Xexp| =5~ 55 |-
207 205

Let s; = 0. Then
! + ! <0
of = o3 '

Now assume that s; # 0. If we denote ¢ = (s2/0?), then some
terms in (38) are in the form of t™ exp(—t). If o4 — 0 or equiv-
alently ¢ — oo then t" exp(—t) — 0. Using these results, the
limit of the function A(s;) is equal to

_ )2 _s?
lim A(s)) = — =P oy (J—‘Z) <0 (39)

o1—0 02 2

1
%h(si) =

(38)

1,0y p*  p(l—p)
G0 = -5 B =P
yig 0’1 01092

which proves the concavity of log(p(s;)). The convexity of
c(s) = (x — As)T(x — As) = ||x — As||? is obvious due to
its parabolic shape.

B. Convergence of the Steepest-Ascent

From (29) and by defining sj41 2 Qk+1Tk, Sk 2 Qxry,
H E ATA and b = 2xAT, we have

< P(Qrs1,i) 1
L(qk+1) — L(ax) = Zlog — -5
= p(qri) 203

x st HsT ) — s{HST —b(si —s1)| . @0)

If the above expression is positive, then the sequence L(qy)
is an increasing sequence and since L(q) is upper bounded by
the value m log(p), then the sequence has a limit and the conver-
gence of the M-step (steepest-ascent) will be proved. To derive
the positivity condition of (40), we write the M-step iteration as
qr+1 = g + pcg where ¢, = (0L(q)/0q)|q=q, - Therefore,
we have sg11 — s, = pCyry where Cy, = diag(cy). Substi-
tuting in (40) results in

Zm p(qrt1i) o
L . — L . ) = 1 —
Q1) (ar) = o8 (ki) 202

X [,U,I‘zCkHCkI‘k + (2SZH — b) Ckrk] . 4D
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After some algebra detailed in Appendix III, one obtains the
following inequality:
1 T H

L [L(art1) — L(ak)] = ¢}, |I—pR - 252 RHR1 | ¢

! (42)
where R; = diag(r;) and R is defined in Appendix III. If the
symmetric matrix D 21— pR — (1/202)R1HR; is Positive
Definite (PD) then the sequence L(qy) will be increasing, and,
as mentioned above, the convergence of the M-step is guaran-
teed. For D being PD, all its eigenvalues should be positive. If
we define E 2 R + (1/202)R,HR then D = I — yE. The
PD property of D results in the following equation:

1

)‘max(E)

where Apmax(E) stands for the maximum eigenvalue of E.
Since R is diagonal, \;(E) = X\;(R) + (1/202)\:(R1HRy).
Again since R is diagonal, its eigenvalues are \;(R) =
> 1(ri(qr:)/208) = (1/203), then we have

w< (43)

1
Amax(R1HRYy).

1
)\max E a9 a9
(B) < + 202

44
307 (44)

To obtain an upper bound for the maximum eigenvalue of E,
we should find the upper bound for the maximum eigenvalue of
R,;HR;.Since R;HR;| = (AR;)T(AR,), itis PD and hence
all of its eigenvalues are positive. Therefore, we can write

Amax(R1HR1) < )\ = trace(RyHRy) = trace(RIH) .
1=1

(45)
Since R 2 diag(r;), the elements of R; and hence
Amax(R1HR;) can theoretically be infinitely large. How-
ever, noting that p(|r;|] < M) = 1 — 2Q((M/o,)),
we can determine a suitable interval for the maximum
value of Apax(R1HR;). For the cases which |r;| < M,
trace(RIH) = 1" 72h;; < M2 | h;; with probability
v=(1-2Q((M/s,)))™ which we want to be very close to 1
(for example v = 0.99). Hence, we must choose the value as
M* = 5,Q7! #) Consequently, to be sure that with a
probability -y close to 1 the convergence is guaranteed, 1 should
be selected in the interval:

2
2+ M2 trace(ATA)
0

z
077,

0<p< (46)

By imposing the condition of normalized column to A, the
diagonal elements of AT A is equal to one and hence we have
trace(AT A) = m. Therefore, the suitable interval can be sim-
plified as

0<p<—0 (47)

C. Convergence of the IBA Algorithm

So far, we have shown the convergence of the M-step which
is implemented with steepest-ascent method. To prove the con-
vergence of the proposed IBA algorithm which is like an EM al-
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gorithm, we should prove that the sequence L(s;,) is increasing,
where L(sy) is the log posterior probability defined in (37). In-
creasing of this sequence is evident throughout the M-step be-
cause the L(s) is equivalent to L(q) throughout the M-step. In
the E-step the LLS estimation of r is computed by (24). This
estimation is also a MAP estimation. So, it maximizes our mea-
sure which is the posterior probability in the MAP sense. Since
the logarithm function is monotonically increasing, MAP esti-
mation is equivalent to maximizing the log posterior L(s). So,
the log posterior probability L(s) increases in each E-step and
M-step, inside any kth iteration. So, in each iteration we can
write

k+1 k+1 k k
L (Sl(\/lfst)ep> > L (S%Ifstlp) > L (Sf\'l)fstep) > L (ngstep>

(48)
where the sequences of sources are
SSEk,)Smp =Qp_1Tx (49)
S0 srep = QeI (50)
Sfakjsilp =QxTrq1 (51
Sf\{;f;)ep = Qr+1Tk+1- (52)

Therefore, the sequence of L(sg) is converging to a local
maximum s*. The concavity of the L(s) guarantee that this local
maximum is equal to the global maximum which is the MAP so-
lution of sparse sources.

VI. EXPERIMENTAL RESULTS

In this section, the performance of the MAP algorithm and
IBA algorithm is examined with concentrating on the IBA al-
gorithm. The results of our algorithms are compared to the BP
which is practically implemented by /!-magic [50] and some
other algorithms which are in the literature. This will be done
by discussing the results of five experiments detailing different
aspects of our algorithms, especially the effects of the parame-
ters, of noise and of sparsity.

The sparse sources are artificially generated using the BG
model in (2). In all simulations, we used p = 0.9, 5,, = 0.01
and o, = 1 for the parameters of the BG model. A different
source model will be used in the fourth experiment for which
the number of active sources is fixed and the locations of the ac-
tive sources are chosen randomly. The noise vector is an additive
white Gaussian noise with covariance matrix o2I. For investi-
gating the noise effect, we define an input signal-to-noise ratio
as

Input-SNR 2 20log <”—> . (53)

On
The mixing matrix entries are chosen randomly from a uniform
distribution in [—1,1] and then the columns of the mixing ma-
trix are normalized to unity. To evaluate the performance of
our algorithms, we use two definitions. In sparse decomposi-
tion experiments (single realization of x = As + n), the output
signal-to-noise ratio defined as

Output-SNR = 201log (||s]|2/|Is — S]|2) (54)
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is used as the performance measure. But in sparse component
analysis experiments (many realizations of {x(t) = As(¢) +
n(t)}¥ ), we usually average over time to obtain the Individual
SNR for each source, defined by

IARTHO)

55
BN (si(t) — :g\l(t))2) (55)

and the final performance index (SNR) is the average of these
SNRs.

For each experiment, the performance indexes are computed
by averaging over 400 different realizations with new randomly
chosen mixing matrix and sparse sources.

We use the CPU time as a measure of complexity. Although,
the CPU time is not an exact measure, it can give us a rough
estimation of the complexity for comparing our algorithm
with other algorithms. Our simulations were performed in
MATLAB7.0 environment using an Intel 2.80-GHz processor
with 1024 MB of RAM and under Linux operating system.

SNR,; = 10log <

A. Experiment 1—Performance Evaluation of the MAP
Algorithm

1) Parameter Estimation: In this experiment, the main goal
is to investigate the parameter estimation techniques described
in Section III-A. Eight sources (m = 8) are selected with source
parameters p = .9, o, = 1 and the noise parameter o,, = .01.
Then, the mixture signals are obtained by the model (1). This
experiment estimates the three unknown parameters from only
N observations (or samples) of mixtures. Furthermore, 100 iter-
ations are used for the EM algorithm for estimating o,,. To mea-
sure the performance of estimating these parameters, we com-
puted the normalized mean square error, defined as follows. Let
(param) be the true parameter and (parain; ) be the estimated pa-
rameter in the sth experiment, then the normalized mean square
error (over the 400 realizations) is defined as
_ s Z;‘iﬂ (param — param,)>

n =

_ (56)
param

The normalized mean square errors (in percent) versus the
observation number are depicted in Fig. 3. As it can be seen,
even for small number of samples (due to sparsity, the significant
samples are then very few) the estimates for p, o, are acceptable.
By increasing the number of observations, better estimates of
parameters are obtained and the errors decrease.

2) Overall Source Estimation: In this experiment, the MAP
algorithm is compared to BP. Moreover, to investigate the effect
of parameter estimation error, the MAP algorithm was simulated
in two cases: one with the actual parameters and the other with
estimated parameters.

As before, the simulation parameters are m = 8, p = .9,
o, = 1 and o,, = .01. The number of samples is N = 1000 and
the number of mixtures (n) varies between 3 to 7. The results
of three algorithms, namely BP, MAP with actual parameters
and MAP with estimated parameters (all of them averaged on
400 simulations) are shown in Fig. 4. The results show that the
average SNR (Temporal SNR) of the MAP algorithm is about
10 dB better than BP. Moreover, the averaged SNR of the MAP
algorithm with estimated parameters is close to the averaged
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Fig. 3. The result of parameter estimation of the MAP algorithm in the case
wherem = 8,n =4,p=.9,0, = 1 and 6,, = .01. The results are averaged
on 400 simulations.
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Fig. 4. The performance of MAP algorithm (with actual parameters and with
estimated parameters) in comparison to LP method in the presence of noise,
where m = 8, N = 1000,p = .9, ¢, = 1 and o,, = .01. The results are
averaged on 400 simulations.

SNR with actual parameters. Consequently, the MAP algorithm
is robust to the parameter errors: in fact, for N = 1000, although
the relative estimation errors of p and o,. achieve about 10% and
5% (Fig. 3), the SNR loss with estimated parameters is less than
1 dB (Fig. 4).

B. Experiment 2—Performance Evaluation of the IBA
Algorithm

In this section, the performance of the IBA algorithm is in-
vestigated, and compared with different algorithms for various
noise levels i.e., input SNRs. In this experiment, the simulation
parameters are m = 1024, n = 512, p = .9, 0, = 0.01 and
o, = 1. In the M-step the value of « can be chosen between
0.6 and 0.9 (see the third experiment which investigates the pa-
rameter selection). In this experiment, we select « = 0.8. The
initial value of o is equal to 1. In this special case the suit-
able interval of y in (32)is 0 < p < 2.1466 x 10~ 7. So, we
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TABLE I
PROGRESS OF THE ITERATIVE PARAMETER ESTIMATION TO ACTUAL
PARAMETERS IN THE CASE OF m = 1024, n = 512

ANDp =090, =10, = .01

itr. # P or on
1 0.8000 | 0.7412 | 0.0782
2 0.8400 | 0.8310 | 0.0524
3 0.9070 | 1.0412 | 0.0082
4 0.9119 | 1.1206 | 0.0048
5 0.9119 | 1.1206 | 0.0055

Output SNR (dB)

Input SNR (dB)

Fig.5. Output-SNR versus Input-SNR. Results of the IBA algorithm compared
with other algorithms. The simulation parameters are mn = 1024, n = 512,
p=.9,0,=1,a =.8,and u = 10~ ". Five iterations are used for the M-step
(steepest-ascent). Results are averaged on 400 simulations.

chose ;1 = 10~7. For the initial value of the parameter p, we se-
lected the value 5(*) = 0.8 because it is a good tradeoff, and the
initial value must imply a sufficient number of active sources.
The practical value of Th in Fig. 2, is selected as &7(«0) /4 be-
cause it provides slightly better results (refer to experiment 3).
The simulations show that, for these parameters, only 4 or 5 it-
erations are sufficient to maximize the expression L(q) in the
M-step. IBA algorithm usually converges at the third and fourth
iterations in our simulations. Therefore, 5 iterations are used for
the M-step and for the overall IBA algorithm, we stop the algo-
rithm when the condition (|[s®) — s*=D||5/||s®™)||2) < 0.001
is satisfied.

Table I shows the progress of iterative parameter estimation
to actual parameters. The results of output SNR versus input
SNR are shown in Fig. 5 for our IBA algorithms and some other
algorithms.

For comparison, we selected 4 representative algorithms.
The first algorithm is OMP which is a pursuit algorithm which
uses correlations between the signal and the atoms for selecting
the current active atom. It also projects the residual signal to
the surface of active atoms to update the coefficients at the end
of each iteration. The second algorithm is BP which replaces
/%-norm by ¢'-norm for the sparsity measure and uses LP
methods. The third algorithm is smoothed-¢° (SLO) which
replaces the £°-norm by a smoothed approximation of £°-norm
and then uses a steepest-descent method to find the sparse co-
efficient. Finally, the fourth algorithm is BCS algorithm which
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Output SNR (dB)

30 35 40 45 50 55 60

Input SNR (dB)

Fig. 6. Results of the IBA algorithm compared with other algorithms, for non
BG sources. The simulation parameters are m = 1024, n = 512,p = .9,
o, = 1, = .8,and p = 1077, Five iterations are used for the M-step
(steepest-ascent). Results are averaged on 400 simulations.

is a Bayesian algorithm which uses a hierarchical sparseness
prior and a type-II maximum-likelihood (ML) procedure like
the RVM method to estimate the unknown variables.

The number of iterations are 100 for OMP. For smoothed-#°,
we used a sequence of o as o*) = 0.90(*=1) from the initial
estimated value to the final value 0.04 and L. = 3 and p = 2
[25]. For BCS and BP, we used the author recommendations for
choosing the parameters. As we can see from the figure, our per-
formance is somewhat better than other methods like BP, OMP
and SLO. Only, BCS provides better performance specially for
low SNRs.

We ran another experiment for sources, different of the BG
model. In this experiment, the sources are fixed and equal to 1
from index 1 to 20 and also are fixed and equal to O for other
indexes (from 21 to 1024). The results for this special case are
shown in Fig. 6. In this special case, the IBA algorithm achieves
the second best performance, just after BCS algorithm.

C. Experiment 3—Dependence on the Parameters

In this experiment, the effect of the simulation parameters («
and T'h in Fig. 2) is investigated.

1) Effect of a: In this experiment, we consider the effect of
the parameter «, which is the scale factor controlling the de-
creasing rate of oo (03 = ool Y). The experiment results
are shown in Fig. 7, which represents the averaged output-SNR
versus «, for different values of ,, [Fig. 7(a)] and k = m(1—p)
[Fig. 7(b)]. The value o,, determines the noise standard devia-
tion. The value k¥ = m(1 — p), which represents the average
number of active sources, determines the degree of sparsity of
the sources.

It is clear from Fig. 7(a) that the value of a can be selected
properly between a lower bound (0.6) and an upper bound (0.9).
In this experiment the values of other parameters are 1 = 1077,
k = m(1—p) = 100. The performance decreases when « is too
close to one (in this case .95). However, our experiments show
the low sensitivity of our algorithm to this parameter. A good
choice of this parameter is around 0.8.
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Fig. 7. Performance of the IBA algorithm versus parameter o for m = 1024,
n = 512 and o,, = 1. In (a) k¥ (number of active sources) is fixed to 100 and
the effect of noise is investigated. In (b) o, is fixed to 0.01 and the effect of
sparsity factor is analyzed. Values of k are 20, 40, 80, 120. Results are averaged
on 400 simulations.

From [1] and [2], we know that k& < n/2 is a theoretical limit
for uniqueness of the sparsest solution. In Fig. 7(b), the results of
the SNR versus « in various sparsity conditions (20 < k£ < 120)
are shown. Again, our experiments show the IBA algorithm is
not too sensitive to the parameter a: « = 0.8 is still a good
choice.

2) Effect of T'h: In this experiment, the effect of the threshold
Th in Fig. 2 is investigated. We define a threshold factor as

A~

A Op
Threshold-factor = —-.
resno actor Th

We ran the IBA algorithm with various values of this threshold
factor. The results are shown in Fig. 8 which represents the
output-SNR versus the threshold factor. Although the algorithm
has a low sensitivity to this threshold, but the value for the
threshold factor should be less than 5. Arbitrarily, we chose
a threshold factor equal to 4, and Th = 0,./4 in the IBA
algorithm.
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Fig. 8. Effect of the threshold in the IBA algorithm. The simulation parameters
arern = 1024, n = 512,p = .9,0,. = 1 and & = 10~ 7. Results are averaged
on 400 simulations.

D. Experiment 4—Effect of Sparsity on the Performance

Here, we experimentally consider the question: How much
sparse a source should be to make the decomposition possible?
As mentioned before, we have the theoretical limit of /2 on the
maximum number of active sources at each sample (column) of
source matrix to insure the uniqueness of the sparsest solution.
But most of SCA methods are unable to practically achieve this
limit [1].

To be able to measure the effect of sparsity, instead of gen-
erating the sources according to BG model (2), at each time ¢,
we activate exactly k entries out of m components of s(¢), (the
column ¢ of the source matrix). The locations and the values of
these k elements are chosen randomly. k is related to the spar-
sity level of the sources, defined as

El

Sparsity-level 2z

S

where k is the number of active sources.

Fig. 9 shows the output SNR (averaged on 400 simulations),
as a function of sparsity level, for several values of o and com-
pares the results with other algorithms. It can be seen that the
IBA algorithm achieves a good performance especially when
the sparsity level is low.

E. Experiment 5—Complexity

In this last experiment, the relative complexity (or speed) of
the IBA algorithm is compared to other algorithms. The mea-
sure to be used is the “average CPU time” required by each al-
gorithm. More specifically, we plot “average time” versus m,
where m is the number of sources. The number of mixtures is
n = 0.5m. The various values of m are 128,256, 512, and 1024.
Fig. 10 summarizes the results of average simulation times (on
400 simulation) for recovering the sources at one time step. As
we can see, the IBA algorithm has relatively a high complexity,
a price paid for its good performance.
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Fig.9. Output-SNR as a function of sparsity level (active sources/n) for various

algorithms. Simulation parameters are m = 1024, n = 512, 0, = 1 and
o, = 0.01. Results are averaged on 400 simulations.
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Fig. 10. Average CPU time in seconds versus problem dimension (m). For all
dimensions n = 0.5m. The parameters are p = .9, 0, = 1 and ,, = .01.
The results are averaged on 400 simulations.

VII. CONCLUSION

In this paper, we have presented a new IBA algorithm for
finding sparse solutions of underdetermined system of linear
equations in the context of SCA. This IBA algorithm is based
on iterative MAP estimation of the sources. In this paper, the
high complexity of Bayesian methods is reduced by an itera-
tive algorithm which resembles the EM algorithm. The M-step
is done by a steepest-ascent method. Its step size should be
chosen properly for insuring convergence of the steepest-ascent
and of the global IBA algorithm. Moreover, the paper includes
the convergence analysis of the algorithm and the convergence
proof to the true optimum solution. Experimental results show
the IBA algorithm has a low sensitivity to the simulation pa-
rameters, and achieves good performance, although not the best,
compared with other algorithms especially BCS, which is cur-
rently the best algorithm, both for accuracy and speed. Future
works includes improvement of Bayesian algorithms, by explic-
itly taking into account the noise for achieving performance as
optimum as possible.
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APPENDIX |
DERIVATION OF THE STEEPEST-ASCENT

From (28), we have

oL o 9 - T
ag 2 " 0q - Zl g(p(qi))—%%(X—AQﬂT(X—AQr)-
(57)

We define g(q) 2 —03(9/0q) 31, log(p(4:)) and n(q) =
(x— AQr)T (x — AQT). With these definitions the scalar func-
tion g(q;) and the n(q) (with omitting the constant terms) can
be computed as

sy (;:g_)qju—p)(qi—l) exp (M) .
pexp (203) (1—p)exp (M)
n(q)= - 2xTAQr+rT QAT AQT. (59)

With the definitions C 2 ATA, ni(q) = —2xTAQF and
n,(q) 2 TTQCQT, we can write

I1(9) _ gipe(—2xT A) 7 (60)
dq
If we define W 2 QF (m x 1 vector) then ny(q) = WX CW
and so we have
BDQ 8n2
1
s Z aw B0 ©b

From the vector derivatives, we have (dns(q)/0W) =
2CW 2 d. And from the definition of W we get
(0W,/0q;) = T:6:5. So (61) is converted to (dna(q)/dq;) =
> i—1 d;Tidi; = Tid;. So the vector form of (61) is equal to

In,(q)
9q

From (60), (62), n(q) = n1(q) + n2(q) and definitions of
vectors d and C, we can write

on(q)
dq

Finally, (63), (57), (30) with the definitions of n(q) and g(q)
yields the steepest-ascent iteration (31).

= diag(d) T. (62)

= 2diag(ATAQY — ATx) T (63)

APPENDIX II
MAP ESTIMATION OF PARAMETERS

To compute the MAP estimate of o,., assuming the other pa-
rameters are known, we should maximize the posterior proba-
bility p(o|t,q, on, P, x) = p(o,)p(t|o,). We do not impose
any prior information about o,.. So, the MAP estimation of o,
should maximize p(t|o,). This distribution is equal to

_m -1
~ _ 2 AT A
p(tlo.) = (2m07) 7 exp (2021' r) .

r

(64)

Differentiating the above equation with respect to o,., the MAP
estimate of o, is

R 1
U?,MAP = m ||r||§

(65)

pn(x—AQP) =
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To compute the MAP estimate of o,,, assuming the other pa-
rameters are known, we must maximize the posterior probability
p(onla,t,0,,p,x) = p(x[on,t,4) = pa(x — AQE). This
probability distribution is equal to

_n -1 ~ ~
(2m02) > exp(—2 (x—AQt)T (x— AQf‘)) .
207
(66)

Differentiating the above equation with respect to o,, yields to
the following equation:

52 I — A3

Op MAP = (67)

n
Finally, to calculate the MAP estimate of p, assuming
the other parameters are known, the posterior probability
p(plQ, T, o, 0y, x) should be maximized. This probability is
equivalent to p(q|p)p(x|q, £, o, ) in which only the term p(q|p)
depends on p. Differentiating p(g|p) = p™~"<)(1 — p)
with respect to p and setting it to zero, results in the following
estimate of p:

~ m — Ng

PMAP = ——— = M- (68)

m m

APPENDIX III

DERIVING INEQUALITY
For calculating the first term of (41) B 2
m A
>ici log(p(ar+1,i)/p(a,i)),  we  define  p(g;) =
Z?:l 7;gi(¢;) where mq 2 p and o 21 - p and

9i(¢;) = (1/ooV2r)exp((—(q; — m;)?/203)). Based on
(22), we selected the two variances equal to o9 and m; = 0
and mo = 1. Then we will have

- >0 ™93 (i + bk i)
B= Z log
i=1 > 739 (ki)
—u2e? s—2pck,i(qr,i—m;
Zj 795 (i) exp( B %k, I;ff% (an ))

B= log
; 225 395 (a.q)

(69)
where ¢, ; is ith element of ci. By defining 7;(q.;) 2
(mi9i(an,i)/ 22;739;(qk,i)) (note that 0 < r;(gx,;) < 1) and
by considering the concavity of the logarithm function, we can
write

(_/chi i — 2Hck, L(qk i m])) }
X exp
200

(70)

i — 2ucki(qri —my)] -

After some simplifications, the lower bound of B in (70)
becomes

A — Yk, i < S T2\qk
C= Z ek ; 2q/ + Z —UCh,iVhyi + Z HCk i 2(
i=1 ki 51 i=1

’ (71)
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where Vi, = qu. Z?Zl(rj(qk,i)/og). We know that

Ci=

c = (0L(q)/0q). So we have
-1 0 0
32 0g, ——(x—As)T(x — As) —1—5 ZlogZH]pJ )
N v \i=1 j=1
(72)
where ¢; is the ith element of c. If we define N = (x —

As)T(x—As)and M = Y"1 log 23:1 7,9 (i), then we can
write (ON/9q;) = (ON/9s;)(0s;/0q;) = 2AT(As — x)]i7;.
Moreover, we have

oM Wl%!h(qi) +mag,- 02(%)
= D (73)
7 23:1 739;(qi)
After some simplifications, we have
2
oM ri(qi) | r2(q)
=gy o+ 5 (74)
dq; ]2:; 0(2) 0(2)
Therefore, we have
r
e =~z — 7y, + 2B (75)
0
where ra(q) = [ra(qy), Tz(g2) - r2(gm)]” and ry(q) 2

(7T292(Qi)/z m292(¢:)) and z; = (1/20 2AT (As — x)]i7;
andv; = ¢; 37 i=1(ri(a)/ 03). Finally, the lower bound C' in
(71) can be simplified as

Ck RSICTY (76)

0

where R 2 diag(Y5_, (rj(qr.i)/203)) = diag(¥y.:/24n.:).
From (41), (69), (70), (71), and (76), we have

L(qk+1) — L(ax) =

C = —p’ciRey, — pciy, +

a —cira(qr)
0

(QSk H- b) Cyr.

—pPcf Rey — ey, +

2
Koo [
LT OG- (77)

n n

Because of the definition of z; and H and with some manip-
ulation the last term in the above equation (11/202)(2sI H —
b)Cyr is simplified as uz{ck. Replacement vy, = —ci — zx +
(r2(qx)/od) from (75) into (77), results in (42).
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